1
0
mirror of https://github.com/mariadb-corporation/mariadb-connector-c.git synced 2025-08-01 06:27:04 +03:00

CONC-756: Update zlib to 1.3.1

This commit is contained in:
Georg Richter
2025-04-23 21:30:03 +02:00
parent b10b76e5a2
commit 02ceb06096
66 changed files with 1566 additions and 9324 deletions

View File

@ -1,9 +1,11 @@
cmake_minimum_required(VERSION 2.4.4)
cmake_minimum_required(VERSION 2.4.4...3.15.0)
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS ON)
project(zlib C)
set(VERSION "1.2.13")
set(VERSION "1.3.1")
option(ZLIB_BUILD_EXAMPLES "Enable Zlib Examples" ON)
set(INSTALL_BIN_DIR "${CMAKE_INSTALL_PREFIX}/bin" CACHE PATH "Installation directory for executables")
set(INSTALL_LIB_DIR "${CMAKE_INSTALL_PREFIX}/lib" CACHE PATH "Installation directory for libraries")
@ -147,5 +149,4 @@ if(MINGW)
set(ZLIB_DLL_SRCS ${CMAKE_CURRENT_BINARY_DIR}/zlib1rc.obj)
endif(MINGW)
add_library(zlib STATIC ${ZLIB_SRCS} ${ZLIB_PUBLIC_HDRS} ${ZLIB_PRIVATE_HDRS})
add_library(zlib STATIC ${ZLIB_SRCS} ${ZLIB_DLL_SRCS} ${ZLIB_PUBLIC_HDRS} ${ZLIB_PRIVATE_HDRS})

View File

@ -1,6 +1,46 @@
ChangeLog file for zlib
Changes in 1.3.1 (22 Jan 2024)
- Reject overflows of zip header fields in minizip
- Fix bug in inflateSync() for data held in bit buffer
- Add LIT_MEM define to use more memory for a small deflate speedup
- Fix decision on the emission of Zip64 end records in minizip
- Add bounds checking to ERR_MSG() macro, used by zError()
- Neutralize zip file traversal attacks in miniunz
- Fix a bug in ZLIB_DEBUG compiles in check_match()
- Various portability and appearance improvements
Changes in 1.3 (18 Aug 2023)
- Remove K&R function definitions and zlib2ansi
- Fix bug in deflateBound() for level 0 and memLevel 9
- Fix bug when gzungetc() is used immediately after gzopen()
- Fix bug when using gzflush() with a very small buffer
- Fix crash when gzsetparams() attempted for transparent write
- Fix test/example.c to work with FORCE_STORED
- Rewrite of zran in examples (see zran.c version history)
- Fix minizip to allow it to open an empty zip file
- Fix reading disk number start on zip64 files in minizip
- Fix logic error in minizip argument processing
- Add minizip testing to Makefile
- Read multiple bytes instead of byte-by-byte in minizip unzip.c
- Add memory sanitizer to configure (--memory)
- Various portability improvements
- Various documentation improvements
- Various spelling and typo corrections
Changes in 1.2.13 (13 Oct 2022)
- Fix configure issue that discarded provided CC definition
- Correct incorrect inputs provided to the CRC functions
- Repair prototypes and exporting of new CRC functions
- Fix inflateBack to detect invalid input with distances too far
- Have infback() deliver all of the available output up to any error
- Fix a bug when getting a gzip header extra field with inflate()
- Fix bug in block type selection when Z_FIXED used
- Tighten deflateBound bounds
- Remove deleted assembler code references
- Various portability and appearance improvements
Changes in 1.2.12 (27 Mar 2022)
- Cygwin does not have _wopen(), so do not create gzopen_w() there
- Permit a deflateParams() parameter change as soon as possible
@ -159,7 +199,7 @@ Changes in 1.2.7.1 (24 Mar 2013)
- Fix types in contrib/minizip to match result of get_crc_table()
- Simplify contrib/vstudio/vc10 with 'd' suffix
- Add TOP support to win32/Makefile.msc
- Suport i686 and amd64 assembler builds in CMakeLists.txt
- Support i686 and amd64 assembler builds in CMakeLists.txt
- Fix typos in the use of _LARGEFILE64_SOURCE in zconf.h
- Add vc11 and vc12 build files to contrib/vstudio
- Add gzvprintf() as an undocumented function in zlib
@ -359,14 +399,14 @@ Changes in 1.2.5.1 (10 Sep 2011)
- Use u4 type for crc_table to avoid conversion warnings
- Apply casts in zlib.h to avoid conversion warnings
- Add OF to prototypes for adler32_combine_ and crc32_combine_ [Miller]
- Improve inflateSync() documentation to note indeterminancy
- Improve inflateSync() documentation to note indeterminacy
- Add deflatePending() function to return the amount of pending output
- Correct the spelling of "specification" in FAQ [Randers-Pehrson]
- Add a check in configure for stdarg.h, use for gzprintf()
- Check that pointers fit in ints when gzprint() compiled old style
- Add dummy name before $(SHAREDLIBV) in Makefile [Bar-Lev, Bowler]
- Delete line in configure that adds -L. libz.a to LDFLAGS [Weigelt]
- Add debug records in assmebler code [Londer]
- Add debug records in assembler code [Londer]
- Update RFC references to use http://tools.ietf.org/html/... [Li]
- Add --archs option, use of libtool to configure for Mac OS X [Borstel]
@ -1033,7 +1073,7 @@ Changes in 1.2.0.1 (17 March 2003)
- Include additional header file on VMS for off_t typedef
- Try to use _vsnprintf where it supplants vsprintf [Vollant]
- Add some casts in inffast.c
- Enchance comments in zlib.h on what happens if gzprintf() tries to
- Enhance comments in zlib.h on what happens if gzprintf() tries to
write more than 4095 bytes before compression
- Remove unused state from inflateBackEnd()
- Remove exit(0) from minigzip.c, example.c
@ -1211,7 +1251,7 @@ Changes in 1.0.9 (17 Feb 1998)
- Avoid gcc 2.8.0 comparison bug a little differently than zlib 1.0.8
- in inftrees.c, avoid cc -O bug on HP (Farshid Elahi)
- in zconf.h move the ZLIB_DLL stuff earlier to avoid problems with
the declaration of FAR (Gilles VOllant)
the declaration of FAR (Gilles Vollant)
- install libz.so* with mode 755 (executable) instead of 644 (Marc Lehmann)
- read_buf buf parameter of type Bytef* instead of charf*
- zmemcpy parameters are of type Bytef*, not charf* (Joseph Strout)
@ -1433,7 +1473,7 @@ Changes in 0.99 (27 Jan 96)
- fix typo in Make_vms.com (f$trnlnm -> f$getsyi)
- in fcalloc, normalize pointer if size > 65520 bytes
- don't use special fcalloc for 32 bit Borland C++
- use STDC instead of __GO32__ to avoid redeclaring exit, calloc, etc...
- use STDC instead of __GO32__ to avoid redeclaring exit, calloc, etc.
- use Z_BINARY instead of BINARY
- document that gzclose after gzdopen will close the file
- allow "a" as mode in gzopen
@ -1567,7 +1607,7 @@ Changes in 0.4:
- renamed deflateOptions as deflateInit2, call one or the other but not both
- added the method parameter for deflateInit2
- added inflateInit2
- simplied considerably deflateInit and inflateInit by not supporting
- simplified considerably deflateInit and inflateInit by not supporting
user-provided history buffer. This is supported only in deflateInit2
and inflateInit2

5
external/zlib/FAQ vendored
View File

@ -4,7 +4,7 @@
If your question is not there, please check the zlib home page
http://zlib.net/ which may have more recent information.
The lastest zlib FAQ is at http://zlib.net/zlib_faq.html
The latest zlib FAQ is at http://zlib.net/zlib_faq.html
1. Is zlib Y2K-compliant?
@ -14,8 +14,7 @@ The lastest zlib FAQ is at http://zlib.net/zlib_faq.html
2. Where can I get a Windows DLL version?
The zlib sources can be compiled without change to produce a DLL. See the
file win32/DLL_FAQ.txt in the zlib distribution. Pointers to the
precompiled DLL are found in the zlib web site at http://zlib.net/ .
file win32/DLL_FAQ.txt in the zlib distribution.
3. Where can I get a Visual Basic interface to zlib?

13
external/zlib/INDEX vendored
View File

@ -7,6 +7,9 @@ Makefile.in template for Unix Makefile
README guess what
configure configure script for Unix
make_vms.com makefile for VMS
test/example.c zlib usages examples for build testing
test/minigzip.c minimal gzip-like functionality for build testing
test/infcover.c inf*.c code coverage for build coverage testing
treebuild.xml XML description of source file dependencies
zconf.h.cmakein zconf.h template for cmake
zconf.h.in zconf.h template for configure
@ -14,9 +17,11 @@ zlib.3 Man page for zlib
zlib.3.pdf Man page in PDF format
zlib.map Linux symbol information
zlib.pc.in Template for pkg-config descriptor
zlib.pc.cmakein zlib.pc template for cmake
zlib2ansi perl script to convert source files for C++ compilation
amiga/ makefiles for Amiga SAS C
as400/ makefiles for AS/400
doc/ documentation for formats and algorithms
msdos/ makefiles for MSDOS
nintendods/ makefile for Nintendo DS
@ -56,10 +61,8 @@ uncompr.c
zutil.c
zutil.h
source files for sample programs:
example.c
minigzip.c
See examples/README.examples for more
source files for sample programs
See examples/README.examples
unsupported contribution by third parties
unsupported contributions by third parties
See contrib/README.contrib

22
external/zlib/LICENSE vendored Normal file
View File

@ -0,0 +1,22 @@
Copyright notice:
(C) 1995-2022 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

