mirror of
https://github.com/MariaDB/server.git
synced 2025-07-27 18:02:13 +03:00
Manual merge
mysql-test/r/partition.result: Auto merged sql/handler.h: Auto merged sql/item.h: Auto merged sql/sql_class.cc: Auto merged sql/sql_lex.h: Auto merged sql/sql_select.cc: Auto merged
This commit is contained in:
520
sql/opt_range.cc
520
sql/opt_range.cc
@ -313,11 +313,46 @@ public:
|
||||
}
|
||||
SEL_ARG *clone_tree();
|
||||
|
||||
/* Return TRUE if this represents "keypartK = const" or "keypartK IS NULL" */
|
||||
|
||||
/*
|
||||
Check if this SEL_ARG object represents a single-point interval
|
||||
|
||||
SYNOPSIS
|
||||
is_singlepoint()
|
||||
|
||||
DESCRIPTION
|
||||
Check if this SEL_ARG object (not tree) represents a single-point
|
||||
interval, i.e. if it represents a "keypart = const" or
|
||||
"keypart IS NULL".
|
||||
|
||||
RETURN
|
||||
TRUE This SEL_ARG object represents a singlepoint interval
|
||||
FALSE Otherwise
|
||||
*/
|
||||
|
||||
bool is_singlepoint()
|
||||
{
|
||||
return !min_flag && !max_flag &&
|
||||
!field->key_cmp((byte*) min_value, (byte*)max_value);
|
||||
/*
|
||||
Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field)
|
||||
flags, and the same for right edge.
|
||||
*/
|
||||
if (min_flag || max_flag)
|
||||
return FALSE;
|
||||
byte *min_val= min_value;
|
||||
byte *max_val= min_value;
|
||||
|
||||
if (maybe_null)
|
||||
{
|
||||
/* First byte is a NULL value indicator */
|
||||
if (*min_val != *max_val)
|
||||
return FALSE;
|
||||
|
||||
if (*min_val)
|
||||
return TRUE; /* This "x IS NULL" */
|
||||
min_val++;
|
||||
max_val++;
|
||||
}
|
||||
return !field->key_cmp(min_val, max_val);
|
||||
}
|
||||
};
|
||||
|
||||
@ -2035,7 +2070,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Partition pruning starts
|
||||
* Partition pruning module
|
||||
****************************************************************************/
|
||||
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
||||
|
||||
@ -2080,7 +2115,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
|
||||
The list of intervals we'll obtain will look like this:
|
||||
((t1.a, t1.b) = (1,'foo')),
|
||||
((t1.a, t1.b) = (2,'bar')),
|
||||
((t1,a, t1.b) > (10,'zz')) (**)
|
||||
((t1,a, t1.b) > (10,'zz'))
|
||||
|
||||
2. for each interval I
|
||||
{
|
||||
@ -2110,7 +2145,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
|
||||
Putting it all together, partitioning module works as follows:
|
||||
|
||||
prune_partitions() {
|
||||
call create_partition_index_descrition();
|
||||
call create_partition_index_description();
|
||||
|
||||
call get_mm_tree(); // invoke the RangeAnalysisModule
|
||||
|
||||
@ -2124,10 +2159,6 @@ struct st_part_prune_param;
|
||||
struct st_part_opt_info;
|
||||
|
||||
typedef void (*mark_full_part_func)(partition_info*, uint32);
|
||||
typedef uint32 (*part_num_to_partition_id_func)(struct st_part_prune_param*,
|
||||
uint32);
|
||||
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
||||
bool include_endpoint);
|
||||
|
||||
/*
|
||||
Partition pruning operation context
|
||||
@ -2135,7 +2166,7 @@ typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
|
||||
typedef struct st_part_prune_param
|
||||
{
|
||||
RANGE_OPT_PARAM range_param; /* Range analyzer parameters */
|
||||
|
||||
|
||||
/***************************************************************
|
||||
Following fields are filled in based solely on partitioning
|
||||
definition and not modified after that:
|
||||
@ -2164,32 +2195,6 @@ typedef struct st_part_prune_param
|
||||
int last_part_partno;
|
||||
int last_subpart_partno; /* Same as above for supartitioning */
|
||||
|
||||
/*
|
||||
Function to be used to analyze non-singlepoint intervals (Can be pointer
|
||||
to one of two functions - for RANGE and for LIST types). NULL means
|
||||
partitioning type and/or expression doesn't allow non-singlepoint interval
|
||||
analysis.
|
||||
See get_list_array_idx_for_endpoint (or get_range_...) for description of
|
||||
what the function does.