View File

@ -1,5 +1,5 @@
# Makefile for zlib
# Copyright (C) 1995-2013 Jean-loup Gailly, Mark Adler
# Copyright (C) 1995-2024 Jean-loup Gailly, Mark Adler
# For conditions of distribution and use, see copyright notice in zlib.h
# To compile and test, type:
@ -7,30 +7,28 @@
# Normally configure builds both a static and a shared library.
# If you want to build just a static library, use: ./configure --static
# To install /usr/local/lib/libz.* and /usr/local/include/zlib.h, type:
# make install
# To install in $HOME instead of /usr/local, use:
# make install prefix=$HOME
TGT_ARCH=
CC=cc
CFLAGS=-O
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
#CFLAGS=-g -DDEBUG
#CFLAGS=-g -DZLIB_DEBUG
#CFLAGS=-O3 -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
# -Wstrict-prototypes -Wmissing-prototypes
SFLAGS=-O
LDFLAGS=
TEST_LDFLAGS=-L. libz.a
TEST_LIBS=-L. libz.a
LDSHARED=$(CC)
CPP=$(CC) -E
STATICLIB=libz.a
SHAREDLIB=libz.so
SHAREDLIBV=libz.so.1.2.8
SHAREDLIBV=libz.so.1.3.1
SHAREDLIBM=libz.so.1
LIBS=$(STATICLIB) $(SHAREDLIBV)
@ -51,29 +49,16 @@ includedir = ${prefix}/include
mandir = ${prefix}/share/man
man3dir = ${mandir}/man3
pkgconfigdir = ${libdir}/pkgconfig
SRCDIR=
ZINC=
ZINCOUT=-I.
OBJZ = adler32.o adler32_simd.o crc32.o deflate.o infback.o inffast.o inflate.o inftrees.o trees.o zutil.o
OBJZ = adler32.o crc32.o deflate.o infback.o inffast.o inflate.o inftrees.o trees.o zutil.o
OBJG = compress.o uncompr.o gzclose.o gzlib.o gzread.o gzwrite.o
PIC_OBJZ = adler32.lo adler32_simd.lo crc32.lo deflate.lo infback.lo inffast.lo inflate.lo inftrees.lo trees.lo zutil.lo
PIC_OBJG = compress.lo uncompr.lo gzclose.lo gzlib.lo gzread.lo gzwrite.lo
ifneq ($(findstring -DINFLATE_CHUNK_SIMD_NEON, $(CFLAGS)),)
OBJZ += inffast_chunk.o
PIC_OBJZ += inffast_chunk.lo
endif
ifneq ($(findstring -DINFLATE_CHUNK_SIMD_SSE2, $(CFLAGS)),)
OBJZ += inffast_chunk.o
PIC_OBJZ += inffast_chunk.lo
endif
ifneq ($(findstring -DHAS_PCLMUL, $(CFLAGS)),)
OBJZ += crc32_simd.o
PIC_OBJZ += crc32_simd.lo
endif
OBJC = $(OBJZ) $(OBJG)
PIC_OBJZ = adler32.lo crc32.lo deflate.lo infback.lo inffast.lo inflate.lo inftrees.lo trees.lo zutil.lo
PIC_OBJG = compress.lo uncompr.lo gzclose.lo gzlib.lo gzread.lo gzwrite.lo
PIC_OBJC = $(PIC_OBJZ) $(PIC_OBJG)
# to use the asm code: make OBJA=match.o, PIC_OBJA=match.lo
@ -98,12 +83,12 @@ test: all teststatic testshared
teststatic: static
@TMPST=tmpst_$$; \
if echo hello world | ./minigzip | ./minigzip -d && ./example $$TMPST ; then \
if echo hello world | ${QEMU_RUN} ./minigzip | ${QEMU_RUN} ./minigzip -d && ${QEMU_RUN} ./example $$TMPST ; then \
echo ' *** zlib test OK ***'; \
else \
echo ' *** zlib test FAILED ***'; false; \
fi; \
rm -f $$TMPST
fi
@rm -f tmpst_$$
testshared: shared
@LD_LIBRARY_PATH=`pwd`:$(LD_LIBRARY_PATH) ; export LD_LIBRARY_PATH; \
@ -111,31 +96,31 @@ testshared: shared
DYLD_LIBRARY_PATH=`pwd`:$(DYLD_LIBRARY_PATH) ; export DYLD_LIBRARY_PATH; \
SHLIB_PATH=`pwd`:$(SHLIB_PATH) ; export SHLIB_PATH; \
TMPSH=tmpsh_$$; \
if echo hello world | ./minigzipsh | ./minigzipsh -d && ./examplesh $$TMPSH; then \
if echo hello world | ${QEMU_RUN} ./minigzipsh | ${QEMU_RUN} ./minigzipsh -d && ${QEMU_RUN} ./examplesh $$TMPSH; then \
echo ' *** zlib shared test OK ***'; \
else \
echo ' *** zlib shared test FAILED ***'; false; \
fi; \
rm -f $$TMPSH
fi
@rm -f tmpsh_$$
test64: all64
@TMP64=tmp64_$$; \
if echo hello world | ./minigzip64 | ./minigzip64 -d && ./example64 $$TMP64; then \
if echo hello world | ${QEMU_RUN} ./minigzip64 | ${QEMU_RUN} ./minigzip64 -d && ${QEMU_RUN} ./example64 $$TMP64; then \
echo ' *** zlib 64-bit test OK ***'; \
else \
echo ' *** zlib 64-bit test FAILED ***'; false; \
fi; \
rm -f $$TMP64
fi
@rm -f tmp64_$$
infcover.o: test/infcover.c zlib.h zconf.h
$(CC) $(CFLAGS) -I. -c -o $@ test/infcover.c
infcover.o: $(SRCDIR)test/infcover.c $(SRCDIR)zlib.h zconf.h
$(CC) $(CFLAGS) $(ZINCOUT) -c -o $@ $(SRCDIR)test/infcover.c
infcover: infcover.o libz.a
$(CC) $(CFLAGS) -o $@ infcover.o libz.a
cover: infcover
rm -f *.gcda
./infcover
${QEMU_RUN} ./infcover
gcov inf*.c
libz.a: $(OBJS)
@ -154,24 +139,140 @@ match.lo: match.S
mv _match.o match.lo
rm -f _match.s
example.o: test/example.c zlib.h zconf.h
$(CC) $(CFLAGS) -I. -c -o $@ test/example.c
example.o: $(SRCDIR)test/example.c $(SRCDIR)zlib.h zconf.h
$(CC) $(CFLAGS) $(ZINCOUT) -c -o $@ $(SRCDIR)test/example.c
minigzip.o: test/minigzip.c zlib.h zconf.h
$(CC) $(CFLAGS) -I. -c -o $@ test/minigzip.c
minigzip.o: $(SRCDIR)test/minigzip.c $(SRCDIR)zlib.h zconf.h
$(CC) $(CFLAGS) $(ZINCOUT) -c -o $@ $(SRCDIR)test/minigzip.c
example64.o: test/example.c zlib.h zconf.h
$(CC) $(CFLAGS) -I. -D_FILE_OFFSET_BITS=64 -c -o $@ test/example.c
example64.o: $(SRCDIR)test/example.c $(SRCDIR)zlib.h zconf.h
$(CC) $(CFLAGS) $(ZINCOUT) -D_FILE_OFFSET_BITS=64 -c -o $@ $(SRCDIR)test/example.c
minigzip64.o: test/minigzip.c zlib.h zconf.h
$(CC) $(CFLAGS) -I. -D_FILE_OFFSET_BITS=64 -c -o $@ test/minigzip.c
minigzip64.o: $(SRCDIR)test/minigzip.c $(SRCDIR)zlib.h zconf.h
$(CC) $(CFLAGS) $(ZINCOUT) -D_FILE_OFFSET_BITS=64 -c -o $@ $(SRCDIR)test/minigzip.c
.SUFFIXES: .lo
.c.lo:
adler32.o: $(SRCDIR)adler32.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)adler32.c
crc32.o: $(SRCDIR)crc32.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)crc32.c
deflate.o: $(SRCDIR)deflate.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)deflate.c
infback.o: $(SRCDIR)infback.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)infback.c
inffast.o: $(SRCDIR)inffast.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)inffast.c
inflate.o: $(SRCDIR)inflate.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)inflate.c
inftrees.o: $(SRCDIR)inftrees.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)inftrees.c
trees.o: $(SRCDIR)trees.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)trees.c
zutil.o: $(SRCDIR)zutil.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)zutil.c
compress.o: $(SRCDIR)compress.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)compress.c
uncompr.o: $(SRCDIR)uncompr.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)uncompr.c
gzclose.o: $(SRCDIR)gzclose.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)gzclose.c
gzlib.o: $(SRCDIR)gzlib.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)gzlib.c
gzread.o: $(SRCDIR)gzread.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)gzread.c
gzwrite.o: $(SRCDIR)gzwrite.c
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)gzwrite.c
adler32.lo: $(SRCDIR)adler32.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) -DPIC -c -o objs/$*.o $<
-@mv objs/$*.o $@
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/adler32.o $(SRCDIR)adler32.c
-@mv objs/adler32.o $@
crc32.lo: $(SRCDIR)crc32.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/crc32.o $(SRCDIR)crc32.c
-@mv objs/crc32.o $@
deflate.lo: $(SRCDIR)deflate.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/deflate.o $(SRCDIR)deflate.c
-@mv objs/deflate.o $@
infback.lo: $(SRCDIR)infback.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/infback.o $(SRCDIR)infback.c
-@mv objs/infback.o $@
inffast.lo: $(SRCDIR)inffast.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/inffast.o $(SRCDIR)inffast.c
-@mv objs/inffast.o $@
inflate.lo: $(SRCDIR)inflate.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/inflate.o $(SRCDIR)inflate.c
-@mv objs/inflate.o $@
inftrees.lo: $(SRCDIR)inftrees.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/inftrees.o $(SRCDIR)inftrees.c
-@mv objs/inftrees.o $@
trees.lo: $(SRCDIR)trees.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/trees.o $(SRCDIR)trees.c
-@mv objs/trees.o $@
zutil.lo: $(SRCDIR)zutil.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/zutil.o $(SRCDIR)zutil.c
-@mv objs/zutil.o $@
compress.lo: $(SRCDIR)compress.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/compress.o $(SRCDIR)compress.c
-@mv objs/compress.o $@
uncompr.lo: $(SRCDIR)uncompr.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/uncompr.o $(SRCDIR)uncompr.c
-@mv objs/uncompr.o $@
gzclose.lo: $(SRCDIR)gzclose.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/gzclose.o $(SRCDIR)gzclose.c
-@mv objs/gzclose.o $@
gzlib.lo: $(SRCDIR)gzlib.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/gzlib.o $(SRCDIR)gzlib.c
-@mv objs/gzlib.o $@
gzread.lo: $(SRCDIR)gzread.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/gzread.o $(SRCDIR)gzread.c
-@mv objs/gzread.o $@
gzwrite.lo: $(SRCDIR)gzwrite.c
-@mkdir objs 2>/dev/null || test -d objs
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/gzwrite.o $(SRCDIR)gzwrite.c
-@mv objs/gzwrite.o $@
placebo $(SHAREDLIBV): $(PIC_OBJS) libz.a
$(LDSHARED) $(SFLAGS) -o $@ $(PIC_OBJS) $(LDSHAREDLIBC) $(LDFLAGS)
@ -181,22 +282,22 @@ placebo $(SHAREDLIBV): $(PIC_OBJS) libz.a
-@rmdir objs
example$(EXE): example.o $(STATICLIB)
$(CC) $(CFLAGS) -o $@ example.o $(TEST_LDFLAGS)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ example.o $(TEST_LIBS)
minigzip$(EXE): minigzip.o $(STATICLIB)
$(CC) $(CFLAGS) -o $@ minigzip.o $(TEST_LDFLAGS)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ minigzip.o $(TEST_LIBS)
examplesh$(EXE): example.o $(SHAREDLIBV)
$(CC) $(CFLAGS) -o $@ example.o -L. $(SHAREDLIBV)
$(CC) $(CFLAGS) -o $@ example.o $(LDFLAGS) -L. $(SHAREDLIBV)
minigzipsh$(EXE): minigzip.o $(SHAREDLIBV)
$(CC) $(CFLAGS) -o $@ minigzip.o -L. $(SHAREDLIBV)
$(CC) $(CFLAGS) -o $@ minigzip.o $(LDFLAGS) -L. $(SHAREDLIBV)
example64$(EXE): example64.o $(STATICLIB)
$(CC) $(CFLAGS) -o $@ example64.o $(TEST_LDFLAGS)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ example64.o $(TEST_LIBS)
minigzip64$(EXE): minigzip64.o $(STATICLIB)
$(CC) $(CFLAGS) -o $@ minigzip64.o $(TEST_LDFLAGS)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ minigzip64.o $(TEST_LIBS)
install-libs: $(LIBS)
-@if [ ! -d $(DESTDIR)$(exec_prefix) ]; then mkdir -p $(DESTDIR)$(exec_prefix); fi
@ -204,10 +305,12 @@ install-libs: $(LIBS)
-@if [ ! -d $(DESTDIR)$(sharedlibdir) ]; then mkdir -p $(DESTDIR)$(sharedlibdir); fi
-@if [ ! -d $(DESTDIR)$(man3dir) ]; then mkdir -p $(DESTDIR)$(man3dir); fi
-@if [ ! -d $(DESTDIR)$(pkgconfigdir) ]; then mkdir -p $(DESTDIR)$(pkgconfigdir); fi
rm -f $(DESTDIR)$(libdir)/$(STATICLIB)
cp $(STATICLIB) $(DESTDIR)$(libdir)
chmod 644 $(DESTDIR)$(libdir)/$(STATICLIB)
-@($(RANLIB) $(DESTDIR)$(libdir)/libz.a || true) >/dev/null 2>&1
-@if test -n "$(SHAREDLIBV)"; then \
rm -f $(DESTDIR)$(sharedlibdir)/$(SHAREDLIBV); \
cp $(SHAREDLIBV) $(DESTDIR)$(sharedlibdir); \
echo "cp $(SHAREDLIBV) $(DESTDIR)$(sharedlibdir)"; \
chmod 755 $(DESTDIR)$(sharedlibdir)/$(SHAREDLIBV); \
@ -217,8 +320,10 @@ install-libs: $(LIBS)
ln -s $(SHAREDLIBV) $(DESTDIR)$(sharedlibdir)/$(SHAREDLIBM); \
($(LDCONFIG) || true) >/dev/null 2>&1; \
fi
cp zlib.3 $(DESTDIR)$(man3dir)
rm -f $(DESTDIR)$(man3dir)/zlib.3
cp $(SRCDIR)zlib.3 $(DESTDIR)$(man3dir)
chmod 644 $(DESTDIR)$(man3dir)/zlib.3
rm -f $(DESTDIR)$(pkgconfigdir)/zlib.pc
cp zlib.pc $(DESTDIR)$(pkgconfigdir)
chmod 644 $(DESTDIR)$(pkgconfigdir)/zlib.pc
# The ranlib in install is needed on NeXTSTEP which checks file times
@ -226,7 +331,8 @@ install-libs: $(LIBS)
install: install-libs
-@if [ ! -d $(DESTDIR)$(includedir) ]; then mkdir -p $(DESTDIR)$(includedir); fi
cp zlib.h zconf.h $(DESTDIR)$(includedir)
rm -f $(DESTDIR)$(includedir)/zlib.h $(DESTDIR)$(includedir)/zconf.h
cp $(SRCDIR)zlib.h zconf.h $(DESTDIR)$(includedir)
chmod 644 $(DESTDIR)$(includedir)/zlib.h $(DESTDIR)$(includedir)/zconf.h
uninstall:
@ -240,21 +346,27 @@ uninstall:
docs: zlib.3.pdf
zlib.3.pdf: zlib.3
groff -mandoc -f H -T ps zlib.3 | ps2pdf - zlib.3.pdf
zlib.3.pdf: $(SRCDIR)zlib.3
groff -mandoc -f H -T ps $(SRCDIR)zlib.3 | ps2pdf - $@
zconf.h.cmakein: zconf.h.in
zconf.h.cmakein: $(SRCDIR)zconf.h.in
-@ TEMPFILE=zconfh_$$; \
echo "/#define ZCONF_H/ a\\\\\n#cmakedefine Z_PREFIX\\\\\n#cmakedefine Z_HAVE_UNISTD_H\n" >> $$TEMPFILE &&\
sed -f $$TEMPFILE zconf.h.in > zconf.h.cmakein &&\
touch -r zconf.h.in zconf.h.cmakein &&\
sed -f $$TEMPFILE $(SRCDIR)zconf.h.in > $@ &&\
touch -r $(SRCDIR)zconf.h.in $@ &&\
rm $$TEMPFILE
zconf: zconf.h.in
cp -p zconf.h.in zconf.h
zconf: $(SRCDIR)zconf.h.in
cp -p $(SRCDIR)zconf.h.in zconf.h
minizip-test: static
cd contrib/minizip && { CC="$(CC)" CFLAGS="$(CFLAGS)" $(MAKE) test ; cd ../.. ; }
minizip-clean:
cd contrib/minizip && { $(MAKE) clean ; cd ../.. ; }
mostlyclean: clean
clean:
clean: minizip-clean
rm -f *.o *.lo *~ \
example$(EXE) minigzip$(EXE) examplesh$(EXE) minigzipsh$(EXE) \
example64$(EXE) minigzip64$(EXE) \
@ -266,41 +378,33 @@ clean:
rm -f contrib/infback9/*.gcda contrib/infback9/*.gcno contrib/infback9/*.gcov
maintainer-clean: distclean
distclean: clean zconf zconf.h.cmakein docs
distclean: clean zconf zconf.h.cmakein
rm -f Makefile zlib.pc configure.log
-@rm -f .DS_Store
-@printf 'all:\n\t-@echo "Please use ./configure first. Thank you."\n' > Makefile
-@printf '\ndistclean:\n\tmake -f Makefile.in distclean\n' >> Makefile
-@touch -r Makefile.in Makefile
@if [ -f Makefile.in ]; then \
printf 'all:\n\t-@echo "Please use ./configure first. Thank you."\n' > Makefile ; \
printf '\ndistclean:\n\tmake -f Makefile.in distclean\n' >> Makefile ; \
touch -r $(SRCDIR)Makefile.in Makefile ; fi
tags:
etags *.[ch]
etags $(SRCDIR)*.[ch]
depend:
makedepend -- $(CFLAGS) -- *.[ch]
adler32.o zutil.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h
gzclose.o gzlib.o gzread.o gzwrite.o: $(SRCDIR)zlib.h zconf.h $(SRCDIR)gzguts.h
compress.o example.o minigzip.o uncompr.o: $(SRCDIR)zlib.h zconf.h
crc32.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)crc32.h
deflate.o: $(SRCDIR)deflate.h $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h
infback.o inflate.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h $(SRCDIR)inflate.h $(SRCDIR)inffast.h $(SRCDIR)inffixed.h
inffast.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h $(SRCDIR)inflate.h $(SRCDIR)inffast.h
inftrees.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h
trees.o: $(SRCDIR)deflate.h $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)trees.h
# DO NOT DELETE THIS LINE -- make depend depends on it.
adler32.o zutil.o: zutil.h zlib.h zconf.h
adler32_simd.o: zlib.h
gzclose.o gzlib.o gzread.o gzwrite.o: zlib.h zconf.h gzguts.h
compress.o example.o minigzip.o uncompr.o: zlib.h zconf.h
crc32.o: zutil.h zlib.h zconf.h crc32.h
deflate.o: deflate.h zutil.h zlib.h zconf.h
infback.o inflate.o: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast.h inffixed.h inffast_chunk.h chunkcopy.h
inffast.o: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast.h
inffast_chunk.o: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast_chunk.h chunkcopy.h
inftrees.o: zutil.h zlib.h zconf.h inftrees.h
trees.o: deflate.h zutil.h zlib.h zconf.h trees.h
adler32.lo zutil.lo: zutil.h zlib.h zconf.h
adler32_simd.o: zlib.h
gzclose.lo gzlib.lo gzread.lo gzwrite.lo: zlib.h zconf.h gzguts.h
compress.lo example.lo minigzip.lo uncompr.lo: zlib.h zconf.h
crc32.lo: zutil.h zlib.h zconf.h crc32.h
deflate.lo: deflate.h zutil.h zlib.h zconf.h
infback.lo inflate.lo: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast.h inffixed.h inffast_chunk.h chunkcopy.h
inffast.lo: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast.h
inffast_chunk.lo: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast_chunk.h chunkcopy.h
inftrees.lo: zutil.h zlib.h zconf.h inftrees.h
trees.lo: deflate.h zutil.h zlib.h zconf.h trees.h
adler32.lo zutil.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h
gzclose.lo gzlib.lo gzread.lo gzwrite.lo: $(SRCDIR)zlib.h zconf.h $(SRCDIR)gzguts.h
compress.lo example.lo minigzip.lo uncompr.lo: $(SRCDIR)zlib.h zconf.h
crc32.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)crc32.h
deflate.lo: $(SRCDIR)deflate.h $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h
infback.lo inflate.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h $(SRCDIR)inflate.h $(SRCDIR)inffast.h $(SRCDIR)inffixed.h
inffast.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h $(SRCDIR)inflate.h $(SRCDIR)inffast.h
inftrees.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h
trees.lo: $(SRCDIR)deflate.h $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)trees.h

24
external/zlib/README vendored
View File

@ -1,6 +1,6 @@
ZLIB DATA COMPRESSION LIBRARY
zlib 1.2.11 is a general purpose data compression library. All the code is
zlib 1.3.1 is a general purpose data compression library. All the code is
thread safe. The data format used by the zlib library is described by RFCs
(Request for Comments) 1950 to 1952 in the files
http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and
@ -29,18 +29,17 @@ PLEASE read the zlib FAQ http://zlib.net/zlib_faq.html before asking for help.
Mark Nelson <markn@ieee.org> wrote an article about zlib for the Jan. 1997
issue of Dr. Dobb's Journal; a copy of the article is available at
http://marknelson.us/1997/01/01/zlib-engine/ .
https://marknelson.us/posts/1997/01/01/zlib-engine.html .
The changes made in version 1.2.11 are documented in the file ChangeLog.
The changes made in version 1.3.1 are documented in the file ChangeLog.
Unsupported third party contributions are provided in directory contrib/ .
zlib is available in Java using the java.util.zip package, documented at
http://java.sun.com/developer/technicalArticles/Programming/compression/ .
zlib is available in Java using the java.util.zip package. Follow the API
Documentation link at: https://docs.oracle.com/search/?q=java.util.zip .
A Perl interface to zlib written by Paul Marquess <pmqs@cpan.org> is available
at CPAN (Comprehensive Perl Archive Network) sites, including
http://search.cpan.org/~pmqs/IO-Compress-Zlib/ .
A Perl interface to zlib and bzip2 written by Paul Marquess <pmqs@cpan.org>
can be found at https://github.com/pmqs/IO-Compress .
A Python interface to zlib written by A.M. Kuchling <amk@amk.ca> is
available in Python 1.5 and later versions, see
@ -64,7 +63,7 @@ Notes for some targets:
- zlib doesn't work with gcc 2.6.3 on a DEC 3000/300LX under OSF/1 2.1 it works
when compiled with cc.
- On Digital Unix 4.0D (formely OSF/1) on AlphaServer, the cc option -std1 is
- On Digital Unix 4.0D (formerly OSF/1) on AlphaServer, the cc option -std1 is
necessary to get gzprintf working correctly. This is done by configure.
- zlib doesn't work on HP-UX 9.05 with some versions of /bin/cc. It works with
@ -84,7 +83,7 @@ Acknowledgments:
Copyright notice:
(C) 1995-2017 Jean-loup Gailly and Mark Adler
(C) 1995-2024 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
@ -108,7 +107,10 @@ Copyright notice:
If you use the zlib library in a product, we would appreciate *not* receiving
lengthy legal documents to sign. The sources are provided for free but without
warranty of any kind. The library has been entirely written by Jean-loup
Gailly and Mark Adler; it does not include third-party code.
Gailly and Mark Adler; it does not include third-party code. We make all
contributions to and distributions of this project solely in our personal
capacity, and are not conveying any rights to any intellectual property of
any third parties.
If you redistribute modified sources, we would appreciate that you include in
the file ChangeLog history information documenting your changes. Please read

View File

@ -7,8 +7,6 @@
#include "zutil.h"
local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
#define BASE 65521U /* largest prime smaller than 65536 */
#define NMAX 5552
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
@ -60,11 +58,7 @@ local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
#endif
/* ========================================================================= */
uLong ZEXPORT adler32_z(adler, buf, len)
uLong adler;
const Bytef *buf;
z_size_t len;
{
uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
unsigned long sum2;
unsigned n;
@ -131,20 +125,12 @@ uLong ZEXPORT adler32_z(adler, buf, len)
}
/* ========================================================================= */
uLong ZEXPORT adler32(adler, buf, len)
uLong adler;
const Bytef *buf;
uInt len;
{
uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
return adler32_z(adler, buf, len);
}
/* ========================================================================= */
local uLong adler32_combine_(adler1, adler2, len2)
uLong adler1;
uLong adler2;
z_off64_t len2;
{
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) {
unsigned long sum1;
unsigned long sum2;
unsigned rem;
@ -169,18 +155,10 @@ local uLong adler32_combine_(adler1, adler2, len2)
}
/* ========================================================================= */
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
uLong adler1;
uLong adler2;
z_off_t len2;
{
uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) {
return adler32_combine_(adler1, adler2, len2);
}
uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
uLong adler1;
uLong adler2;
z_off64_t len2;
{
uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) {
return adler32_combine_(adler1, adler2, len2);
}