|
||||
*/
|
||||
get_endpoint_func get_endpoint;
|
||||
|
||||
/* Maximum possible value that can be returned by get_endpoint function */
|
||||
uint32 max_endpoint_val;
|
||||
|
||||
/*
|
||||
For RANGE partitioning, part_num_to_part_id_range, for LIST partitioning,
|
||||
part_num_to_part_id_list. Just to avoid the if-else clutter.
|
||||
*/
|
||||
part_num_to_partition_id_func endpoints_walk_func;
|
||||
|
||||
/*
|
||||
If true, process "key < const" as "part_func(key) < part_func(const)",
|
||||
otherwise as "part_func(key) <= part_func(const)". Same for '>' and '>='.
|
||||
This is defined iff get_endpoint != NULL.
|
||||
*/
|
||||
bool force_include_bounds;
|
||||
|
||||
/*
|
||||
is_part_keypart[i] == test(keypart #i in partitioning index is a member
|
||||
used in partitioning)
|
||||
@ -2208,28 +2213,15 @@ typedef struct st_part_prune_param
|
||||
uint cur_part_fields;
|
||||
/* Same as cur_part_fields, but for subpartitioning */
|
||||
uint cur_subpart_fields;
|
||||
|
||||
/***************************************************************
|
||||
Following fields are used to store an 'iterator' that can be
|
||||
used to obtain a set of used artitions.
|
||||
**************************************************************/
|
||||
/*
|
||||
Start and end+1 partition "numbers". They can have two meanings depending
|
||||
depending of the value of part_num_to_part_id:
|
||||
part_num_to_part_id_range - numbers are partition ids
|
||||
part_num_to_part_id_list - numbers are indexes in part_info->list_array
|
||||
*/
|
||||
uint32 start_part_num;
|
||||
uint32 end_part_num;
|
||||
|
||||
/*
|
||||
A function that should be used to convert two above "partition numbers"
|
||||
to partition_ids.
|
||||
*/
|
||||
part_num_to_partition_id_func part_num_to_part_id;
|
||||
/* Iterator to be used to obtain the "current" set of used partitions */
|
||||
PARTITION_ITERATOR part_iter;
|
||||
|
||||
/* Initialized bitmap of no_subparts size */
|
||||
MY_BITMAP subparts_bitmap;
|
||||
} PART_PRUNE_PARAM;
|
||||
|
||||
static bool create_partition_index_descrition(PART_PRUNE_PARAM *prune_par);
|
||||
static bool create_partition_index_description(PART_PRUNE_PARAM *prune_par);
|
||||
static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree);
|
||||
static int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar,
|
||||
SEL_IMERGE *imerge);
|
||||
@ -2243,7 +2235,7 @@ static uint32 part_num_to_part_id_range(PART_PRUNE_PARAM* prune_par,
|
||||
static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end);
|
||||
static void dbug_print_field(Field *field);
|
||||
static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part);
|
||||
static void dbug_print_onepoint_range(SEL_ARG **start, uint num);
|
||||
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num);
|
||||
#endif
|
||||
|
||||
|
||||
@ -2297,7 +2289,7 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
|
||||
range_par->mem_root= &alloc;
|
||||
range_par->old_root= thd->mem_root;
|
||||
|
||||
if (create_partition_index_descrition(&prune_param))
|
||||
if (create_partition_index_description(&prune_param))
|
||||
{
|
||||
mark_all_partitions_as_used(part_info);
|
||||
free_root(&alloc,MYF(0)); // Return memory & allocator
|
||||
@ -2335,15 +2327,14 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
|
||||
|
||||
if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER)
|
||||
goto all_used;
|
||||
|
||||
|
||||
if (tree->merges.is_empty())
|
||||
{
|
||||
/* Range analysis has produced a single list of intervals. */
|
||||
prune_param.arg_stack_end= prune_param.arg_stack;
|
||||
prune_param.cur_part_fields= 0;
|
||||
prune_param.cur_subpart_fields= 0;
|
||||
prune_param.part_num_to_part_id= part_num_to_part_id_range;
|
||||
prune_param.start_part_num= 0;
|
||||
prune_param.end_part_num= prune_param.part_info->no_parts;
|
||||
init_all_partitions_iterator(part_info, &prune_param.part_iter);
|
||||
if (!tree->keys[0] || (-1 == (res= find_used_partitions(&prune_param,
|
||||
tree->keys[0]))))
|
||||
goto all_used;
|
||||
@ -2352,14 +2343,30 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
|
||||
{
|
||||
if (tree->merges.elements == 1)
|
||||
{
|
||||
if (-1 == (res |= find_used_partitions_imerge(&prune_param,
|
||||
tree->merges.head())))
|
||||
/*
|
||||
Range analysis has produced a "merge" of several intervals lists, a
|
||||
SEL_TREE that represents an expression in form
|
||||
sel_imerge = (tree1 OR tree2 OR ... OR treeN)
|
||||
that cannot be reduced to one tree. This can only happen when
|
||||
partitioning index has several keyparts and the condition is OR of
|
||||
conditions that refer to different key parts. For example, we'll get
|
||||
here for "partitioning_field=const1 OR subpartitioning_field=const2"
|
||||
*/
|
||||
if (-1 == (res= find_used_partitions_imerge(&prune_param,
|
||||
tree->merges.head())))
|
||||
goto all_used;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (-1 == (res |= find_used_partitions_imerge_list(&prune_param,
|
||||
tree->merges)))
|
||||
/*
|
||||
Range analysis has produced a list of several imerges, i.e. a
|
||||
structure that represents a condition in form
|
||||
imerge_list= (sel_imerge1 AND sel_imerge2 AND ... AND sel_imergeN)
|
||||
This is produced for complicated WHERE clauses that range analyzer
|
||||
can't really analyze properly.