View File

@ -19,13 +19,8 @@
memory, Z_BUF_ERROR if there was not enough room in the output buffer,
Z_STREAM_ERROR if the level parameter is invalid.
*/
int ZEXPORT compress2(dest, destLen, source, sourceLen, level)
Bytef *dest;
uLongf *destLen;
const Bytef *source;
uLong sourceLen;
int level;
{
int ZEXPORT compress2(Bytef *dest, uLongf *destLen, const Bytef *source,
uLong sourceLen, int level) {
z_stream stream;
int err;
const uInt max = (uInt)-1;
@ -65,12 +60,8 @@ int ZEXPORT compress2(dest, destLen, source, sourceLen, level)
/* ===========================================================================
*/
int ZEXPORT compress(dest, destLen, source, sourceLen)
Bytef *dest;
uLongf *destLen;
const Bytef *source;
uLong sourceLen;
{
int ZEXPORT compress(Bytef *dest, uLongf *destLen, const Bytef *source,
uLong sourceLen) {
return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION);
}
@ -78,9 +69,7 @@ int ZEXPORT compress(dest, destLen, source, sourceLen)
If the default memLevel or windowBits for deflateInit() is changed, then
this function needs to be updated.
*/
uLong ZEXPORT compressBound(sourceLen)
uLong sourceLen;
{
uLong ZEXPORT compressBound(uLong sourceLen) {
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
(sourceLen >> 25) + 13;
}

View File

@ -18,20 +18,34 @@ echo -------------------- >> configure.log
echo $0 $* >> configure.log
date >> configure.log
# get source directory
SRCDIR=`dirname $0`
if test $SRCDIR = "."; then
ZINC=""
ZINCOUT="-I."
SRCDIR=""
else
ZINC='-I. -include zconf.h'
ZINCOUT='-I. -I$(SRCDIR)'
SRCDIR="$SRCDIR/"
fi
# set command prefix for cross-compilation
if [ -n "${CHOST}" ]; then
uname="`echo "${CHOST}" | sed -e 's/^[^-]*-\([^-]*\)$/\1/' -e 's/^[^-]*-[^-]*-\([^-]*\)$/\1/' -e 's/^[^-]*-[^-]*-\([^-]*\)-.*$/\1/'`"
uname=${CHOST}
mname=${CHOST}
CROSS_PREFIX="${CHOST}-"
else
mname=`(uname -a || echo unknown) 2>/dev/null`
fi
# destination name for static library
STATICLIB=libz.a
# extract zlib version numbers from zlib.h
VER=`sed -n -e '/VERSION "/s/.*"\(.*\)".*/\1/p' < zlib.h`
VER3=`sed -n -e '/VERSION "/s/.*"\([0-9]*\\.[0-9]*\\.[0-9]*\).*/\1/p' < zlib.h`
VER2=`sed -n -e '/VERSION "/s/.*"\([0-9]*\\.[0-9]*\)\\..*/\1/p' < zlib.h`
VER1=`sed -n -e '/VERSION "/s/.*"\([0-9]*\)\\..*/\1/p' < zlib.h`
VER=`sed -n -e '/VERSION "/s/.*"\(.*\)".*/\1/p' < ${SRCDIR}zlib.h`
VER3=`echo ${VER}|sed -n -e 's/\([0-9]\{1,\}\(\\.[0-9]\{1,\}\)\{1,2\}\).*/\1/p'`
VER1=`echo ${VER}|sed -n -e 's/\([0-9]\{1,\}\)\\..*/\1/p'`
# establish commands for library building
if "${CROSS_PREFIX}ar" --version >/dev/null 2>/dev/null || test $? -lt 126; then
@ -58,8 +72,7 @@ fi
# set defaults before processing command line options
LDCONFIG=${LDCONFIG-"ldconfig"}
LDSHAREDLIBC="${LDSHAREDLIBC--lc}"
ARCHS= # target specific flags
TGT_ARCH=$(uname -m) # the name of target architecture
ARCHS=
prefix=${prefix-/usr/local}
exec_prefix=${exec_prefix-'${prefix}'}
libdir=${libdir-'${exec_prefix}/lib'}
@ -74,6 +87,10 @@ zprefix=0
zconst=0
build64=0
gcc=0
warn=0
debug=0
address=0
memory=0
old_cc="$CC"
old_cflags="$CFLAGS"
OBJC='$(OBJZ) $(OBJG)'
@ -85,7 +102,7 @@ leave()
if test "$*" != "0"; then
echo "** $0 aborting." | tee -a configure.log
fi
rm -f $test.[co] $test $test$shared_ext $test.gcno ./--version
rm -rf $test.[co] $test $test$shared_ext $test.gcno $test.dSYM ./--version
echo -------------------- >> configure.log
echo >> configure.log
echo >> configure.log
@ -119,10 +136,14 @@ case "$1" in
-z* | --zprefix) zprefix=1; shift ;;
-6* | --64) build64=1; shift ;;
-a*=* | --archs=*) ARCHS=`echo $1 | sed 's/.*=//'`; shift ;;
-T*=* | --target=*) TGT_ARCH=`echo $1 | sed 's/.*=//'`; shift ;;
--sysconfdir=*) echo "ignored option: --sysconfdir" | tee -a configure.log; shift ;;
--localstatedir=*) echo "ignored option: --localstatedir" | tee -a configure.log; shift ;;
-c* | --const) zconst=1; shift ;;
-w* | --warn) warn=1; shift ;;
-d* | --debug) debug=1; shift ;;
--sanitize) address=1; shift ;;
--address) address=1; shift ;;
--memory) memory=1; shift ;;
*)
echo "unknown option: $1" | tee -a configure.log
echo "$0 --help for help" | tee -a configure.log
@ -151,81 +172,109 @@ extern int getchar();
int hello() {return getchar();}
EOF
test -z "$CC" && echo Checking for ${CROSS_PREFIX}gcc... | tee -a configure.log
cc=${CC-${CROSS_PREFIX}gcc}
cflags=${CFLAGS-"-O3"}
# to force the asm version use: CFLAGS="-O3 -DASMV" ./configure
if test -z "$CC"; then
echo Checking for ${CROSS_PREFIX}gcc... | tee -a configure.log
if ${CROSS_PREFIX}gcc -v >/dev/null 2>&1; then
cc=${CROSS_PREFIX}gcc
else
cc=${CROSS_PREFIX}cc
fi
else
cc=${CC}
fi
case "$cc" in
*gcc*) gcc=1 ;;
*clang*) gcc=1 ;;
esac
case `$cc -v 2>&1` in
*gcc*) gcc=1 ;;
*clang*) gcc=1 ;;
esac
show $cc -c $test.c
if test "$gcc" -eq 1 && ($cc -c $test.c) >> configure.log 2>&1; then
echo ... using gcc >> configure.log
CC="$cc"
CFLAGS="${CFLAGS--O3} ${ARCHS}"
CFLAGS="${CFLAGS--O3}"
SFLAGS="${CFLAGS--O3} -fPIC"
LDFLAGS="${LDFLAGS} ${ARCHS}"
if test "$ARCHS"; then
CFLAGS="${CFLAGS} ${ARCHS}"
LDFLAGS="${LDFLAGS} ${ARCHS}"
fi
if test $build64 -eq 1; then
CFLAGS="${CFLAGS} -m64"
SFLAGS="${SFLAGS} -m64"
fi
if test "${ZLIBGCCWARN}" = "YES"; then
if test "$warn" -eq 1; then
if test "$zconst" -eq 1; then
CFLAGS="${CFLAGS} -Wall -Wextra -Wcast-qual -pedantic -DZLIB_CONST"
CFLAGS="${CFLAGS} -Wall -Wextra -Wcast-qual -DZLIB_CONST"
else
CFLAGS="${CFLAGS} -Wall -Wextra -pedantic"
CFLAGS="${CFLAGS} -Wall -Wextra"
fi
fi
if test $address -eq 1; then
CFLAGS="${CFLAGS} -g -fsanitize=address -fno-omit-frame-pointer"
fi
if test $memory -eq 1; then
CFLAGS="${CFLAGS} -g -fsanitize=memory -fno-omit-frame-pointer"
fi
if test $debug -eq 1; then
CFLAGS="${CFLAGS} -DZLIB_DEBUG"
SFLAGS="${SFLAGS} -DZLIB_DEBUG"
fi
if test -z "$uname"; then
uname=`(uname -s || echo unknown) 2>/dev/null`
fi
case "$uname" in
Linux* | linux* | GNU | GNU/* | solaris*)
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,zlib.map"} ;;
Linux* | linux* | *-linux* | GNU | GNU/* | solaris*)
case "$mname" in
*sparc*)
LDFLAGS="${LDFLAGS} -Wl,--no-warn-rwx-segments" ;;
esac
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,${SRCDIR}zlib.map"} ;;
*BSD | *bsd* | DragonFly)
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,zlib.map"}
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,${SRCDIR}zlib.map"}
LDCONFIG="ldconfig -m" ;;
CYGWIN* | Cygwin* | cygwin* | OS/2*)
CYGWIN* | Cygwin* | cygwin* | *-cygwin* | OS/2*)
EXE='.exe' ;;
MINGW* | mingw*)
# temporary bypass
MINGW* | mingw* | *-mingw*)
rm -f $test.[co] $test $test$shared_ext
echo "Please use win32/Makefile.gcc instead." | tee -a configure.log
leave 1
echo "If this doesn't work for you, try win32/Makefile.gcc." | tee -a configure.log
LDSHARED=${LDSHARED-"$cc -shared"}
LDSHAREDLIBC=""
EXE='.exe' ;;
QNX*) # This is for QNX6. I suppose that the QNX rule below is for QNX2,QNX4
# (alain.bonnefoy@icbt.com)
LDSHARED=${LDSHARED-"$cc -shared -Wl,-hlibz.so.1"} ;;
QNX*) # This is for QNX6. I suppose that the QNX rule below is for QNX2,QNX4
# (alain.bonnefoy@icbt.com)
LDSHARED=${LDSHARED-"$cc -shared -Wl,-hlibz.so.1"} ;;
HP-UX*)
LDSHARED=${LDSHARED-"$cc -shared $SFLAGS"}
case `(uname -m || echo unknown) 2>/dev/null` in
ia64)
shared_ext='.so'
SHAREDLIB='libz.so' ;;
*)
shared_ext='.sl'
SHAREDLIB='libz.sl' ;;
esac ;;
Darwin* | darwin*)
shared_ext='.dylib'
SHAREDLIB=libz$shared_ext
SHAREDLIBV=libz.$VER$shared_ext
SHAREDLIBM=libz.$VER1$shared_ext
LDSHARED=${LDSHARED-"$cc -dynamiclib -install_name $libdir/$SHAREDLIBM -compatibility_version $VER1 -current_version $VER3"}
if libtool -V 2>&1 | grep Apple > /dev/null; then
AR="libtool"
else
AR="/usr/bin/libtool"
fi
ARFLAGS="-o" ;;
*) LDSHARED=${LDSHARED-"$cc -shared"} ;;
LDSHARED=${LDSHARED-"$cc -shared $SFLAGS"}
case `(uname -m || echo unknown) 2>/dev/null` in
ia64)
shared_ext='.so'
SHAREDLIB='libz.so' ;;
*)
shared_ext='.sl'
SHAREDLIB='libz.sl' ;;
esac ;;
AIX*)
LDFLAGS="${LDFLAGS} -Wl,-brtl" ;;
Darwin* | darwin* | *-darwin*)
shared_ext='.dylib'
SHAREDLIB=libz$shared_ext
SHAREDLIBV=libz.$VER$shared_ext
SHAREDLIBM=libz.$VER1$shared_ext
LDSHARED=${LDSHARED-"$cc -dynamiclib -install_name $libdir/$SHAREDLIBM -compatibility_version $VER1 -current_version $VER3"}
if "${CROSS_PREFIX}libtool" -V 2>&1 | grep Apple > /dev/null; then
AR="${CROSS_PREFIX}libtool"
elif libtool -V 2>&1 | grep Apple > /dev/null; then
AR="libtool"
else
AR="/usr/bin/libtool"
fi
ARFLAGS="-o" ;;
*)
LDSHARED=${LDSHARED-"$cc -shared"} ;;
esac
else
# find system name and corresponding cc options
@ -289,6 +338,9 @@ else
esac
fi
fi
if test -n "$ZINC"; then
ZINC='-I- -I. -I$(SRCDIR)'
fi
;;
SunOS\ 4*) SFLAGS=${CFLAGS-"-O2 -PIC"}
CFLAGS=${CFLAGS-"-O2"}
@ -339,16 +391,19 @@ if ($CC -c $CFLAGS $test.c) 2>/dev/null; then
}
echo - using any output from compiler to indicate an error >> configure.log
else
try()
{
show $*
( $* ) >> configure.log 2>&1
ret=$?
if test $ret -ne 0; then
echo "(exit code "$ret")" >> configure.log
fi
return $ret
}
try()
{
show $*
got=`( $* ) 2>&1`
ret=$?
if test "$got" != ""; then
printf "%s\n" "$got" >> configure.log
fi
if test $ret -ne 0; then
echo "(exit code "$ret")" >> configure.log
fi
return $ret
}
fi
tryboth()
@ -356,8 +411,11 @@ tryboth()
show $*
got=`( $* ) 2>&1`
ret=$?
printf %s "$got" >> configure.log
if test "$got" != ""; then
printf "%s\n" "$got" >> configure.log
fi
if test $ret -ne 0; then
echo "(exit code "$ret")" >> configure.log
return $ret
fi
test "$got" = ""
@ -384,7 +442,7 @@ EOF
if test $shared -eq 1; then
echo Checking for shared library support... | tee -a configure.log
# we must test in two steps (cc then ld), required at least on SunOS 4.x
if try $CC -w -c $SFLAGS $test.c &&
if try $CC -c $SFLAGS $test.c &&
try $LDSHARED $SFLAGS -o $test$shared_ext $test.o; then
echo Building shared library $SHAREDLIBV with $CC. | tee -a configure.log
elif test -z "$old_cc" -a -z "$old_cflags"; then
@ -408,19 +466,54 @@ else
TEST="all teststatic testshared"
fi
# check for underscores in external names for use by assembler code
CPP=${CPP-"$CC -E"}
case $CFLAGS in
*ASMV*)
echo >> configure.log
show "$NM $test.o | grep _hello"
if test "`$NM $test.o | grep _hello | tee -a configure.log`" = ""; then
CPP="$CPP -DNO_UNDERLINE"
echo Checking for underline in external names... No. | tee -a configure.log
else
echo Checking for underline in external names... Yes. | tee -a configure.log
fi ;;
esac
echo >> configure.log
# check for size_t
cat > $test.c <<EOF
#include <stdio.h>
#include <stdlib.h>
size_t dummy = 0;
EOF
if try $CC -c $CFLAGS $test.c; then
echo "Checking for size_t... Yes." | tee -a configure.log
else
echo "Checking for size_t... No." | tee -a configure.log
# find a size_t integer type
# check for long long
cat > $test.c << EOF
long long dummy = 0;
EOF
if try $CC -c $CFLAGS $test.c; then
echo "Checking for long long... Yes." | tee -a configure.log
cat > $test.c <<EOF
#include <stdio.h>
int main(void) {
if (sizeof(void *) <= sizeof(int)) puts("int");
else if (sizeof(void *) <= sizeof(long)) puts("long");
else puts("z_longlong");
return 0;
}
EOF
else
echo "Checking for long long... No." | tee -a configure.log
cat > $test.c <<EOF
#include <stdio.h>
int main(void) {
if (sizeof(void *) <= sizeof(int)) puts("int");
else puts("long");
return 0;
}
EOF
fi
if try $CC $CFLAGS -o $test $test.c; then
sizet=`./$test`
echo "Checking for a pointer-size integer type..." $sizet"." | tee -a configure.log
CFLAGS="${CFLAGS} -DNO_SIZE_T=${sizet}"
SFLAGS="${SFLAGS} -DNO_SIZE_T=${sizet}"
else
echo "Checking for a pointer-size integer type... not found." | tee -a configure.log
fi
fi
echo >> configure.log
@ -472,7 +565,7 @@ else
fi
# copy clean zconf.h for subsequent edits
cp -p zconf.h.in zconf.h
cp -p ${SRCDIR}zconf.h.in zconf.h
echo >> configure.log
@ -742,103 +835,6 @@ EOF
fi
fi
# Check for AMD64 hardware support.
if [ x$TGT_ARCH = "xx86_64" -o x$TGT_ARCH = "xamd64" ] ; then
cat > $test.c << EOF
#include <emmintrin.h>
void foo(void) {
__m64 a, b;
_mm_add_si64(a, b);
}
EOF
if try $CC -msse2 $CFLAGS $test.c -c $test; then
CFLAGS="-DINFLATE_CHUNK_SIMD_SSE2 -msse2 -DINFLATE_CHUNK_READ_64LE $CFLAGS"
SFLAGS="-DINFLATE_CHUNK_SIMD_SSE2 -msse2 -DINFLATE_CHUNK_READ_64LE $SFLAGS"
echo "Checking for SSE2 support ... Yes" | tee -a configure.log
else
echo "Checking for SSE2 support ... No" | tee -a configure.log
leave 1
fi
# Check for SSSE3 support
cat > $test.c << EOF
#include <tmmintrin.h>
void foo(void) {
__m128i a;
_mm_abs_epi8(a);
}
EOF
if try $CC -mssse3 $CFLAGS $test.c -c $test; then
CFLAGS="-DADLER32_SIMD_SSSE3 -mssse3 $CFLAGS"
SFLAGS="-DADLER32_SIMD_SSSE3 -mssse3 $SFLAGS"
echo "Checking for SSSE3 support ... Yes" | tee -a configure.log
else
echo "Checking for SSSE3 support ... No" | tee -a configure.log
leave 1
fi
# Check for SSE4.2 and CRC support
cat > $test.c << EOF
#include <immintrin.h>
void foo(void) {
_mm_crc32_u32(0, 0);
}
EOF
if try $CC -msse4.2 $CFLAGS $test.c -c $test; then
CFLAGS="-DHAS_SSE42 -msse4.2 $CFLAGS"
SFLAGS="-DHAS_SSE42 -msse4.2 $SFLAGS"
echo "Checking for CRC and SSE4.2 support ... Yes" | tee -a configure.log
else
echo "Checking for CRC and SSE4.2 support ... No" | tee -a configure.log
echo "CRC and SSE4.2 support is required" | tee -a configure.log
leave 1
fi
#Project copied from zlib-ng:
# Check for PCLMUL support
cat > $test.c << EOF
#include <immintrin.h>
int main(void) {
__m128i a = _mm_setzero_si128();
__m128i b = _mm_setzero_si128();
__m128i c = _mm_clmulepi64_si128(a, b, 0x10);
(void)c;
return 0;
}
EOF
if try $CC -c -mpclmul $CFLAGS $test.c ; then
CFLAGS="-DHAS_PCLMUL -mpclmul $CFLAGS"
SFLAGS="-DHAS_PCLMUL -mpclmul $SFLAGS"
echo "Checking for PCLMUL support ... Yes" | tee -a configure.log
else
echo "Checking for PCLMUL support ... No" | tee -a configure.log
fi
elif [ x$TGT_ARCH = "xaarch64" ] ; then
# Check for NEON and CRC support
cat > $test.c << EOF
#include <arm_neon.h>
#include <arm_acle.h>
void foo(void) {
__crc32cw(0, 0);
vqsubq_u16(vmovq_n_u16(1), vmovq_n_u16(2));
}
EOF
if try $CC -march=armv8-a+crc $CFLAGS $test.c -c $test; then
CFLAGS="-march=armv8-a+crc -DADLER32_SIMD_NEON -DINFLATE_CHUNK_SIMD_NEON -DINFLATE_CHUNK_READ_64LE $CFLAGS"
SFLAGS="-march=armv8-a+crc -DADLER32_SIMD_NEON -DINFLATE_CHUNK_SIMD_NEON -DINFLATE_CHUNK_READ_64LE $SFLAGS"
echo "Checking for CRC and NEON support ... Yes" | tee -a configure.log
else
echo "Checking for CRC and NEON support ... No" | tee -a configure.log
echo "CRC and NEON support is required" | tee -a configure.log
leave 1
fi
fi # end of "Check amd64 hardware support"
# show the results in the log
echo >> configure.log
echo ALL = $ALL >> configure.log
@ -862,7 +858,7 @@ echo SHAREDLIBV = $SHAREDLIBV >> configure.log
echo STATICLIB = $STATICLIB >> configure.log
echo TEST = $TEST >> configure.log
echo VER = $VER >> configure.log
echo Z_U4 = $Z_U4 >> configure.log
echo SRCDIR = $SRCDIR >> configure.log
echo exec_prefix = $exec_prefix >> configure.log
echo includedir = $includedir >> configure.log
echo libdir = $libdir >> configure.log
@ -871,9 +867,8 @@ echo prefix = $prefix >> configure.log
echo sharedlibdir = $sharedlibdir >> configure.log
echo uname = $uname >> configure.log
# udpate Makefile with the configure results
sed < Makefile.in "
/^TGT_ARCH *=/s#=.*#=$TGT_ARCH#
# update Makefile with the configure results
sed < ${SRCDIR}Makefile.in "
/^CC *=/s#=.*#=$CC#
/^CFLAGS *=/s#=.*#=$CFLAGS#
/^SFLAGS *=/s#=.*#=$SFLAGS#
@ -890,6 +885,9 @@ sed < Makefile.in "
/^LDCONFIG *=/s#=.*#=$LDCONFIG#
/^LDSHAREDLIBC *=/s#=.*#=$LDSHAREDLIBC#
/^EXE *=/s#=.*#=$EXE#
/^SRCDIR *=/s#=.*#=$SRCDIR#
/^ZINC *=/s#=.*#=$ZINC#
/^ZINCOUT *=/s#=.*#=$ZINCOUT#
/^prefix *=/s#=.*#=$prefix#
/^exec_prefix *=/s#=.*#=$exec_prefix#
/^libdir *=/s#=.*#=$libdir#
@ -903,7 +901,7 @@ sed < Makefile.in "
" > Makefile
# create zlib.pc with the configure results
sed < zlib.pc.in "
sed < ${SRCDIR}zlib.pc.in "
/^CC *=/s#=.*#=$CC#
/^CFLAGS *=/s#=.*#=$CFLAGS#
/^CPP *=/s#=.*#=$CPP#