|
||||
*/
|
||||
if (-1 == (res= find_used_partitions_imerge_list(&prune_param,
|
||||
tree->merges)))
|
||||
goto all_used;
|
||||
}
|
||||
}
|
||||
@ -2384,15 +2391,22 @@ end:
|
||||
|
||||
|
||||
/*
|
||||
Store key image to table record
|
||||
Store field key image to table record
|
||||
|
||||
SYNOPSIS
|
||||
field Field which key image should be stored.
|
||||
ptr Field value in key format.
|
||||
len Length of the value, in bytes.
|
||||
store_key_image_to_rec()
|
||||
field Field which key image should be stored
|
||||
ptr Field value in key format
|
||||
len Length of the value, in bytes
|
||||
|
||||
DESCRIPTION
|
||||
Copy the field value from its key image to the table record. The source
|
||||
is the value in key image format, occupying len bytes in buffer pointed
|
||||
by ptr. The destination is table record, in "field value in table record"
|
||||
format.
|
||||
*/
|
||||
|
||||
static void store_key_image_to_rec(Field *field, char *ptr, uint len)
|
||||
void store_key_image_to_rec(Field *field, char *ptr, uint len)
|
||||
{
|
||||
/* Do the same as print_key() does */
|
||||
if (field->real_maybe_null())
|
||||
@ -2414,8 +2428,12 @@ static void store_key_image_to_rec(Field *field, char *ptr, uint len)
|
||||
SYNOPSIS
|
||||
store_selargs_to_rec()
|
||||
ppar Partition pruning context
|
||||
start Array SEL_ARG* for which the minimum values should be stored
|
||||
start Array of SEL_ARG* for which the minimum values should be stored
|
||||
num Number of elements in the array
|
||||
|
||||
DESCRIPTION
|
||||
For each SEL_ARG* interval in the specified array, store the left edge
|
||||
field value (sel_arg->min, key image format) into the table record.
|
||||
*/
|
||||
|
||||
static void store_selargs_to_rec(PART_PRUNE_PARAM *ppar, SEL_ARG **start,
|
||||
@ -2449,19 +2467,6 @@ static void mark_full_partition_used_with_parts(partition_info *part_info,
|
||||
bitmap_set_bit(&part_info->used_partitions, start);
|
||||
}
|
||||
|
||||
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
|
||||
static uint32 part_num_to_part_id_range(PART_PRUNE_PARAM* ppar, uint32 num)
|
||||
{
|
||||
return num;
|
||||
}
|
||||
|
||||
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
|
||||
static uint32 part_num_to_part_id_list(PART_PRUNE_PARAM* ppar, uint32 num)
|
||||
{
|
||||
return ppar->part_info->list_array[num].partition_id;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Find the set of used partitions for List<SEL_IMERGE>
|
||||
SYNOPSIS
|
||||
@ -2473,7 +2478,7 @@ static uint32 part_num_to_part_id_list(PART_PRUNE_PARAM* ppar, uint32 num)
|
||||
List<SEL_IMERGE> represents "imerge1 AND imerge2 AND ...".
|
||||
The set of used partitions is an intersection of used partitions sets
|
||||
for imerge_{i}.
|
||||
We accumulate this intersection a separate bitmap.
|
||||
We accumulate this intersection in a separate bitmap.
|
||||
|
||||
RETURN
|
||||
See find_used_partitions()
|
||||
@ -2491,7 +2496,7 @@ static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
|
||||
bitmap_bytes)))
|
||||
{
|
||||
/*
|
||||
Fallback, process just first SEL_IMERGE. This can leave us with more
|
||||
Fallback, process just the first SEL_IMERGE. This can leave us with more
|
||||
partitions marked as used then actually needed.