248
external/zlib/crc32.c vendored
View File

@ -103,19 +103,6 @@
# define ARMCRC32
#endif
/* Local functions. */
local z_crc_t multmodp OF((z_crc_t a, z_crc_t b));
local z_crc_t x2nmodp OF((z_off64_t n, unsigned k));
#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
local z_word_t byte_swap OF((z_word_t word));
#endif
#if defined(W) && !defined(ARMCRC32)
local z_crc_t crc_word OF((z_word_t data));
local z_word_t crc_word_big OF((z_word_t data));
#endif
#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
/*
Swap the bytes in a z_word_t to convert between little and big endian. Any
@ -123,9 +110,7 @@ local z_crc_t x2nmodp OF((z_off64_t n, unsigned k));
instruction, if one is available. This assumes that word_t is either 32 bits
or 64 bits.
*/
local z_word_t byte_swap(word)
z_word_t word;
{
local z_word_t byte_swap(z_word_t word) {
# if W == 8
return
(word & 0xff00000000000000) >> 56 |
@ -146,24 +131,77 @@ local z_word_t byte_swap(word)
}
#endif
#ifdef DYNAMIC_CRC_TABLE
/* =========================================================================
* Table of powers of x for combining CRC-32s, filled in by make_crc_table()
* below.
*/
local z_crc_t FAR x2n_table[32];
#else
/* =========================================================================
* Tables for byte-wise and braided CRC-32 calculations, and a table of powers
* of x for combining CRC-32s, all made by make_crc_table().
*/
# include "crc32.h"
#endif
/* CRC polynomial. */
#define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */
#ifdef DYNAMIC_CRC_TABLE
/*
Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
reflected. For speed, this requires that a not be zero.
*/
local z_crc_t multmodp(z_crc_t a, z_crc_t b) {
z_crc_t m, p;
m = (z_crc_t)1 << 31;
p = 0;
for (;;) {
if (a & m) {
p ^= b;
if ((a & (m - 1)) == 0)
break;
}
m >>= 1;
b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
}
return p;
}
/*
Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
initialized.
*/
local z_crc_t x2nmodp(z_off64_t n, unsigned k) {
z_crc_t p;
p = (z_crc_t)1 << 31; /* x^0 == 1 */
while (n) {
if (n & 1)
p = multmodp(x2n_table[k & 31], p);
n >>= 1;
k++;
}
return p;
}
#ifdef DYNAMIC_CRC_TABLE
/* =========================================================================
* Build the tables for byte-wise and braided CRC-32 calculations, and a table
* of powers of x for combining CRC-32s.
*/
local z_crc_t FAR crc_table[256];
local z_crc_t FAR x2n_table[32];
local void make_crc_table OF((void));
#ifdef W
local z_word_t FAR crc_big_table[256];
local z_crc_t FAR crc_braid_table[W][256];
local z_word_t FAR crc_braid_big_table[W][256];
local void braid OF((z_crc_t [][256], z_word_t [][256], int, int));
local void braid(z_crc_t [][256], z_word_t [][256], int, int);
#endif
#ifdef MAKECRCH
local void write_table OF((FILE *, const z_crc_t FAR *, int));
local void write_table32hi OF((FILE *, const z_word_t FAR *, int));
local void write_table64 OF((FILE *, const z_word_t FAR *, int));
local void write_table(FILE *, const z_crc_t FAR *, int);
local void write_table32hi(FILE *, const z_word_t FAR *, int);
local void write_table64(FILE *, const z_word_t FAR *, int);
#endif /* MAKECRCH */
/*
@ -176,7 +214,6 @@ local void make_crc_table OF((void));
/* Definition of once functionality. */
typedef struct once_s once_t;
local void once OF((once_t *, void (*)(void)));
/* Check for the availability of atomics. */
#if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
@ -196,10 +233,7 @@ struct once_s {
invoke once() at the same time. The state must be a once_t initialized with
ONCE_INIT.
*/
local void once(state, init)
once_t *state;
void (*init)(void);
{
local void once(once_t *state, void (*init)(void)) {
if (!atomic_load(&state->done)) {
if (atomic_flag_test_and_set(&state->begun))
while (!atomic_load(&state->done))
@ -222,10 +256,7 @@ struct once_s {
/* Test and set. Alas, not atomic, but tries to minimize the period of
vulnerability. */
local int test_and_set OF((int volatile *));
local int test_and_set(flag)
int volatile *flag;
{
local int test_and_set(int volatile *flag) {
int was;
was = *flag;
@ -234,10 +265,7 @@ local int test_and_set(flag)
}
/* Run the provided init() function once. This is not thread-safe. */
local void once(state, init)
once_t *state;
void (*init)(void);
{
local void once(once_t *state, void (*init)(void)) {
if (!state->done) {
if (test_and_set(&state->begun))
while (!state->done)
@ -279,8 +307,7 @@ local once_t made = ONCE_INIT;
combinations of CRC register values and incoming bytes.
*/
local void make_crc_table()
{
local void make_crc_table(void) {
unsigned i, j, n;
z_crc_t p;
@ -447,11 +474,7 @@ local void make_crc_table()
Write the 32-bit values in table[0..k-1] to out, five per line in
hexadecimal separated by commas.
*/
local void write_table(out, table, k)
FILE *out;
const z_crc_t FAR *table;
int k;
{
local void write_table(FILE *out, const z_crc_t FAR *table, int k) {
int n;
for (n = 0; n < k; n++)
@ -464,11 +487,7 @@ local void write_table(out, table, k)
Write the high 32-bits of each value in table[0..k-1] to out, five per line
in hexadecimal separated by commas.
*/
local void write_table32hi(out, table, k)
FILE *out;
const z_word_t FAR *table;
int k;
{
local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) {
int n;
for (n = 0; n < k; n++)
@ -484,11 +503,7 @@ int k;
bits. If not, then the type cast and format string can be adjusted
accordingly.
*/
local void write_table64(out, table, k)
FILE *out;
const z_word_t FAR *table;
int k;
{
local void write_table64(FILE *out, const z_word_t FAR *table, int k) {
int n;
for (n = 0; n < k; n++)
@ -498,8 +513,7 @@ local void write_table64(out, table, k)
}
/* Actually do the deed. */
int main()
{
int main(void) {
make_crc_table();
return 0;
}
@ -511,12 +525,7 @@ int main()
Generate the little and big-endian braid tables for the given n and z_word_t
size w. Each array must have room for w blocks of 256 elements.
*/
local void braid(ltl, big, n, w)
z_crc_t ltl[][256];
z_word_t big[][256];
int n;
int w;
{
local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) {
int k;
z_crc_t i, p, q;
for (k = 0; k < w; k++) {
@ -531,69 +540,13 @@ local void braid(ltl, big, n, w)
}
#endif
#else /* !DYNAMIC_CRC_TABLE */
/* ========================================================================
* Tables for byte-wise and braided CRC-32 calculations, and a table of powers
* of x for combining CRC-32s, all made by make_crc_table().
*/
#include "crc32.h"
#endif /* DYNAMIC_CRC_TABLE */
/* ========================================================================
* Routines used for CRC calculation. Some are also required for the table
* generation above.
*/
/*
Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
reflected. For speed, this requires that a not be zero.
*/
local z_crc_t multmodp(a, b)
z_crc_t a;
z_crc_t b;
{
z_crc_t m, p;
m = (z_crc_t)1 << 31;
p = 0;
for (;;) {
if (a & m) {
p ^= b;
if ((a & (m - 1)) == 0)
break;
}
m >>= 1;
b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
}
return p;
}
/*
Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
initialized.
*/
local z_crc_t x2nmodp(n, k)
z_off64_t n;
unsigned k;
{
z_crc_t p;
p = (z_crc_t)1 << 31; /* x^0 == 1 */
while (n) {
if (n & 1)
p = multmodp(x2n_table[k & 31], p);
n >>= 1;
k++;
}
return p;
}
/* =========================================================================
* This function can be used by asm versions of crc32(), and to force the
* generation of the CRC tables in a threaded application.
*/
const z_crc_t FAR * ZEXPORT get_crc_table()
{
const z_crc_t FAR * ZEXPORT get_crc_table(void) {
#ifdef DYNAMIC_CRC_TABLE
once(&made, make_crc_table);
#endif /* DYNAMIC_CRC_TABLE */
@ -619,11 +572,8 @@ const z_crc_t FAR * ZEXPORT get_crc_table()
#define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */
#define Z_BATCH_MIN 800 /* fewest words in a final batch */
unsigned long ZEXPORT crc32_z(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
z_size_t len;
{
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
z_size_t len) {
z_crc_t val;
z_word_t crc1, crc2;
const z_word_t *word;
@ -723,18 +673,14 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
least-significant byte of the word as the first byte of data, without any pre
or post conditioning. This is used to combine the CRCs of each braid.
*/
local z_crc_t crc_word(data)
z_word_t data;
{
local z_crc_t crc_word(z_word_t data) {
int k;
for (k = 0; k < W; k++)
data = (data >> 8) ^ crc_table[data & 0xff];
return (z_crc_t)data;
}
local z_word_t crc_word_big(data)
z_word_t data;
{
local z_word_t crc_word_big(z_word_t data) {
int k;
for (k = 0; k < W; k++)
data = (data << 8) ^
@ -745,11 +691,8 @@ local z_word_t crc_word_big(data)
#endif
/* ========================================================================= */
unsigned long ZEXPORT crc32_z(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
z_size_t len;
{
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
z_size_t len) {
/* Return initial CRC, if requested. */
if (buf == Z_NULL) return 0;
@ -781,8 +724,8 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
words = (z_word_t const *)buf;
/* Do endian check at execution time instead of compile time, since ARM
processors can change the endianess at execution time. If the
compiler knows what the endianess will be, it can optimize out the
processors can change the endianness at execution time. If the
compiler knows what the endianness will be, it can optimize out the
check and the unused branch. */
endian = 1;
if (*(unsigned char *)&endian) {
@ -1069,20 +1012,13 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
#endif
/* ========================================================================= */
unsigned long ZEXPORT crc32(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
uInt len;
{
unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf,
uInt len) {
return crc32_z(crc, buf, len);
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
uLong crc1;
uLong crc2;
z_off64_t len2;
{
uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) {
#ifdef DYNAMIC_CRC_TABLE
once(&made, make_crc_table);
#endif /* DYNAMIC_CRC_TABLE */
@ -1090,18 +1026,12 @@ uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
uLong crc1;
uLong crc2;
z_off_t len2;
{
uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) {
return crc32_combine64(crc1, crc2, (z_off64_t)len2);
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine_gen64(len2)
z_off64_t len2;
{
uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) {
#ifdef DYNAMIC_CRC_TABLE
once(&made, make_crc_table);
#endif /* DYNAMIC_CRC_TABLE */
@ -1109,17 +1039,11 @@ uLong ZEXPORT crc32_combine_gen64(len2)
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine_gen(len2)
z_off_t len2;
{
uLong ZEXPORT crc32_combine_gen(z_off_t len2) {
return crc32_combine_gen64((z_off64_t)len2);
}
/* ========================================================================= */
uLong ZEXPORT crc32_combine_op(crc1, crc2, op)
uLong crc1;
uLong crc2;
uLong op;
{
uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) {
return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
}