|
||||
*/
|
||||
return find_used_partitions_imerge(ppar, merges.head());
|
||||
@ -2549,9 +2554,7 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
|
||||
ppar->arg_stack_end= ppar->arg_stack;
|
||||
ppar->cur_part_fields= 0;
|
||||
ppar->cur_subpart_fields= 0;
|
||||
ppar->part_num_to_part_id= part_num_to_part_id_range;
|
||||
ppar->start_part_num= 0;
|
||||
ppar->end_part_num= ppar->part_info->no_parts;
|
||||
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
||||
if (-1 == (res |= find_used_partitions(ppar, (*ptree)->keys[0])))
|
||||
return -1;
|
||||
}
|
||||
@ -2560,41 +2563,106 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
|
||||
|
||||
|
||||
/*
|
||||
Recursively walk the SEL_ARG tree, find/mark partitions that need to be used
|
||||
Collect partitioning ranges for the SEL_ARG tree and mark partitions as used
|
||||
|
||||
SYNOPSIS
|
||||
find_used_partitions()
|
||||
ppar Partition pruning context.
|
||||
key_tree Intervals tree to perform pruning for.
|
||||
key_tree SEL_ARG range tree to perform pruning for
|
||||
|
||||
DESCRIPTION
|
||||
This function
|
||||
* recursively walks the SEL_ARG* tree, collecting partitioning
|
||||
"intervals";
|
||||
* finds the partitions one needs to use to get rows in these intervals;
|
||||
* recursively walks the SEL_ARG* tree collecting partitioning "intervals"
|
||||
* finds the partitions one needs to use to get rows in these intervals
|
||||
* marks these partitions as used.
|
||||
|
||||
WHAT IS CONSIDERED TO BE "INTERVALS"
|
||||
A partition pruning "interval" is equivalent to condition in one of the
|
||||
forms:
|
||||
|
||||
"partition_field1=const1 AND ... partition_fieldN=constN" (1)
|
||||
"subpartition_field1=const1 AND ... subpartition_fieldN=constN" (2)
|
||||
"(1) AND (2)" (3)
|
||||
|
||||
In (1) and (2) all [sub]partitioning fields must be used, and "x=const"
|
||||
includes "x IS NULL".
|
||||
|
||||
If partitioning is performed using
|
||||
|
||||
PARTITION BY RANGE(unary_monotonic_func(single_partition_field)),
|
||||
|
||||
then the following is also an interval:
|
||||
The next session desribes the process in greater detail.
|
||||
|
||||
IMPLEMENTATION
|
||||
TYPES OF RESTRICTIONS THAT WE CAN OBTAIN PARTITIONS FOR
|
||||
We can find out which [sub]partitions to use if we obtain restrictions on
|
||||
[sub]partitioning fields in the following form:
|
||||
1. "partition_field1=const1 AND ... AND partition_fieldN=constN"
|
||||
1.1 Same as (1) but for subpartition fields
|
||||
|
||||
" const1 OP1 single_partition_field OR const2" (4)
|
||||
|
||||
where OP1 and OP2 are '<' OR '<=', and const_i can be +/- inf.
|
||||
Everything else is not a partition pruning "interval".
|
||||
If partitioning supports interval analysis (i.e. partitioning is a
|
||||
function of a single table field, and partition_info::
|
||||
get_part_iter_for_interval != NULL), then we can also use condition in
|
||||
this form:
|
||||
2. "const1 <=? partition_field <=? const2"
|
||||
2.1 Same as (2) but for subpartition_field
|
||||
|
||||
INFERRING THE RESTRICTIONS FROM SEL_ARG TREE
|
||||
|
||||
The below is an example of what SEL_ARG tree may represent:
|
||||
|
||||
(start)
|
||||
| $
|
||||
| Partitioning keyparts $ subpartitioning keyparts
|
||||
| $
|
||||
| ... ... $
|
||||
| | | $
|
||||
| +---------+ +---------+ $ +-----------+ +-----------+
|
||||
\-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|
|
||||
+---------+ +---------+ $ +-----------+ +-----------+
|
||||
| $ | |
|
||||
| $ | +-----------+
|
||||
| $ | | subpar2=c6|
|
||||
| $ | +-----------+
|
||||
| $ |
|
||||
| $ +-----------+ +-----------+
|
||||
| $ | subpar1=c4|--| subpar2=c8|
|
||||
| $ +-----------+ +-----------+
|
||||
| $
|
||||
| $
|
||||
+---------+ $ +------------+ +------------+
|
||||
| par1=c2 |------------------| subpar1=c10|--| subpar2=c12|
|
||||
+---------+ $ +------------+ +------------+
|
||||
| $
|
||||
... $
|
||||
|
||||
The up-down connections are connections via SEL_ARG::left and
|
||||
SEL_ARG::right. A horizontal connection to the right is the
|
||||
SEL_ARG::next_key_part connection.
|
||||
|
||||
find_used_partitions() traverses the entire tree via recursion on
|
||||
* SEL_ARG::next_key_part (from left to right on the picture)
|
||||
* SEL_ARG::left|right (up/down on the pic). Left-right recursion is
|
||||
performed for each depth level.
|
||||
|
||||
Recursion descent on SEL_ARG::next_key_part is used to accumulate (in
|
||||
ppar->arg_stack) constraints on partitioning and subpartitioning fields.
|
||||
For the example in the above picture, one of stack states is:
|
||||
in find_used_partitions(key_tree = "subpar2=c5") (***)
|
||||
in find_used_partitions(key_tree = "subpar1=c3")
|
||||
in find_used_partitions(key_tree = "par2=c2") (**)
|
||||
in find_used_partitions(key_tree = "par1=c1")
|
||||
in prune_partitions(...)
|
||||
We apply partitioning limits as soon as possible, e.g. when we reach the
|
||||
depth (**), we find which partition(s) correspond to "par1=c1 AND par2=c2",
|
||||
and save them in ppar->part_iter.
|
||||
When we reach the depth (***), we find which subpartition(s) correspond to
|
||||
"subpar1=c3 AND subpar2=c5", and then mark appropriate subpartitions in
|
||||
appropriate subpartitions as used.
|
||||
|
||||
It is possible that constraints on some partitioning fields are missing.
|
||||
For the above example, consider this stack state:
|
||||
in find_used_partitions(key_tree = "subpar2=c12") (***)
|
||||
in find_used_partitions(key_tree = "subpar1=c10")
|
||||
in find_used_partitions(key_tree = "par1=c2")
|
||||
in prune_partitions(...)
|
||||
Here we don't have constraints for all partitioning fields. Since we've
|
||||
never set the ppar->part_iter to contain used set of partitions, we use
|
||||
its default "all partitions" value. We get subpartition id for
|
||||
"subpar1=c3 AND subpar2=c5", and mark that subpartition as used in every
|
||||
partition.
|
||||
|
||||
The inverse is also possible: we may get constraints on partitioning
|
||||
fields, but not constraints on subpartitioning fields. In that case,
|
||||
calls to find_used_partitions() with depth below (**) will return -1,
|
||||
and we will mark entire partition as used.
|
||||
|
||||
TODO
|
||||
Replace recursion on SEL_ARG::left and SEL_ARG::right with a loop
|
||||
|
||||
RETURN
|
||||
1 OK, one or more [sub]partitions are marked as used.
|
||||
@ -2620,58 +2688,29 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
|
||||
if (key_tree->type == SEL_ARG::KEY_RANGE)
|
||||
{
|
||||
if (partno == 0 && (NULL != ppar->get_endpoint))
|
||||
if (partno == 0 && (NULL != ppar->part_info->get_part_iter_for_interval))
|
||||
{
|
||||
/*
|
||||
Partitioning is done by RANGE|INTERVAL(monotonic_expr(fieldX)), and
|
||||
we got "const1 < fieldX < const2" interval.
|
||||
we got "const1 CMP fieldX CMP const2" interval <-- psergey-todo: change
|
||||
*/
|
||||
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
|
||||
ppar->range_param.
|
||||
key_parts););
|
||||
/* Find minimum */
|
||||
if (key_tree->min_flag & NO_MIN_RANGE)
|
||||
ppar->start_part_num= 0;
|
||||
else
|
||||
res= ppar->part_info->
|
||||
get_part_iter_for_interval(ppar->part_info,
|
||||
FALSE,
|
||||
key_tree->min_value,
|
||||
key_tree->max_value,
|
||||
key_tree->min_flag | key_tree->max_flag,
|
||||
&ppar->part_iter);
|
||||
if (!res)
|
||||
goto go_right; /* res=0 --> no satisfying partitions */
|
||||
if (res == -1)
|
||||
{
|
||||
/*
|
||||
Store the interval edge in the record buffer, and call the
|
||||
function that maps the edge in table-field space to an edge
|
||||
in ordered-set-of-partitions (for RANGE partitioning) or
|
||||
indexes-in-ordered-array-of-list-constants (for LIST) space.