View File

@ -1,5 +1,5 @@
/* deflate.c -- compress data using the deflation algorithm
* Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
* Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -52,7 +52,7 @@
#include "deflate.h"
const char deflate_copyright[] =
" deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
" deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
/*
If you use the zlib library in a product, an acknowledgment is welcome
in the documentation of your product. If for some reason you cannot
@ -60,9 +60,6 @@ const char deflate_copyright[] =
copyright string in the executable of your product.
*/
/* ===========================================================================
* Function prototypes.
*/
typedef enum {
need_more, /* block not completed, need more input or more output */
block_done, /* block flush performed */
@ -70,29 +67,16 @@ typedef enum {
finish_done /* finish done, accept no more input or output */
} block_state;
typedef block_state (*compress_func) OF((deflate_state *s, int flush));
typedef block_state (*compress_func)(deflate_state *s, int flush);
/* Compression function. Returns the block state after the call. */
local int deflateStateCheck OF((z_streamp strm));
local void slide_hash OF((deflate_state *s));
local void fill_window OF((deflate_state *s));
local block_state deflate_stored OF((deflate_state *s, int flush));
local block_state deflate_fast OF((deflate_state *s, int flush));
local block_state deflate_stored(deflate_state *s, int flush);
local block_state deflate_fast(deflate_state *s, int flush);
#ifndef FASTEST
local block_state deflate_slow OF((deflate_state *s, int flush));
#endif
local block_state deflate_rle OF((deflate_state *s, int flush));
local block_state deflate_huff OF((deflate_state *s, int flush));
local void lm_init OF((deflate_state *s));
local void putShortMSB OF((deflate_state *s, uInt b));
local void flush_pending OF((z_streamp strm));
local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
local uInt longest_match OF((deflate_state *s, IPos cur_match));
#ifdef ZLIB_DEBUG
local void check_match OF((deflate_state *s, IPos start, IPos match,
int length));
local block_state deflate_slow(deflate_state *s, int flush);
#endif
local block_state deflate_rle(deflate_state *s, int flush);
local block_state deflate_huff(deflate_state *s, int flush);
/* ===========================================================================
* Local data
@ -195,9 +179,12 @@ local const config configuration_table[10] = {
* bit values at the expense of memory usage). We slide even when level == 0 to
* keep the hash table consistent if we switch back to level > 0 later.
*/
local void slide_hash(s)
deflate_state *s;
{
#if defined(__has_feature)
# if __has_feature(memory_sanitizer)
__attribute__((no_sanitize("memory")))
# endif
#endif
local void slide_hash(deflate_state *s) {
unsigned n, m;
Posf *p;
uInt wsize = s->w_size;
@ -221,30 +208,177 @@ local void slide_hash(s)
#endif
}
/* ===========================================================================
* Read a new buffer from the current input stream, update the adler32
* and total number of bytes read. All deflate() input goes through
* this function so some applications may wish to modify it to avoid
* allocating a large strm->next_in buffer and copying from it.
* (See also flush_pending()).
*/
local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
unsigned len = strm->avail_in;
if (len > size) len = size;
if (len == 0) return 0;
strm->avail_in -= len;
zmemcpy(buf, strm->next_in, len);
if (strm->state->wrap == 1) {
strm->adler = adler32(strm->adler, buf, len);
}
#ifdef GZIP
else if (strm->state->wrap == 2) {
strm->adler = crc32(strm->adler, buf, len);
}
#endif
strm->next_in += len;
strm->total_in += len;
return len;
}
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead.
*
* IN assertion: lookahead < MIN_LOOKAHEAD
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
* At least one byte has been read, or avail_in == 0; reads are
* performed for at least two bytes (required for the zip translate_eol
* option -- not supported here).
*/
local void fill_window(deflate_state *s) {
unsigned n;
unsigned more; /* Amount of free space at the end of the window. */
uInt wsize = s->w_size;
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
do {
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
/* Deal with !@#$% 64K limit: */
if (sizeof(int) <= 2) {
if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
more = wsize;
} else if (more == (unsigned)(-1)) {
/* Very unlikely, but possible on 16 bit machine if
* strstart == 0 && lookahead == 1 (input done a byte at time)
*/
more--;
}
}
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if (s->strstart >= wsize + MAX_DIST(s)) {
zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
s->match_start -= wsize;
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
s->block_start -= (long) wsize;
if (s->insert > s->strstart)
s->insert = s->strstart;
slide_hash(s);
more += wsize;
}
if (s->strm->avail_in == 0) break;
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
* more == window_size - lookahead - strstart
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
* => more >= window_size - 2*WSIZE + 2
* In the BIG_MEM or MMAP case (not yet supported),
* window_size == input_size + MIN_LOOKAHEAD &&
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
* Otherwise, window_size == 2*WSIZE so more >= 2.
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
*/
Assert(more >= 2, "more < 2");
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
s->lookahead += n;
/* Initialize the hash value now that we have some input: */
if (s->lookahead + s->insert >= MIN_MATCH) {
uInt str = s->strstart - s->insert;
s->ins_h = s->window[str];
UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
#if MIN_MATCH != 3
Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
while (s->insert) {
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
s->head[s->ins_h] = (Pos)str;
str++;
s->insert--;
if (s->lookahead + s->insert < MIN_MATCH)
break;
}
}
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
* but this is not important since only literal bytes will be emitted.
*/
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
/* If the WIN_INIT bytes after the end of the current data have never been
* written, then zero those bytes in order to avoid memory check reports of
* the use of uninitialized (or uninitialised as Julian writes) bytes by
* the longest match routines. Update the high water mark for the next
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
*/
if (s->high_water < s->window_size) {
ulg curr = s->strstart + (ulg)(s->lookahead);
ulg init;
if (s->high_water < curr) {
/* Previous high water mark below current data -- zero WIN_INIT
* bytes or up to end of window, whichever is less.
*/
init = s->window_size - curr;
if (init > WIN_INIT)
init = WIN_INIT;
zmemzero(s->window + curr, (unsigned)init);
s->high_water = curr + init;
}
else if (s->high_water < (ulg)curr + WIN_INIT) {
/* High water mark at or above current data, but below current data
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
* to end of window, whichever is less.
*/
init = (ulg)curr + WIN_INIT - s->high_water;
if (init > s->window_size - s->high_water)
init = s->window_size - s->high_water;
zmemzero(s->window + s->high_water, (unsigned)init);
s->high_water += init;
}
}
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
"not enough room for search");
}
/* ========================================================================= */
int ZEXPORT deflateInit_(strm, level, version, stream_size)
z_streamp strm;
int level;
const char *version;
int stream_size;
{
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
int stream_size) {
return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
Z_DEFAULT_STRATEGY, version, stream_size);
/* To do: ignore strm->next_in if we use it as window */
}
/* ========================================================================= */
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
version, stream_size)
z_streamp strm;
int level;
int method;
int windowBits;
int memLevel;
int strategy;
const char *version;
int stream_size;
{
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
int windowBits, int memLevel, int strategy,
const char *version, int stream_size) {
deflate_state *s;
int wrap = 1;
static const char my_version[] = ZLIB_VERSION;
@ -359,7 +493,7 @@ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
* symbols from which it is being constructed.
*/
s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
s->pending_buf_size = (ulg)s->lit_bufsize * 4;
if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
@ -369,8 +503,14 @@ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
deflateEnd (strm);
return Z_MEM_ERROR;
}
#ifdef LIT_MEM
s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
s->sym_end = s->lit_bufsize - 1;
#else
s->sym_buf = s->pending_buf + s->lit_bufsize;
s->sym_end = (s->lit_bufsize - 1) * 3;
#endif
/* We avoid equality with lit_bufsize*3 because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
@ -386,9 +526,7 @@ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
/* =========================================================================
* Check for a valid deflate stream state. Return 0 if ok, 1 if not.
*/
local int deflateStateCheck(strm)
z_streamp strm;
{
local int deflateStateCheck(z_streamp strm) {
deflate_state *s;
if (strm == Z_NULL ||
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
@ -409,11 +547,8 @@ local int deflateStateCheck(strm)
}
/* ========================================================================= */
int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
z_streamp strm;
const Bytef *dictionary;
uInt dictLength;
{
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
uInt dictLength) {
deflate_state *s;
uInt str, n;
int wrap;
@ -478,11 +613,8 @@ int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
}
/* ========================================================================= */
int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
z_streamp strm;
Bytef *dictionary;
uInt *dictLength;
{
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
uInt *dictLength) {
deflate_state *s;
uInt len;
@ -500,9 +632,7 @@ int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
}
/* ========================================================================= */
int ZEXPORT deflateResetKeep(strm)
z_streamp strm;
{
int ZEXPORT deflateResetKeep(z_streamp strm) {
deflate_state *s;
if (deflateStateCheck(strm)) {
@ -537,10 +667,32 @@ int ZEXPORT deflateResetKeep(strm)
return Z_OK;
}
/* ===========================================================================
* Initialize the "longest match" routines for a new zlib stream
*/
local void lm_init(deflate_state *s) {
s->window_size = (ulg)2L*s->w_size;
CLEAR_HASH(s);
/* Set the default configuration parameters:
*/
s->max_lazy_match = configuration_table[s->level].max_lazy;
s->good_match = configuration_table[s->level].good_length;
s->nice_match = configuration_table[s->level].nice_length;
s->max_chain_length = configuration_table[s->level].max_chain;
s->strstart = 0;
s->block_start = 0L;
s->lookahead = 0;
s->insert = 0;
s->match_length = s->prev_length = MIN_MATCH-1;
s->match_available = 0;
s->ins_h = 0;
}
/* ========================================================================= */
int ZEXPORT deflateReset(strm)
z_streamp strm;
{
int ZEXPORT deflateReset(z_streamp strm) {
int ret;
ret = deflateResetKeep(strm);
@ -550,10 +702,7 @@ int ZEXPORT deflateReset(strm)
}
/* ========================================================================= */
int ZEXPORT deflateSetHeader(strm, head)
z_streamp strm;
gz_headerp head;
{
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
if (deflateStateCheck(strm) || strm->state->wrap != 2)
return Z_STREAM_ERROR;
strm->state->gzhead = head;
@ -561,11 +710,7 @@ int ZEXPORT deflateSetHeader(strm, head)
}
/* ========================================================================= */
int ZEXPORT deflatePending(strm, pending, bits)
unsigned *pending;
int *bits;
z_streamp strm;
{
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
if (pending != Z_NULL)
*pending = strm->state->pending;
@ -575,19 +720,21 @@ int ZEXPORT deflatePending(strm, pending, bits)
}
/* ========================================================================= */
int ZEXPORT deflatePrime(strm, bits, value)
z_streamp strm;
int bits;
int value;
{
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
deflate_state *s;
int put;
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
s = strm->state;
#ifdef LIT_MEM
if (bits < 0 || bits > 16 ||
(uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
return Z_BUF_ERROR;
#else
if (bits < 0 || bits > 16 ||
s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
return Z_BUF_ERROR;
#endif
do {
put = Buf_size - s->bi_valid;
if (put > bits)
@ -602,11 +749,7 @@ int ZEXPORT deflatePrime(strm, bits, value)
}
/* ========================================================================= */
int ZEXPORT deflateParams(strm, level, strategy)
z_streamp strm;
int level;
int strategy;
{
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
deflate_state *s;
compress_func func;
@ -651,13 +794,8 @@ int ZEXPORT deflateParams(strm, level, strategy)
}
/* ========================================================================= */
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
z_streamp strm;
int good_length;
int max_lazy;
int nice_length;
int max_chain;
{
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
int nice_length, int max_chain) {
deflate_state *s;
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
@ -693,10 +831,7 @@ int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
*
* Shifts are used to approximate divisions, for speed.
*/
uLong ZEXPORT deflateBound(strm, sourceLen)
z_streamp strm;
uLong sourceLen;
{
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
deflate_state *s;
uLong fixedlen, storelen, wraplen;
@ -752,7 +887,8 @@ uLong ZEXPORT deflateBound(strm, sourceLen)
/* if not default parameters, return one of the conservative bounds */
if (s->w_bits != 15 || s->hash_bits != 8 + 7)
return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
wraplen;
/* default settings: return tight bound for that case -- ~0.03% overhead
plus a small constant */
@ -765,10 +901,7 @@ uLong ZEXPORT deflateBound(strm, sourceLen)
* IN assertion: the stream state is correct and there is enough room in
* pending_buf.
*/
local void putShortMSB(s, b)
deflate_state *s;
uInt b;
{
local void putShortMSB(deflate_state *s, uInt b) {
put_byte(s, (Byte)(b >> 8));
put_byte(s, (Byte)(b & 0xff));
}
@ -779,9 +912,7 @@ local void putShortMSB(s, b)
* applications may wish to modify it to avoid allocating a large
* strm->next_out buffer and copying into it. (See also read_buf()).
*/
local void flush_pending(strm)
z_streamp strm;
{
local void flush_pending(z_streamp strm) {
unsigned len;
deflate_state *s = strm->state;
@ -812,10 +943,7 @@ local void flush_pending(strm)
} while (0)
/* ========================================================================= */
int ZEXPORT deflate(strm, flush)
z_streamp strm;
int flush;
{
int ZEXPORT deflate(z_streamp strm, int flush) {
int old_flush; /* value of flush param for previous deflate call */
deflate_state *s;
@ -1127,9 +1255,7 @@ int ZEXPORT deflate(strm, flush)
}
/* ========================================================================= */
int ZEXPORT deflateEnd(strm)
z_streamp strm;
{
int ZEXPORT deflateEnd(z_streamp strm) {
int status;
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
@ -1153,11 +1279,10 @@ int ZEXPORT deflateEnd(strm)
* To simplify the source, this is not supported for 16-bit MSDOS (which
* doesn't have enough memory anyway to duplicate compression states).
*/
int ZEXPORT deflateCopy(dest, source)
z_streamp dest;
z_streamp source;
{
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
#ifdef MAXSEG_64K
(void)dest;
(void)source;
return Z_STREAM_ERROR;
#else
deflate_state *ds;
@ -1181,7 +1306,7 @@ int ZEXPORT deflateCopy(dest, source)
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
ds->pending_buf == Z_NULL) {
@ -1192,10 +1317,15 @@ int ZEXPORT deflateCopy(dest, source)
zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
#ifdef LIT_MEM
ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
#else
ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
#endif
ds->l_desc.dyn_tree = ds->dyn_ltree;
ds->d_desc.dyn_tree = ds->dyn_dtree;
@ -1205,66 +1335,6 @@ int ZEXPORT deflateCopy(dest, source)
#endif /* MAXSEG_64K */
}
/* ===========================================================================
* Read a new buffer from the current input stream, update the adler32
* and total number of bytes read. All deflate() input goes through
* this function so some applications may wish to modify it to avoid
* allocating a large strm->next_in buffer and copying from it.
* (See also flush_pending()).
*/
local unsigned read_buf(strm, buf, size)
z_streamp strm;
Bytef *buf;
unsigned size;
{
unsigned len = strm->avail_in;
if (len > size) len = size;
if (len == 0) return 0;
strm->avail_in -= len;
zmemcpy(buf, strm->next_in, len);
if (strm->state->wrap == 1) {
strm->adler = adler32(strm->adler, buf, len);
}
#ifdef GZIP
else if (strm->state->wrap == 2) {
strm->adler = crc32(strm->adler, buf, len);
}
#endif
strm->next_in += len;
strm->total_in += len;
return len;
}
/* ===========================================================================
* Initialize the "longest match" routines for a new zlib stream
*/
local void lm_init(s)
deflate_state *s;
{
s->window_size = (ulg)2L*s->w_size;
CLEAR_HASH(s);
/* Set the default configuration parameters:
*/
s->max_lazy_match = configuration_table[s->level].max_lazy;
s->good_match = configuration_table[s->level].good_length;
s->nice_match = configuration_table[s->level].nice_length;
s->max_chain_length = configuration_table[s->level].max_chain;
s->strstart = 0;
s->block_start = 0L;
s->lookahead = 0;
s->insert = 0;
s->match_length = s->prev_length = MIN_MATCH-1;
s->match_available = 0;
s->ins_h = 0;
}
#ifndef FASTEST
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
@ -1275,10 +1345,7 @@ local void lm_init(s)
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
* OUT assertion: the match length is not greater than s->lookahead.
*/
local uInt longest_match(s, cur_match)
deflate_state *s;
IPos cur_match; /* current match */
{
local uInt longest_match(deflate_state *s, IPos cur_match) {
unsigned chain_length = s->max_chain_length;/* max hash chain length */
register Bytef *scan = s->window + s->strstart; /* current string */
register Bytef *match; /* matched string */
@ -1426,10 +1493,7 @@ local uInt longest_match(s, cur_match)
/* ---------------------------------------------------------------------------
* Optimized version for FASTEST only
*/
local uInt longest_match(s, cur_match)
deflate_state *s;
IPos cur_match; /* current match */
{
local uInt longest_match(deflate_state *s, IPos cur_match) {
register Bytef *scan = s->window + s->strstart; /* current string */
register Bytef *match; /* matched string */
register int len; /* length of current match */
@ -1490,19 +1554,23 @@ local uInt longest_match(s, cur_match)
/* ===========================================================================
* Check that the match at match_start is indeed a match.
*/
local void check_match(s, start, match, length)
deflate_state *s;
IPos start, match;
int length;
{
local void check_match(deflate_state *s, IPos start, IPos match, int length) {
/* check that the match is indeed a match */
if (zmemcmp(s->window + match,
s->window + start, length) != EQUAL) {
fprintf(stderr, " start %u, match %u, length %d\n",
start, match, length);
Bytef *back = s->window + (int)match, *here = s->window + start;
IPos len = length;
if (match == (IPos)-1) {
/* match starts one byte before the current window -- just compare the
subsequent length-1 bytes */
back++;
here++;
len--;
}
if (zmemcmp(back, here, len) != EQUAL) {
fprintf(stderr, " start %u, match %d, length %d\n",
start, (int)match, length);
do {
fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
} while (--length != 0);
fprintf(stderr, "(%02x %02x)", *back++, *here++);
} while (--len != 0);
z_error("invalid match");
}
if (z_verbose > 1) {
@ -1514,137 +1582,6 @@ local void check_match(s, start, match, length)
# define check_match(s, start, match, length)
#endif /* ZLIB_DEBUG */
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead.
*
* IN assertion: lookahead < MIN_LOOKAHEAD
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
* At least one byte has been read, or avail_in == 0; reads are
* performed for at least two bytes (required for the zip translate_eol
* option -- not supported here).
*/
local void fill_window(s)
deflate_state *s;
{
unsigned n;
unsigned more; /* Amount of free space at the end of the window. */
uInt wsize = s->w_size;
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
do {
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
/* Deal with !@#$% 64K limit: */
if (sizeof(int) <= 2) {
if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
more = wsize;
} else if (more == (unsigned)(-1)) {
/* Very unlikely, but possible on 16 bit machine if
* strstart == 0 && lookahead == 1 (input done a byte at time)
*/
more--;
}
}
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if (s->strstart >= wsize + MAX_DIST(s)) {
zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
s->match_start -= wsize;
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
s->block_start -= (long) wsize;
if (s->insert > s->strstart)
s->insert = s->strstart;
slide_hash(s);
more += wsize;
}
if (s->strm->avail_in == 0) break;
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
* more == window_size - lookahead - strstart
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
* => more >= window_size - 2*WSIZE + 2
* In the BIG_MEM or MMAP case (not yet supported),
* window_size == input_size + MIN_LOOKAHEAD &&
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
* Otherwise, window_size == 2*WSIZE so more >= 2.
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
*/
Assert(more >= 2, "more < 2");
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
s->lookahead += n;
/* Initialize the hash value now that we have some input: */
if (s->lookahead + s->insert >= MIN_MATCH) {
uInt str = s->strstart - s->insert;
s->ins_h = s->window[str];
UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
#if MIN_MATCH != 3
Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
while (s->insert) {
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
s->head[s->ins_h] = (Pos)str;
str++;
s->insert--;
if (s->lookahead + s->insert < MIN_MATCH)
break;
}
}
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
* but this is not important since only literal bytes will be emitted.
*/
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
/* If the WIN_INIT bytes after the end of the current data have never been
* written, then zero those bytes in order to avoid memory check reports of
* the use of uninitialized (or uninitialised as Julian writes) bytes by
* the longest match routines. Update the high water mark for the next
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
*/
if (s->high_water < s->window_size) {
ulg curr = s->strstart + (ulg)(s->lookahead);
ulg init;
if (s->high_water < curr) {
/* Previous high water mark below current data -- zero WIN_INIT
* bytes or up to end of window, whichever is less.
*/
init = s->window_size - curr;
if (init > WIN_INIT)
init = WIN_INIT;
zmemzero(s->window + curr, (unsigned)init);
s->high_water = curr + init;
}
else if (s->high_water < (ulg)curr + WIN_INIT) {
/* High water mark at or above current data, but below current data
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
* to end of window, whichever is less.
*/
init = (ulg)curr + WIN_INIT - s->high_water;
if (init > s->window_size - s->high_water)
init = s->window_size - s->high_water;
zmemzero(s->window + s->high_water, (unsigned)init);
s->high_water += init;
}
}
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
"not enough room for search");
}
/* ===========================================================================
* Flush the current block, with given end-of-file flag.
* IN assertion: strstart is set to the end of the current match.
@ -1687,10 +1624,7 @@ local void fill_window(s)
* copied. It is most efficient with large input and output buffers, which
* maximizes the opportunities to have a single copy from next_in to next_out.
*/
local block_state deflate_stored(s, flush)
deflate_state *s;
int flush;
{
local block_state deflate_stored(deflate_state *s, int flush) {
/* Smallest worthy block size when not flushing or finishing. By default
* this is 32K. This can be as small as 507 bytes for memLevel == 1. For
* large input and output buffers, the stored block size will be larger.
@ -1874,10 +1808,7 @@ local block_state deflate_stored(s, flush)
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
local block_state deflate_fast(s, flush)
deflate_state *s;
int flush;
{
local block_state deflate_fast(deflate_state *s, int flush) {
IPos hash_head; /* head of the hash chain */
int bflush; /* set if current block must be flushed */
@ -1976,10 +1907,7 @@ local block_state deflate_fast(s, flush)
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
local block_state deflate_slow(s, flush)
deflate_state *s;
int flush;
{
local block_state deflate_slow(deflate_state *s, int flush) {
IPos hash_head; /* head of hash chain */
int bflush; /* set if current block must be flushed */
@ -2107,10 +2035,7 @@ local block_state deflate_slow(s, flush)
* one. Do not maintain a hash table. (It will be regenerated if this run of
* deflate switches away from Z_RLE.)
*/
local block_state deflate_rle(s, flush)
deflate_state *s;
int flush;
{
local block_state deflate_rle(deflate_state *s, int flush) {
int bflush; /* set if current block must be flushed */
uInt prev; /* byte at distance one to match */
Bytef *scan, *strend; /* scan goes up to strend for length of run */
@ -2181,10 +2106,7 @@ local block_state deflate_rle(s, flush)
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
* (It will be regenerated if this run of deflate switches away from Huffman.)
*/
local block_state deflate_huff(s, flush)
deflate_state *s;
int flush;
{
local block_state deflate_huff(deflate_state *s, int flush) {
int bflush; /* set if current block must be flushed */
for (;;) {

View File

@ -1,5 +1,5 @@
/* deflate.h -- internal compression state
* Copyright (C) 1995-2018 Jean-loup Gailly
* Copyright (C) 1995-2024 Jean-loup Gailly
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -23,6 +23,10 @@
# define GZIP
#endif
/* define LIT_MEM to slightly increase the speed of deflate (order 1% to 2%) at
the cost of a larger memory footprint */
/* #define LIT_MEM */
/* ===========================================================================
* Internal compression state.
*/
@ -217,7 +221,14 @@ typedef struct internal_state {
/* Depth of each subtree used as tie breaker for trees of equal frequency
*/
#ifdef LIT_MEM
# define LIT_BUFS 5
ushf *d_buf; /* buffer for distances */
uchf *l_buf; /* buffer for literals/lengths */
#else
# define LIT_BUFS 4
uchf *sym_buf; /* buffer for distances and literals/lengths */
#endif
uInt lit_bufsize;
/* Size of match buffer for literals/lengths. There are 4 reasons for
@ -239,7 +250,7 @@ typedef struct internal_state {
* - I can't count above 4
*/
uInt sym_next; /* running index in sym_buf */
uInt sym_next; /* running index in symbol buffer */
uInt sym_end; /* symbol table full when sym_next reaches this */
ulg opt_len; /* bit length of current block with optimal trees */
@ -291,14 +302,14 @@ typedef struct internal_state {
memory checker errors from longest match routines */
/* in trees.c */
void ZLIB_INTERNAL _tr_init OF((deflate_state *s));
int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf,
ulg stored_len, int last));
void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s));
void ZLIB_INTERNAL _tr_align OF((deflate_state *s));
void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf,
ulg stored_len, int last));
void ZLIB_INTERNAL _tr_init(deflate_state *s);
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc);
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
ulg stored_len, int last);
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s);
void ZLIB_INTERNAL _tr_align(deflate_state *s);
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
ulg stored_len, int last);
#define d_code(dist) \
((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
@ -318,6 +329,25 @@ void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf,
extern const uch ZLIB_INTERNAL _dist_code[];
#endif
#ifdef LIT_MEM
# define _tr_tally_lit(s, c, flush) \
{ uch cc = (c); \
s->d_buf[s->sym_next] = 0; \
s->l_buf[s->sym_next++] = cc; \
s->dyn_ltree[cc].Freq++; \
flush = (s->sym_next == s->sym_end); \
}
# define _tr_tally_dist(s, distance, length, flush) \
{ uch len = (uch)(length); \
ush dist = (ush)(distance); \
s->d_buf[s->sym_next] = dist; \
s->l_buf[s->sym_next++] = len; \
dist--; \
s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
s->dyn_dtree[d_code(dist)].Freq++; \
flush = (s->sym_next == s->sym_end); \
}
#else
# define _tr_tally_lit(s, c, flush) \
{ uch cc = (c); \
s->sym_buf[s->sym_next++] = 0; \
@ -337,6 +367,7 @@ void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf,
s->dyn_dtree[d_code(dist)].Freq++; \
flush = (s->sym_next == s->sym_end); \
}
#endif
#else
# define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
# define _tr_tally_dist(s, distance, length, flush) \

View File

@ -1,209 +0,0 @@
1. Compression algorithm (deflate)
The deflation algorithm used by gzip (also zip and zlib) is a variation of
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
the input data. The second occurrence of a string is replaced by a
pointer to the previous string, in the form of a pair (distance,
length). Distances are limited to 32K bytes, and lengths are limited
to 258 bytes. When a string does not occur anywhere in the previous
32K bytes, it is emitted as a sequence of literal bytes. (In this
description, `string' must be taken as an arbitrary sequence of bytes,
and is not restricted to printable characters.)
Literals or match lengths are compressed with one Huffman tree, and
match distances are compressed with another tree. The trees are stored
in a compact form at the start of each block. The blocks can have any
size (except that the compressed data for one block must fit in
available memory). A block is terminated when deflate() determines that
it would be useful to start another block with fresh trees. (This is
somewhat similar to the behavior of LZW-based _compress_.)
Duplicated strings are found using a hash table. All input strings of
length 3 are inserted in the hash table. A hash index is computed for
the next 3 bytes. If the hash chain for this index is not empty, all
strings in the chain are compared with the current input string, and
the longest match is selected.
The hash chains are searched starting with the most recent strings, to
favor small distances and thus take advantage of the Huffman encoding.
The hash chains are singly linked. There are no deletions from the
hash chains, the algorithm simply discards matches that are too old.
To avoid a worst-case situation, very long hash chains are arbitrarily
truncated at a certain length, determined by a runtime option (level
parameter of deflateInit). So deflate() does not always find the longest
possible match but generally finds a match which is long enough.
deflate() also defers the selection of matches with a lazy evaluation
mechanism. After a match of length N has been found, deflate() searches for
a longer match at the next input byte. If a longer match is found, the
previous match is truncated to a length of one (thus producing a single
literal byte) and the process of lazy evaluation begins again. Otherwise,
the original match is kept, and the next match search is attempted only N
steps later.
The lazy match evaluation is also subject to a runtime parameter. If
the current match is long enough, deflate() reduces the search for a longer
match, thus speeding up the whole process. If compression ratio is more
important than speed, deflate() attempts a complete second search even if
the first match is already long enough.
The lazy match evaluation is not performed for the fastest compression
modes (level parameter 1 to 3). For these fast modes, new strings
are inserted in the hash table only when no match was found, or
when the match is not too long. This degrades the compression ratio
but saves time since there are both fewer insertions and fewer searches.
2. Decompression algorithm (inflate)
2.1 Introduction
The key question is how to represent a Huffman code (or any prefix code) so
that you can decode fast. The most important characteristic is that shorter
codes are much more common than longer codes, so pay attention to decoding the
short codes fast, and let the long codes take longer to decode.
inflate() sets up a first level table that covers some number of bits of
input less than the length of longest code. It gets that many bits from the
stream, and looks it up in the table. The table will tell if the next
code is that many bits or less and how many, and if it is, it will tell
the value, else it will point to the next level table for which inflate()
grabs more bits and tries to decode a longer code.
How many bits to make the first lookup is a tradeoff between the time it
takes to decode and the time it takes to build the table. If building the
table took no time (and if you had infinite memory), then there would only
be a first level table to cover all the way to the longest code. However,
building the table ends up taking a lot longer for more bits since short
codes are replicated many times in such a table. What inflate() does is
simply to make the number of bits in the first table a variable, and then
to set that variable for the maximum speed.
For inflate, which has 286 possible codes for the literal/length tree, the size
of the first table is nine bits. Also the distance trees have 30 possible
values, and the size of the first table is six bits. Note that for each of
those cases, the table ended up one bit longer than the ``average'' code
length, i.e. the code length of an approximately flat code which would be a
little more than eight bits for 286 symbols and a little less than five bits
for 30 symbols.
2.2 More details on the inflate table lookup
Ok, you want to know what this cleverly obfuscated inflate tree actually
looks like. You are correct that it's not a Huffman tree. It is simply a
lookup table for the first, let's say, nine bits of a Huffman symbol. The
symbol could be as short as one bit or as long as 15 bits. If a particular
symbol is shorter than nine bits, then that symbol's translation is duplicated
in all those entries that start with that symbol's bits. For example, if the
symbol is four bits, then it's duplicated 32 times in a nine-bit table. If a
symbol is nine bits long, it appears in the table once.
If the symbol is longer than nine bits, then that entry in the table points
to another similar table for the remaining bits. Again, there are duplicated
entries as needed. The idea is that most of the time the symbol will be short
and there will only be one table look up. (That's whole idea behind data
compression in the first place.) For the less frequent long symbols, there
will be two lookups. If you had a compression method with really long
symbols, you could have as many levels of lookups as is efficient. For
inflate, two is enough.
So a table entry either points to another table (in which case nine bits in
the above example are gobbled), or it contains the translation for the symbol
and the number of bits to gobble. Then you start again with the next
ungobbled bit.
You may wonder: why not just have one lookup table for how ever many bits the
longest symbol is? The reason is that if you do that, you end up spending
more time filling in duplicate symbol entries than you do actually decoding.
At least for deflate's output that generates new trees every several 10's of
kbytes. You can imagine that filling in a 2^15 entry table for a 15-bit code
would take too long if you're only decoding several thousand symbols. At the
other extreme, you could make a new table for every bit in the code. In fact,
that's essentially a Huffman tree. But then you spend too much time
traversing the tree while decoding, even for short symbols.
So the number of bits for the first lookup table is a trade of the time to
fill out the table vs. the time spent looking at the second level and above of
the table.
Here is an example, scaled down:
The code being decoded, with 10 symbols, from 1 to 6 bits long:
A: 0
B: 10
C: 1100
D: 11010
E: 11011
F: 11100
G: 11101
H: 11110
I: 111110
J: 111111
Let's make the first table three bits long (eight entries):
000: A,1
001: A,1
010: A,1
011: A,1
100: B,2
101: B,2
110: -> table X (gobble 3 bits)
111: -> table Y (gobble 3 bits)
Each entry is what the bits decode as and how many bits that is, i.e. how
many bits to gobble. Or the entry points to another table, with the number of
bits to gobble implicit in the size of the table.
Table X is two bits long since the longest code starting with 110 is five bits
long:
00: C,1
01: C,1
10: D,2
11: E,2
Table Y is three bits long since the longest code starting with 111 is six
bits long:
000: F,2
001: F,2
010: G,2
011: G,2
100: H,2
101: H,2
110: I,3
111: J,3
So what we have here are three tables with a total of 20 entries that had to
be constructed. That's compared to 64 entries for a single table. Or
compared to 16 entries for a Huffman tree (six two entry tables and one four
entry table). Assuming that the code ideally represents the probability of
the symbols, it takes on the average 1.25 lookups per symbol. That's compared
to one lookup for the single table, or 1.66 lookups per symbol for the
Huffman tree.
There, I think that gives you a picture of what's going on. For inflate, the
meaning of a particular symbol is often more than just a letter. It can be a
byte (a "literal"), or it can be either a length or a distance which
indicates a base value and a number of bits to fetch after the code that is
added to the base value. Or it might be the special end-of-block code. The
data structures created in inftrees.c try to encode all that information
compactly in the tables.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
References:
[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
pp. 337-343.
``DEFLATE Compressed Data Format Specification'' available in
http://tools.ietf.org/html/rfc1951