|
||||
*/
|
||||
store_key_image_to_rec(key_tree->field, key_tree->min_value,
|
||||
ppar->range_param.key_parts[0].length);
|
||||
bool include_endp= ppar->force_include_bounds ||
|
||||
!test(key_tree->min_flag & NEAR_MIN);
|
||||
ppar->start_part_num= ppar->get_endpoint(ppar->part_info, 1,
|
||||
include_endp);
|
||||
if (ppar->start_part_num == ppar->max_endpoint_val)
|
||||
{
|
||||
res= 0; /* No satisfying partitions */
|
||||
goto pop_and_go_right;
|
||||
}
|
||||
//get a full range iterator
|
||||
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
||||
}
|
||||
|
||||
/* Find maximum, do the same as above but for right interval bound */
|
||||
if (key_tree->max_flag & NO_MAX_RANGE)
|
||||
ppar->end_part_num= ppar->max_endpoint_val;
|
||||
else
|
||||
{
|
||||
store_key_image_to_rec(key_tree->field, key_tree->max_value,
|
||||
ppar->range_param.key_parts[0].length);
|
||||
bool include_endp= ppar->force_include_bounds ||
|
||||
!test(key_tree->max_flag & NEAR_MAX);
|
||||
ppar->end_part_num= ppar->get_endpoint(ppar->part_info, 0,
|
||||
include_endp);
|
||||
if (ppar->start_part_num == ppar->end_part_num)
|
||||
{
|
||||
res= 0; /* No satisfying partitions */
|
||||
goto pop_and_go_right;
|
||||
}
|
||||
}
|
||||
ppar->part_num_to_part_id= ppar->endpoints_walk_func;
|
||||
|
||||
/*
|
||||
Save our intent to mark full partition as used if we will not be able
|
||||
to obtain further limits on subpartitions
|
||||
@ -2680,6 +2719,42 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
goto process_next_key_part;
|
||||
}
|
||||
|
||||
if (partno == ppar->last_subpart_partno &&
|
||||
(NULL != ppar->part_info->get_subpart_iter_for_interval))
|
||||
{
|
||||
PARTITION_ITERATOR subpart_iter;
|
||||
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
|
||||
ppar->range_param.
|
||||
key_parts););
|
||||
res= ppar->part_info->
|
||||
get_subpart_iter_for_interval(ppar->part_info,
|
||||
TRUE,
|
||||
key_tree->min_value,
|
||||
key_tree->max_value,
|
||||
key_tree->min_flag | key_tree->max_flag,
|
||||
&subpart_iter);
|
||||
DBUG_ASSERT(res); /* We can't get "no satisfying subpartitions" */
|
||||
if (res == -1)
|
||||
return -1; /* all subpartitions satisfy */
|
||||
|
||||
uint32 subpart_id;
|
||||
bitmap_clear_all(&ppar->subparts_bitmap);
|
||||
while ((subpart_id= subpart_iter.get_next(&subpart_iter)) != NOT_A_PARTITION_ID)
|
||||
bitmap_set_bit(&ppar->subparts_bitmap, subpart_id);
|
||||
|
||||
/* Mark each partition as used in each subpartition. */
|
||||
uint32 part_id;
|
||||
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
|
||||
NOT_A_PARTITION_ID)
|
||||
{
|
||||
for (uint i= 0; i < ppar->part_info->no_subparts; i++)
|
||||
if (bitmap_is_set(&ppar->subparts_bitmap, i))
|
||||
bitmap_set_bit(&ppar->part_info->used_partitions,
|
||||
part_id * ppar->part_info->no_subparts + i);
|
||||
}
|
||||
goto go_right;
|
||||
}
|
||||
|
||||
if (key_tree->is_singlepoint())
|
||||
{
|
||||
pushed= TRUE;
|
||||
@ -2695,11 +2770,11 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
fields. Save all constN constants into table record buffer.
|
||||
*/
|
||||
store_selargs_to_rec(ppar, ppar->arg_stack, ppar->part_fields);
|
||||
DBUG_EXECUTE("info", dbug_print_onepoint_range(ppar->arg_stack,
|
||||
DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack,
|
||||
ppar->part_fields););
|
||||
uint32 part_id;
|
||||
longlong func_value;
|
||||
/* then find in which partition the {const1, ...,constN} tuple goes */
|
||||
/* Find in which partition the {const1, ...,constN} tuple goes */
|
||||
if (ppar->get_top_partition_id_func(ppar->part_info, &part_id,
|
||||
&func_value))
|
||||
{
|
||||
@ -2707,9 +2782,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
goto pop_and_go_right;
|
||||
}
|
||||
/* Rembember the limit we got - single partition #part_id */
|
||||
ppar->part_num_to_part_id= part_num_to_part_id_range;
|
||||
ppar->start_part_num= part_id;
|
||||
ppar->end_part_num= part_id + 1;
|
||||
init_single_partition_iterator(part_id, &ppar->part_iter);
|
||||
|
||||
/*
|
||||
If there are no subpartitions/we fail to get any limit for them,
|
||||
@ -2719,7 +2792,8 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
goto process_next_key_part;
|
||||
}
|
||||
|
||||
if (partno == ppar->last_subpart_partno)
|
||||
if (partno == ppar->last_subpart_partno &&
|
||||
ppar->cur_subpart_fields == ppar->subpart_fields)
|
||||
{
|
||||
/*
|
||||
Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning
|
||||
@ -2727,7 +2801,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
*/
|
||||
store_selargs_to_rec(ppar, ppar->arg_stack_end - ppar->subpart_fields,
|
||||
ppar->subpart_fields);
|
||||
DBUG_EXECUTE("info", dbug_print_onepoint_range(ppar->arg_stack_end -
|
||||
DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack_end-
|
||||
ppar->subpart_fields,
|
||||
ppar->subpart_fields););
|
||||
/* Find the subpartition (it's HASH/KEY so we always have one) */
|
||||
@ -2735,12 +2809,12 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
uint32 subpart_id= part_info->get_subpartition_id(part_info);
|
||||
|
||||
/* Mark this partition as used in each subpartition. */
|
||||
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num;
|
||||
num++)
|
||||
uint32 part_id;
|
||||
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
|
||||
NOT_A_PARTITION_ID)
|
||||
{
|
||||
bitmap_set_bit(&part_info->used_partitions,
|
||||
ppar->part_num_to_part_id(ppar, num) *
|
||||
part_info->no_subparts + subpart_id);
|
||||
part_id * part_info->no_subparts + subpart_id);
|
||||
}
|
||||
res= 1; /* Some partitions were marked as used */
|
||||
goto pop_and_go_right;
|
||||
@ -2761,31 +2835,28 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
||||
process_next_key_part:
|
||||
if (key_tree->next_key_part)
|
||||
res= find_used_partitions(ppar, key_tree->next_key_part);
|
||||
else
|
||||
else
|
||||
res= -1;
|
||||
|
||||
if (res == -1) /* Got "full range" for key_tree->next_key_part call */
|
||||
{
|
||||
if (set_full_part_if_bad_ret)
|
||||
{
|
||||
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num;
|
||||
num++)
|
||||
{
|
||||
ppar->mark_full_partition_used(ppar->part_info,
|
||||
ppar->part_num_to_part_id(ppar, num));
|
||||
}
|
||||
res= 1;
|
||||
}
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
if (set_full_part_if_bad_ret)
|
||||
{
|
||||
/* Restore the "used partition iterator" to its default */
|
||||
ppar->part_num_to_part_id= part_num_to_part_id_range;
|
||||
ppar->start_part_num= 0;
|
||||
ppar->end_part_num= ppar->part_info->no_parts;
|
||||
if (res == -1)
|
||||
{
|
||||
/* Got "full range" for subpartitioning fields */
|
||||
uint32 part_id;
|
||||
bool found= FALSE;
|
||||
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) != NOT_A_PARTITION_ID)
|
||||
{
|
||||
ppar->mark_full_partition_used(ppar->part_info, part_id);
|
||||
found= TRUE;
|
||||
}
|
||||
res= test(found);
|
||||
}
|
||||
/*
|
||||
Restore the "used partitions iterator" to the default setting that
|
||||
specifies iteration over all partitions.
|
||||
*/
|
||||
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
||||
}
|
||||
|
||||
if (pushed)
|
||||
@ -2796,7 +2867,10 @@ pop_and_go_right:
|
||||
ppar->cur_part_fields-= ppar->is_part_keypart[partno];
|
||||
ppar->cur_subpart_fields-= ppar->is_subpart_keypart[partno];
|
||||
}
|
||||
|
||||
|
||||
if (res == -1)
|
||||
return -1;
|
||||
go_right:
|
||||
if (key_tree->right != &null_element)
|
||||
{
|
||||
if (-1 == (right_res= find_used_partitions(ppar,key_tree->right)))
|
||||
@ -2854,7 +2928,7 @@ static bool fields_ok_for_partition_index(Field **pfield)
|
||||
struct
|
||||
|
||||
SYNOPSIS
|
||||
create_partition_index_descrition()
|
||||
create_partition_index_description()
|
||||
prune_par INOUT Partition pruning context
|
||||
|
||||
DESCRIPTION
|
||||
@ -2871,7 +2945,7 @@ static bool fields_ok_for_partition_index(Field **pfield)
|
||||
FALSE OK
|
||||
*/
|
||||
|
||||
static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
|
||||
static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
|
||||
{
|
||||
RANGE_OPT_PARAM *range_par= &(ppar->range_param);
|
||||
partition_info *part_info= ppar->part_info;
|
||||
@ -2903,38 +2977,6 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
|
||||
ppar->get_top_partition_id_func= part_info->get_partition_id;
|
||||
}
|
||||
|
||||
enum_monotonicity_info minfo;
|
||||
ppar->get_endpoint= NULL;
|
||||
if (part_info->part_expr &&
|
||||
(minfo= part_info->part_expr->get_monotonicity_info()) != NON_MONOTONIC)
|
||||
{
|
||||
/*
|
||||
ppar->force_include_bounds controls how we'll process "field < C" and
|
||||
"field > C" intervals.