View File

@ -1,619 +0,0 @@
Network Working Group P. Deutsch
Request for Comments: 1950 Aladdin Enterprises
Category: Informational J-L. Gailly
Info-ZIP
May 1996
ZLIB Compressed Data Format Specification version 3.3
Status of This Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
IESG Note:
The IESG takes no position on the validity of any Intellectual
Property Rights statements contained in this document.
Notices
Copyright (c) 1996 L. Peter Deutsch and Jean-Loup Gailly
Permission is granted to copy and distribute this document for any
purpose and without charge, including translations into other
languages and incorporation into compilations, provided that the
copyright notice and this notice are preserved, and that any
substantive changes or deletions from the original are clearly
marked.
A pointer to the latest version of this and related documentation in
HTML format can be found at the URL
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
Abstract
This specification defines a lossless compressed data format. The
data can be produced or consumed, even for an arbitrarily long
sequentially presented input data stream, using only an a priori
bounded amount of intermediate storage. The format presently uses
the DEFLATE compression method but can be easily extended to use
other compression methods. It can be implemented readily in a manner
not covered by patents. This specification also defines the ADLER-32
checksum (an extension and improvement of the Fletcher checksum),
used for detection of data corruption, and provides an algorithm for
computing it.
Deutsch & Gailly Informational [Page 1]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
Table of Contents
1. Introduction ................................................... 2
1.1. Purpose ................................................... 2
1.2. Intended audience ......................................... 3
1.3. Scope ..................................................... 3
1.4. Compliance ................................................ 3
1.5. Definitions of terms and conventions used ................ 3
1.6. Changes from previous versions ............................ 3
2. Detailed specification ......................................... 3
2.1. Overall conventions ....................................... 3
2.2. Data format ............................................... 4
2.3. Compliance ................................................ 7
3. References ..................................................... 7
4. Source code .................................................... 8
5. Security Considerations ........................................ 8
6. Acknowledgements ............................................... 8
7. Authors' Addresses ............................................. 8
8. Appendix: Rationale ............................................ 9
9. Appendix: Sample code ..........................................10
1. Introduction
1.1. Purpose
The purpose of this specification is to define a lossless
compressed data format that:
* Is independent of CPU type, operating system, file system,
and character set, and hence can be used for interchange;
* Can be produced or consumed, even for an arbitrarily long
sequentially presented input data stream, using only an a
priori bounded amount of intermediate storage, and hence can
be used in data communications or similar structures such as
Unix filters;
* Can use a number of different compression methods;
* Can be implemented readily in a manner not covered by
patents, and hence can be practiced freely.
The data format defined by this specification does not attempt to
allow random access to compressed data.
Deutsch & Gailly Informational [Page 2]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
1.2. Intended audience
This specification is intended for use by implementors of software
to compress data into zlib format and/or decompress data from zlib
format.
The text of the specification assumes a basic background in
programming at the level of bits and other primitive data
representations.
1.3. Scope
The specification specifies a compressed data format that can be
used for in-memory compression of a sequence of arbitrary bytes.
1.4. Compliance
Unless otherwise indicated below, a compliant decompressor must be
able to accept and decompress any data set that conforms to all
the specifications presented here; a compliant compressor must
produce data sets that conform to all the specifications presented
here.
1.5. Definitions of terms and conventions used
byte: 8 bits stored or transmitted as a unit (same as an octet).
(For this specification, a byte is exactly 8 bits, even on
machines which store a character on a number of bits different
from 8.) See below, for the numbering of bits within a byte.
1.6. Changes from previous versions
Version 3.1 was the first public release of this specification.
In version 3.2, some terminology was changed and the Adler-32
sample code was rewritten for clarity. In version 3.3, the
support for a preset dictionary was introduced, and the
specification was converted to RFC style.
2. Detailed specification
2.1. Overall conventions
In the diagrams below, a box like this:
+---+
| | <-- the vertical bars might be missing
+---+
Deutsch & Gailly Informational [Page 3]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
represents one byte; a box like this:
+==============+
| |
+==============+
represents a variable number of bytes.
Bytes stored within a computer do not have a "bit order", since
they are always treated as a unit. However, a byte considered as
an integer between 0 and 255 does have a most- and least-
significant bit, and since we write numbers with the most-
significant digit on the left, we also write bytes with the most-
significant bit on the left. In the diagrams below, we number the
bits of a byte so that bit 0 is the least-significant bit, i.e.,
the bits are numbered:
+--------+
|76543210|
+--------+
Within a computer, a number may occupy multiple bytes. All
multi-byte numbers in the format described here are stored with
the MOST-significant byte first (at the lower memory address).
For example, the decimal number 520 is stored as:
0 1
+--------+--------+
|00000010|00001000|
+--------+--------+
^ ^
| |
| + less significant byte = 8
+ more significant byte = 2 x 256
2.2. Data format
A zlib stream has the following structure:
0 1
+---+---+
|CMF|FLG| (more-->)
+---+---+
Deutsch & Gailly Informational [Page 4]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
(if FLG.FDICT set)
0 1 2 3
+---+---+---+---+
| DICTID | (more-->)
+---+---+---+---+
+=====================+---+---+---+---+
|...compressed data...| ADLER32 |
+=====================+---+---+---+---+
Any data which may appear after ADLER32 are not part of the zlib
stream.
CMF (Compression Method and flags)
This byte is divided into a 4-bit compression method and a 4-
bit information field depending on the compression method.
bits 0 to 3 CM Compression method
bits 4 to 7 CINFO Compression info
CM (Compression method)
This identifies the compression method used in the file. CM = 8
denotes the "deflate" compression method with a window size up
to 32K. This is the method used by gzip and PNG (see
references [1] and [2] in Chapter 3, below, for the reference
documents). CM = 15 is reserved. It might be used in a future
version of this specification to indicate the presence of an
extra field before the compressed data.
CINFO (Compression info)
For CM = 8, CINFO is the base-2 logarithm of the LZ77 window
size, minus eight (CINFO=7 indicates a 32K window size). Values
of CINFO above 7 are not allowed in this version of the
specification. CINFO is not defined in this specification for
CM not equal to 8.
FLG (FLaGs)
This flag byte is divided as follows:
bits 0 to 4 FCHECK (check bits for CMF and FLG)
bit 5 FDICT (preset dictionary)
bits 6 to 7 FLEVEL (compression level)
The FCHECK value must be such that CMF and FLG, when viewed as
a 16-bit unsigned integer stored in MSB order (CMF*256 + FLG),
is a multiple of 31.
Deutsch & Gailly Informational [Page 5]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
FDICT (Preset dictionary)
If FDICT is set, a DICT dictionary identifier is present
immediately after the FLG byte. The dictionary is a sequence of
bytes which are initially fed to the compressor without
producing any compressed output. DICT is the Adler-32 checksum
of this sequence of bytes (see the definition of ADLER32
below). The decompressor can use this identifier to determine
which dictionary has been used by the compressor.
FLEVEL (Compression level)
These flags are available for use by specific compression
methods. The "deflate" method (CM = 8) sets these flags as
follows:
0 - compressor used fastest algorithm
1 - compressor used fast algorithm
2 - compressor used default algorithm
3 - compressor used maximum compression, slowest algorithm
The information in FLEVEL is not needed for decompression; it
is there to indicate if recompression might be worthwhile.
compressed data
For compression method 8, the compressed data is stored in the
deflate compressed data format as described in the document
"DEFLATE Compressed Data Format Specification" by L. Peter
Deutsch. (See reference [3] in Chapter 3, below)
Other compressed data formats are not specified in this version
of the zlib specification.
ADLER32 (Adler-32 checksum)
This contains a checksum value of the uncompressed data
(excluding any dictionary data) computed according to Adler-32
algorithm. This algorithm is a 32-bit extension and improvement
of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
standard. See references [4] and [5] in Chapter 3, below)
Adler-32 is composed of two sums accumulated per byte: s1 is
the sum of all bytes, s2 is the sum of all s1 values. Both sums
are done modulo 65521. s1 is initialized to 1, s2 to zero. The
Adler-32 checksum is stored as s2*65536 + s1 in most-
significant-byte first (network) order.
Deutsch & Gailly Informational [Page 6]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
2.3. Compliance
A compliant compressor must produce streams with correct CMF, FLG
and ADLER32, but need not support preset dictionaries. When the
zlib data format is used as part of another standard data format,
the compressor may use only preset dictionaries that are specified
by this other data format. If this other format does not use the
preset dictionary feature, the compressor must not set the FDICT
flag.
A compliant decompressor must check CMF, FLG, and ADLER32, and
provide an error indication if any of these have incorrect values.
A compliant decompressor must give an error indication if CM is
not one of the values defined in this specification (only the
value 8 is permitted in this version), since another value could
indicate the presence of new features that would cause subsequent
data to be interpreted incorrectly. A compliant decompressor must
give an error indication if FDICT is set and DICTID is not the
identifier of a known preset dictionary. A decompressor may
ignore FLEVEL and still be compliant. When the zlib data format
is being used as a part of another standard format, a compliant
decompressor must support all the preset dictionaries specified by
the other format. When the other format does not use the preset
dictionary feature, a compliant decompressor must reject any
stream in which the FDICT flag is set.
3. References
[1] Deutsch, L.P.,"GZIP Compressed Data Format Specification",
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
[2] Thomas Boutell, "PNG (Portable Network Graphics) specification",
available in ftp://ftp.uu.net/graphics/png/documents/
[3] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
[4] Fletcher, J. G., "An Arithmetic Checksum for Serial
Transmissions," IEEE Transactions on Communications, Vol. COM-30,
No. 1, January 1982, pp. 247-252.
[5] ITU-T Recommendation X.224, Annex D, "Checksum Algorithms,"
November, 1993, pp. 144, 145. (Available from
gopher://info.itu.ch). ITU-T X.244 is also the same as ISO 8073.
Deutsch & Gailly Informational [Page 7]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
4. Source code
Source code for a C language implementation of a "zlib" compliant
library is available at ftp://ftp.uu.net/pub/archiving/zip/zlib/.
5. Security Considerations
A decoder that fails to check the ADLER32 checksum value may be
subject to undetected data corruption.
6. Acknowledgements
Trademarks cited in this document are the property of their
respective owners.
Jean-Loup Gailly and Mark Adler designed the zlib format and wrote
the related software described in this specification. Glenn
Randers-Pehrson converted this document to RFC and HTML format.
7. Authors' Addresses
L. Peter Deutsch
Aladdin Enterprises
203 Santa Margarita Ave.
Menlo Park, CA 94025
Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMail: <ghost@aladdin.com>
Jean-Loup Gailly
EMail: <gzip@prep.ai.mit.edu>
Questions about the technical content of this specification can be
sent by email to
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
Mark Adler <madler@alumni.caltech.edu>
Editorial comments on this specification can be sent by email to
L. Peter Deutsch <ghost@aladdin.com> and
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
Deutsch & Gailly Informational [Page 8]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
8. Appendix: Rationale
8.1. Preset dictionaries
A preset dictionary is specially useful to compress short input
sequences. The compressor can take advantage of the dictionary
context to encode the input in a more compact manner. The
decompressor can be initialized with the appropriate context by
virtually decompressing a compressed version of the dictionary
without producing any output. However for certain compression
algorithms such as the deflate algorithm this operation can be
achieved without actually performing any decompression.
The compressor and the decompressor must use exactly the same
dictionary. The dictionary may be fixed or may be chosen among a
certain number of predefined dictionaries, according to the kind
of input data. The decompressor can determine which dictionary has
been chosen by the compressor by checking the dictionary
identifier. This document does not specify the contents of
predefined dictionaries, since the optimal dictionaries are
application specific. Standard data formats using this feature of
the zlib specification must precisely define the allowed
dictionaries.
8.2. The Adler-32 algorithm
The Adler-32 algorithm is much faster than the CRC32 algorithm yet
still provides an extremely low probability of undetected errors.
The modulo on unsigned long accumulators can be delayed for 5552
bytes, so the modulo operation time is negligible. If the bytes
are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
and order sensitive, unlike the first sum, which is just a
checksum. That 65521 is prime is important to avoid a possible
large class of two-byte errors that leave the check unchanged.
(The Fletcher checksum uses 255, which is not prime and which also
makes the Fletcher check insensitive to single byte changes 0 <->
255.)
The sum s1 is initialized to 1 instead of zero to make the length
of the sequence part of s2, so that the length does not have to be
checked separately. (Any sequence of zeroes has a Fletcher
checksum of zero.)
Deutsch & Gailly Informational [Page 9]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
9. Appendix: Sample code
The following C code computes the Adler-32 checksum of a data buffer.
It is written for clarity, not for speed. The sample code is in the
ANSI C programming language. Non C users may find it easier to read
with these hints:
& Bitwise AND operator.
>> Bitwise right shift operator. When applied to an
unsigned quantity, as here, right shift inserts zero bit(s)
at the left.
<< Bitwise left shift operator. Left shift inserts zero
bit(s) at the right.
++ "n++" increments the variable n.
% modulo operator: a % b is the remainder of a divided by b.
#define BASE 65521 /* largest prime smaller than 65536 */
/*
Update a running Adler-32 checksum with the bytes buf[0..len-1]
and return the updated checksum. The Adler-32 checksum should be
initialized to 1.
Usage example:
unsigned long adler = 1L;
while (read_buffer(buffer, length) != EOF) {
adler = update_adler32(adler, buffer, length);
}
if (adler != original_adler) error();
*/
unsigned long update_adler32(unsigned long adler,
unsigned char *buf, int len)
{
unsigned long s1 = adler & 0xffff;
unsigned long s2 = (adler >> 16) & 0xffff;
int n;
for (n = 0; n < len; n++) {
s1 = (s1 + buf[n]) % BASE;
s2 = (s2 + s1) % BASE;
}
return (s2 << 16) + s1;
}
/* Return the adler32 of the bytes buf[0..len-1] */
Deutsch & Gailly Informational [Page 10]
RFC 1950 ZLIB Compressed Data Format Specification May 1996
unsigned long adler32(unsigned char *buf, int len)
{
return update_adler32(1L, buf, len);
}
Deutsch & Gailly Informational [Page 11]