|
||||
If the partitioning function F is strictly increasing, then for any x, y
|
||||
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
|
||||
we can perform partition pruning on the equivalent "F(field) < F(C)".
|
||||
|
||||
If the partitioning function not strictly increasing (it is simply
|
||||
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
|
||||
i.e. for interval "field < C" we can perform partition pruning for
|
||||
"F(field) <= F(C)".
|
||||
*/
|
||||
ppar->force_include_bounds= test(minfo == MONOTONIC_INCREASING);
|
||||
if (part_info->part_type == RANGE_PARTITION)
|
||||
{
|
||||
ppar->get_endpoint= get_partition_id_range_for_endpoint;
|
||||
ppar->endpoints_walk_func= part_num_to_part_id_range;
|
||||
ppar->max_endpoint_val= part_info->no_parts;
|
||||
}
|
||||
else if (part_info->part_type == LIST_PARTITION)
|
||||
{
|
||||
ppar->get_endpoint= get_list_array_idx_for_endpoint;
|
||||
ppar->endpoints_walk_func= part_num_to_part_id_list;
|
||||
ppar->max_endpoint_val= part_info->no_list_values;
|
||||
}
|
||||
}
|
||||
|
||||
KEY_PART *key_part;
|
||||
MEM_ROOT *alloc= range_par->mem_root;
|
||||
if (!total_parts ||
|
||||
@ -2947,11 +2989,19 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
|
||||
!(ppar->is_subpart_keypart= (my_bool*)alloc_root(alloc, sizeof(my_bool)*
|
||||
total_parts)))
|
||||
return TRUE;
|
||||
|
||||
|
||||
if (ppar->subpart_fields)
|
||||
{
|
||||
uint32 *buf;
|
||||
uint32 bufsize= bitmap_buffer_size(ppar->part_info->no_subparts);
|
||||
if (!(buf= (uint32*)alloc_root(alloc, bufsize)))
|
||||
return TRUE;
|
||||
bitmap_init(&ppar->subparts_bitmap, buf, ppar->part_info->no_subparts, FALSE);
|
||||
}
|
||||
range_par->key_parts= key_part;
|
||||
Field **field= (ppar->part_fields)? part_info->part_field_array :
|
||||
part_info->subpart_field_array;
|
||||
bool subpart_fields= FALSE;
|
||||
bool in_subpart_fields= FALSE;
|
||||
for (uint part= 0; part < total_parts; part++, key_part++)
|
||||
{
|
||||
key_part->key= 0;
|
||||
@ -2972,13 +3022,13 @@ static bool create_partition_index_descrition(PART_PRUNE_PARAM *ppar)
|
||||
key_part->image_type = Field::itRAW;
|
||||
/* We don't set key_parts->null_bit as it will not be used */
|
||||
|
||||
ppar->is_part_keypart[part]= !subpart_fields;
|
||||
ppar->is_subpart_keypart[part]= subpart_fields;
|
||||
ppar->is_part_keypart[part]= !in_subpart_fields;
|
||||
ppar->is_subpart_keypart[part]= in_subpart_fields;
|
||||
|
||||
if (!*(++field))
|
||||
{
|
||||
field= part_info->subpart_field_array;
|
||||
subpart_fields= TRUE;
|
||||
in_subpart_fields= TRUE;
|
||||
}
|
||||
}
|
||||
range_par->key_parts_end= key_part;
|
||||
@ -3058,7 +3108,7 @@ static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part)
|
||||
Print a singlepoint multi-keypart range interval to debug trace
|
||||
|
||||
SYNOPSIS
|
||||
dbug_print_onepoint_range()
|
||||
dbug_print_singlepoint_range()
|
||||
start Array of SEL_ARG* ptrs representing conditions on key parts
|
||||
num Number of elements in the array.
|
||||
|
||||
@ -3067,9 +3117,9 @@ static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part)
|
||||
interval to debug trace.
|
||||
*/
|
||||
|
||||
static void dbug_print_onepoint_range(SEL_ARG **start, uint num)
|
||||
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num)
|
||||
{
|
||||
DBUG_ENTER("dbug_print_onepoint_range");
|
||||
DBUG_ENTER("dbug_print_singlepoint_range");
|
||||
DBUG_LOCK_FILE;
|
||||
SEL_ARG **end= start + num;
|
||||
|
||||
|
Reference in New Issue
Block a user