View File

@ -1,955 +0,0 @@
Network Working Group P. Deutsch
Request for Comments: 1951 Aladdin Enterprises
Category: Informational May 1996
DEFLATE Compressed Data Format Specification version 1.3
Status of This Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
IESG Note:
The IESG takes no position on the validity of any Intellectual
Property Rights statements contained in this document.
Notices
Copyright (c) 1996 L. Peter Deutsch
Permission is granted to copy and distribute this document for any
purpose and without charge, including translations into other
languages and incorporation into compilations, provided that the
copyright notice and this notice are preserved, and that any
substantive changes or deletions from the original are clearly
marked.
A pointer to the latest version of this and related documentation in
HTML format can be found at the URL
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
Abstract
This specification defines a lossless compressed data format that
compresses data using a combination of the LZ77 algorithm and Huffman
coding, with efficiency comparable to the best currently available
general-purpose compression methods. The data can be produced or
consumed, even for an arbitrarily long sequentially presented input
data stream, using only an a priori bounded amount of intermediate
storage. The format can be implemented readily in a manner not
covered by patents.
Deutsch Informational [Page 1]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
Table of Contents
1. Introduction ................................................... 2
1.1. Purpose ................................................... 2
1.2. Intended audience ......................................... 3
1.3. Scope ..................................................... 3
1.4. Compliance ................................................ 3
1.5. Definitions of terms and conventions used ................ 3
1.6. Changes from previous versions ............................ 4
2. Compressed representation overview ............................. 4
3. Detailed specification ......................................... 5
3.1. Overall conventions ....................................... 5
3.1.1. Packing into bytes .................................. 5
3.2. Compressed block format ................................... 6
3.2.1. Synopsis of prefix and Huffman coding ............... 6
3.2.2. Use of Huffman coding in the "deflate" format ....... 7
3.2.3. Details of block format ............................. 9
3.2.4. Non-compressed blocks (BTYPE=00) ................... 11
3.2.5. Compressed blocks (length and distance codes) ...... 11
3.2.6. Compression with fixed Huffman codes (BTYPE=01) .... 12
3.2.7. Compression with dynamic Huffman codes (BTYPE=10) .. 13
3.3. Compliance ............................................... 14
4. Compression algorithm details ................................. 14
5. References .................................................... 16
6. Security Considerations ....................................... 16
7. Source code ................................................... 16
8. Acknowledgements .............................................. 16
9. Author's Address .............................................. 17
1. Introduction
1.1. Purpose
The purpose of this specification is to define a lossless
compressed data format that:
* Is independent of CPU type, operating system, file system,
and character set, and hence can be used for interchange;
* Can be produced or consumed, even for an arbitrarily long
sequentially presented input data stream, using only an a
priori bounded amount of intermediate storage, and hence
can be used in data communications or similar structures
such as Unix filters;
* Compresses data with efficiency comparable to the best
currently available general-purpose compression methods,
and in particular considerably better than the "compress"
program;
* Can be implemented readily in a manner not covered by
patents, and hence can be practiced freely;
Deutsch Informational [Page 2]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
* Is compatible with the file format produced by the current
widely used gzip utility, in that conforming decompressors
will be able to read data produced by the existing gzip
compressor.
The data format defined by this specification does not attempt to:
* Allow random access to compressed data;
* Compress specialized data (e.g., raster graphics) as well
as the best currently available specialized algorithms.
A simple counting argument shows that no lossless compression
algorithm can compress every possible input data set. For the
format defined here, the worst case expansion is 5 bytes per 32K-
byte block, i.e., a size increase of 0.015% for large data sets.
English text usually compresses by a factor of 2.5 to 3;
executable files usually compress somewhat less; graphical data
such as raster images may compress much more.
1.2. Intended audience
This specification is intended for use by implementors of software
to compress data into "deflate" format and/or decompress data from
"deflate" format.
The text of the specification assumes a basic background in
programming at the level of bits and other primitive data
representations. Familiarity with the technique of Huffman coding
is helpful but not required.
1.3. Scope
The specification specifies a method for representing a sequence
of bytes as a (usually shorter) sequence of bits, and a method for
packing the latter bit sequence into bytes.
1.4. Compliance
Unless otherwise indicated below, a compliant decompressor must be
able to accept and decompress any data set that conforms to all
the specifications presented here; a compliant compressor must
produce data sets that conform to all the specifications presented
here.
1.5. Definitions of terms and conventions used
Byte: 8 bits stored or transmitted as a unit (same as an octet).
For this specification, a byte is exactly 8 bits, even on machines
Deutsch Informational [Page 3]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
which store a character on a number of bits different from eight.
See below, for the numbering of bits within a byte.
String: a sequence of arbitrary bytes.
1.6. Changes from previous versions
There have been no technical changes to the deflate format since
version 1.1 of this specification. In version 1.2, some
terminology was changed. Version 1.3 is a conversion of the
specification to RFC style.
2. Compressed representation overview
A compressed data set consists of a series of blocks, corresponding
to successive blocks of input data. The block sizes are arbitrary,
except that non-compressible blocks are limited to 65,535 bytes.
Each block is compressed using a combination of the LZ77 algorithm
and Huffman coding. The Huffman trees for each block are independent
of those for previous or subsequent blocks; the LZ77 algorithm may
use a reference to a duplicated string occurring in a previous block,
up to 32K input bytes before.
Each block consists of two parts: a pair of Huffman code trees that
describe the representation of the compressed data part, and a
compressed data part. (The Huffman trees themselves are compressed
using Huffman encoding.) The compressed data consists of a series of
elements of two types: literal bytes (of strings that have not been
detected as duplicated within the previous 32K input bytes), and
pointers to duplicated strings, where a pointer is represented as a
pair <length, backward distance>. The representation used in the
"deflate" format limits distances to 32K bytes and lengths to 258
bytes, but does not limit the size of a block, except for
uncompressible blocks, which are limited as noted above.
Each type of value (literals, distances, and lengths) in the
compressed data is represented using a Huffman code, using one code
tree for literals and lengths and a separate code tree for distances.
The code trees for each block appear in a compact form just before
the compressed data for that block.
Deutsch Informational [Page 4]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
3. Detailed specification
3.1. Overall conventions In the diagrams below, a box like this:
+---+
| | <-- the vertical bars might be missing
+---+
represents one byte; a box like this:
+==============+
| |
+==============+
represents a variable number of bytes.
Bytes stored within a computer do not have a "bit order", since
they are always treated as a unit. However, a byte considered as
an integer between 0 and 255 does have a most- and least-
significant bit, and since we write numbers with the most-
significant digit on the left, we also write bytes with the most-
significant bit on the left. In the diagrams below, we number the
bits of a byte so that bit 0 is the least-significant bit, i.e.,
the bits are numbered:
+--------+
|76543210|
+--------+
Within a computer, a number may occupy multiple bytes. All
multi-byte numbers in the format described here are stored with
the least-significant byte first (at the lower memory address).
For example, the decimal number 520 is stored as:
0 1
+--------+--------+
|00001000|00000010|
+--------+--------+
^ ^
| |
| + more significant byte = 2 x 256
+ less significant byte = 8
3.1.1. Packing into bytes
This document does not address the issue of the order in which
bits of a byte are transmitted on a bit-sequential medium,
since the final data format described here is byte- rather than
Deutsch Informational [Page 5]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
bit-oriented. However, we describe the compressed block format
in below, as a sequence of data elements of various bit
lengths, not a sequence of bytes. We must therefore specify
how to pack these data elements into bytes to form the final
compressed byte sequence:
* Data elements are packed into bytes in order of
increasing bit number within the byte, i.e., starting
with the least-significant bit of the byte.
* Data elements other than Huffman codes are packed
starting with the least-significant bit of the data
element.
* Huffman codes are packed starting with the most-
significant bit of the code.
In other words, if one were to print out the compressed data as
a sequence of bytes, starting with the first byte at the
*right* margin and proceeding to the *left*, with the most-
significant bit of each byte on the left as usual, one would be
able to parse the result from right to left, with fixed-width
elements in the correct MSB-to-LSB order and Huffman codes in
bit-reversed order (i.e., with the first bit of the code in the
relative LSB position).
3.2. Compressed block format
3.2.1. Synopsis of prefix and Huffman coding
Prefix coding represents symbols from an a priori known
alphabet by bit sequences (codes), one code for each symbol, in
a manner such that different symbols may be represented by bit
sequences of different lengths, but a parser can always parse
an encoded string unambiguously symbol-by-symbol.
We define a prefix code in terms of a binary tree in which the
two edges descending from each non-leaf node are labeled 0 and
1 and in which the leaf nodes correspond one-for-one with (are
labeled with) the symbols of the alphabet; then the code for a
symbol is the sequence of 0's and 1's on the edges leading from
the root to the leaf labeled with that symbol. For example:
Deutsch Informational [Page 6]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
/\ Symbol Code
0 1 ------ ----
/ \ A 00
/\ B B 1
0 1 C 011
/ \ D 010
A /\
0 1
/ \
D C
A parser can decode the next symbol from an encoded input
stream by walking down the tree from the root, at each step
choosing the edge corresponding to the next input bit.
Given an alphabet with known symbol frequencies, the Huffman
algorithm allows the construction of an optimal prefix code
(one which represents strings with those symbol frequencies
using the fewest bits of any possible prefix codes for that
alphabet). Such a code is called a Huffman code. (See
reference [1] in Chapter 5, references for additional
information on Huffman codes.)
Note that in the "deflate" format, the Huffman codes for the
various alphabets must not exceed certain maximum code lengths.
This constraint complicates the algorithm for computing code
lengths from symbol frequencies. Again, see Chapter 5,
references for details.
3.2.2. Use of Huffman coding in the "deflate" format
The Huffman codes used for each alphabet in the "deflate"
format have two additional rules:
* All codes of a given bit length have lexicographically
consecutive values, in the same order as the symbols
they represent;
* Shorter codes lexicographically precede longer codes.
Deutsch Informational [Page 7]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
We could recode the example above to follow this rule as
follows, assuming that the order of the alphabet is ABCD:
Symbol Code
------ ----
A 10
B 0
C 110
D 111
I.e., 0 precedes 10 which precedes 11x, and 110 and 111 are
lexicographically consecutive.
Given this rule, we can define the Huffman code for an alphabet
just by giving the bit lengths of the codes for each symbol of
the alphabet in order; this is sufficient to determine the
actual codes. In our example, the code is completely defined
by the sequence of bit lengths (2, 1, 3, 3). The following
algorithm generates the codes as integers, intended to be read
from most- to least-significant bit. The code lengths are
initially in tree[I].Len; the codes are produced in
tree[I].Code.
1) Count the number of codes for each code length. Let
bl_count[N] be the number of codes of length N, N >= 1.
2) Find the numerical value of the smallest code for each
code length:
code = 0;
bl_count[0] = 0;
for (bits = 1; bits <= MAX_BITS; bits++) {
code = (code + bl_count[bits-1]) << 1;
next_code[bits] = code;
}
3) Assign numerical values to all codes, using consecutive
values for all codes of the same length with the base
values determined at step 2. Codes that are never used
(which have a bit length of zero) must not be assigned a
value.
for (n = 0; n <= max_code; n++) {
len = tree[n].Len;
if (len != 0) {
tree[n].Code = next_code[len];
next_code[len]++;
}
Deutsch Informational [Page 8]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
}
Example:
Consider the alphabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
3, 2, 4, 4). After step 1, we have:
N bl_count[N]
- -----------
2 1
3 5
4 2
Step 2 computes the following next_code values:
N next_code[N]
- ------------
1 0
2 0
3 2
4 14
Step 3 produces the following code values:
Symbol Length Code
------ ------ ----
A 3 010
B 3 011
C 3 100
D 3 101
E 3 110
F 2 00
G 4 1110
H 4 1111
3.2.3. Details of block format
Each block of compressed data begins with 3 header bits
containing the following data:
first bit BFINAL
next 2 bits BTYPE
Note that the header bits do not necessarily begin on a byte
boundary, since a block does not necessarily occupy an integral
number of bytes.
Deutsch Informational [Page 9]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
BFINAL is set if and only if this is the last block of the data
set.
BTYPE specifies how the data are compressed, as follows:
00 - no compression
01 - compressed with fixed Huffman codes
10 - compressed with dynamic Huffman codes
11 - reserved (error)
The only difference between the two compressed cases is how the
Huffman codes for the literal/length and distance alphabets are
defined.
In all cases, the decoding algorithm for the actual data is as
follows:
do
read block header from input stream.
if stored with no compression
skip any remaining bits in current partially
processed byte
read LEN and NLEN (see next section)
copy LEN bytes of data to output
otherwise
if compressed with dynamic Huffman codes
read representation of code trees (see
subsection below)
loop (until end of block code recognized)
decode literal/length value from input stream
if value < 256
copy value (literal byte) to output stream
otherwise
if value = end of block (256)
break from loop
otherwise (value = 257..285)
decode distance from input stream
move backwards distance bytes in the output
stream, and copy length bytes from this
position to the output stream.
end loop
while not last block
Note that a duplicated string reference may refer to a string
in a previous block; i.e., the backward distance may cross one
or more block boundaries. However a distance cannot refer past
the beginning of the output stream. (An application using a
Deutsch Informational [Page 10]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
preset dictionary might discard part of the output stream; a
distance can refer to that part of the output stream anyway)
Note also that the referenced string may overlap the current
position; for example, if the last 2 bytes decoded have values
X and Y, a string reference with <length = 5, distance = 2>
adds X,Y,X,Y,X to the output stream.
We now specify each compression method in turn.
3.2.4. Non-compressed blocks (BTYPE=00)
Any bits of input up to the next byte boundary are ignored.
The rest of the block consists of the following information:
0 1 2 3 4...
+---+---+---+---+================================+
| LEN | NLEN |... LEN bytes of literal data...|
+---+---+---+---+================================+
LEN is the number of data bytes in the block. NLEN is the
one's complement of LEN.
3.2.5. Compressed blocks (length and distance codes)
As noted above, encoded data blocks in the "deflate" format
consist of sequences of symbols drawn from three conceptually
distinct alphabets: either literal bytes, from the alphabet of
byte values (0..255), or <length, backward distance> pairs,
where the length is drawn from (3..258) and the distance is
drawn from (1..32,768). In fact, the literal and length
alphabets are merged into a single alphabet (0..285), where
values 0..255 represent literal bytes, the value 256 indicates
end-of-block, and values 257..285 represent length codes
(possibly in conjunction with extra bits following the symbol
code) as follows:
Deutsch Informational [Page 11]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
Extra Extra Extra
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)
---- ---- ------ ---- ---- ------- ---- ---- -------
257 0 3 267 1 15,16 277 4 67-82
258 0 4 268 1 17,18 278 4 83-98
259 0 5 269 2 19-22 279 4 99-114
260 0 6 270 2 23-26 280 4 115-130
261 0 7 271 2 27-30 281 5 131-162
262 0 8 272 2 31-34 282 5 163-194
263 0 9 273 3 35-42 283 5 195-226
264 0 10 274 3 43-50 284 5 227-257
265 1 11,12 275 3 51-58 285 0 258
266 1 13,14 276 3 59-66
The extra bits should be interpreted as a machine integer
stored with the most-significant bit first, e.g., bits 1110
represent the value 14.
Extra Extra Extra
Code Bits Dist Code Bits Dist Code Bits Distance
---- ---- ---- ---- ---- ------ ---- ---- --------
0 0 1 10 4 33-48 20 9 1025-1536
1 0 2 11 4 49-64 21 9 1537-2048
2 0 3 12 5 65-96 22 10 2049-3072
3 0 4 13 5 97-128 23 10 3073-4096
4 1 5,6 14 6 129-192 24 11 4097-6144
5 1 7,8 15 6 193-256 25 11 6145-8192
6 2 9-12 16 7 257-384 26 12 8193-12288
7 2 13-16 17 7 385-512 27 12 12289-16384
8 3 17-24 18 8 513-768 28 13 16385-24576
9 3 25-32 19 8 769-1024 29 13 24577-32768
3.2.6. Compression with fixed Huffman codes (BTYPE=01)
The Huffman codes for the two alphabets are fixed, and are not
represented explicitly in the data. The Huffman code lengths
for the literal/length alphabet are:
Lit Value Bits Codes
--------- ---- -----
0 - 143 8 00110000 through
10111111
144 - 255 9 110010000 through
111111111
256 - 279 7 0000000 through
0010111
280 - 287 8 11000000 through
11000111
Deutsch Informational [Page 12]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
The code lengths are sufficient to generate the actual codes,
as described above; we show the codes in the table for added
clarity. Literal/length values 286-287 will never actually
occur in the compressed data, but participate in the code
construction.
Distance codes 0-31 are represented by (fixed-length) 5-bit
codes, with possible additional bits as shown in the table
shown in Paragraph 3.2.5, above. Note that distance codes 30-
31 will never actually occur in the compressed data.
3.2.7. Compression with dynamic Huffman codes (BTYPE=10)
The Huffman codes for the two alphabets appear in the block
immediately after the header bits and before the actual
compressed data, first the literal/length code and then the
distance code. Each code is defined by a sequence of code
lengths, as discussed in Paragraph 3.2.2, above. For even
greater compactness, the code length sequences themselves are
compressed using a Huffman code. The alphabet for code lengths
is as follows:
0 - 15: Represent code lengths of 0 - 15
16: Copy the previous code length 3 - 6 times.
The next 2 bits indicate repeat length
(0 = 3, ... , 3 = 6)
Example: Codes 8, 16 (+2 bits 11),
16 (+2 bits 10) will expand to
12 code lengths of 8 (1 + 6 + 5)
17: Repeat a code length of 0 for 3 - 10 times.
(3 bits of length)
18: Repeat a code length of 0 for 11 - 138 times
(7 bits of length)
A code length of 0 indicates that the corresponding symbol in
the literal/length or distance alphabet will not occur in the
block, and should not participate in the Huffman code
construction algorithm given earlier. If only one distance
code is used, it is encoded using one bit, not zero bits; in
this case there is a single code length of one, with one unused
code. One distance code of zero bits means that there are no
distance codes used at all (the data is all literals).
We can now define the format of the block:
5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
5 Bits: HDIST, # of Distance codes - 1 (1 - 32)
4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)
Deutsch Informational [Page 13]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
(HCLEN + 4) x 3 bits: code lengths for the code length
alphabet given just above, in the order: 16, 17, 18,
0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
These code lengths are interpreted as 3-bit integers
(0-7); as above, a code length of 0 means the
corresponding symbol (literal/length or distance code
length) is not used.
HLIT + 257 code lengths for the literal/length alphabet,
encoded using the code length Huffman code
HDIST + 1 code lengths for the distance alphabet,
encoded using the code length Huffman code
The actual compressed data of the block,
encoded using the literal/length and distance Huffman
codes
The literal/length symbol 256 (end of data),
encoded using the literal/length Huffman code
The code length repeat codes can cross from HLIT + 257 to the
HDIST + 1 code lengths. In other words, all code lengths form
a single sequence of HLIT + HDIST + 258 values.
3.3. Compliance
A compressor may limit further the ranges of values specified in
the previous section and still be compliant; for example, it may
limit the range of backward pointers to some value smaller than
32K. Similarly, a compressor may limit the size of blocks so that
a compressible block fits in memory.
A compliant decompressor must accept the full range of possible
values defined in the previous section, and must accept blocks of
arbitrary size.
4. Compression algorithm details
While it is the intent of this document to define the "deflate"
compressed data format without reference to any particular
compression algorithm, the format is related to the compressed
formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);
since many variations of LZ77 are patented, it is strongly
recommended that the implementor of a compressor follow the general
algorithm presented here, which is known not to be patented per se.
The material in this section is not part of the definition of the
Deutsch Informational [Page 14]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
specification per se, and a compressor need not follow it in order to
be compliant.
The compressor terminates a block when it determines that starting a
new block with fresh trees would be useful, or when the block size
fills up the compressor's block buffer.
The compressor uses a chained hash table to find duplicated strings,
using a hash function that operates on 3-byte sequences. At any
given point during compression, let XYZ be the next 3 input bytes to
be examined (not necessarily all different, of course). First, the
compressor examines the hash chain for XYZ. If the chain is empty,
the compressor simply writes out X as a literal byte and advances one
byte in the input. If the hash chain is not empty, indicating that
the sequence XYZ (or, if we are unlucky, some other 3 bytes with the
same hash function value) has occurred recently, the compressor
compares all strings on the XYZ hash chain with the actual input data
sequence starting at the current point, and selects the longest
match.
The compressor searches the hash chains starting with the most recent
strings, to favor small distances and thus take advantage of the
Huffman encoding. The hash chains are singly linked. There are no
deletions from the hash chains; the algorithm simply discards matches
that are too old. To avoid a worst-case situation, very long hash
chains are arbitrarily truncated at a certain length, determined by a
run-time parameter.
To improve overall compression, the compressor optionally defers the
selection of matches ("lazy matching"): after a match of length N has
been found, the compressor searches for a longer match starting at
the next input byte. If it finds a longer match, it truncates the
previous match to a length of one (thus producing a single literal
byte) and then emits the longer match. Otherwise, it emits the
original match, and, as described above, advances N bytes before
continuing.
Run-time parameters also control this "lazy match" procedure. If
compression ratio is most important, the compressor attempts a
complete second search regardless of the length of the first match.
In the normal case, if the current match is "long enough", the
compressor reduces the search for a longer match, thus speeding up
the process. If speed is most important, the compressor inserts new
strings in the hash table only when no match was found, or when the
match is not "too long". This degrades the compression ratio but
saves time since there are both fewer insertions and fewer searches.
Deutsch Informational [Page 15]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
5. References
[1] Huffman, D. A., "A Method for the Construction of Minimum
Redundancy Codes", Proceedings of the Institute of Radio
Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.
[2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data
Compression", IEEE Transactions on Information Theory, Vol. 23,
No. 3, pp. 337-343.
[3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources,
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
[4] Gailly, J.-L., and Adler, M., GZIP documentation and sources,
available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/
[5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix
encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.
[6] Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
Comm. ACM, 33,4, April 1990, pp. 449-459.
6. Security Considerations
Any data compression method involves the reduction of redundancy in
the data. Consequently, any corruption of the data is likely to have
severe effects and be difficult to correct. Uncompressed text, on
the other hand, will probably still be readable despite the presence
of some corrupted bytes.
It is recommended that systems using this data format provide some
means of validating the integrity of the compressed data. See
reference [3], for example.
7. Source code
Source code for a C language implementation of a "deflate" compliant
compressor and decompressor is available within the zlib package at
ftp://ftp.uu.net/pub/archiving/zip/zlib/.
8. Acknowledgements
Trademarks cited in this document are the property of their
respective owners.
Phil Katz designed the deflate format. Jean-Loup Gailly and Mark
Adler wrote the related software described in this specification.
Glenn Randers-Pehrson converted this document to RFC and HTML format.
Deutsch Informational [Page 16]
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
9. Author's Address
L. Peter Deutsch
Aladdin Enterprises
203 Santa Margarita Ave.
Menlo Park, CA 94025
Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMail: <ghost@aladdin.com>
Questions about the technical content of this specification can be
sent by email to:
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
Mark Adler <madler@alumni.caltech.edu>
Editorial comments on this specification can be sent by email to:
L. Peter Deutsch <ghost@aladdin.com> and
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
Deutsch Informational [Page 17]

View File

@ -1,675 +0,0 @@
Network Working Group P. Deutsch
Request for Comments: 1952 Aladdin Enterprises
Category: Informational May 1996
GZIP file format specification version 4.3
Status of This Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
IESG Note:
The IESG takes no position on the validity of any Intellectual
Property Rights statements contained in this document.
Notices
Copyright (c) 1996 L. Peter Deutsch
Permission is granted to copy and distribute this document for any
purpose and without charge, including translations into other
languages and incorporation into compilations, provided that the
copyright notice and this notice are preserved, and that any
substantive changes or deletions from the original are clearly
marked.
A pointer to the latest version of this and related documentation in
HTML format can be found at the URL
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
Abstract
This specification defines a lossless compressed data format that is
compatible with the widely used GZIP utility. The format includes a
cyclic redundancy check value for detecting data corruption. The
format presently uses the DEFLATE method of compression but can be
easily extended to use other compression methods. The format can be
implemented readily in a manner not covered by patents.
Deutsch Informational [Page 1]
RFC 1952 GZIP File Format Specification May 1996
Table of Contents
1. Introduction ................................................... 2
1.1. Purpose ................................................... 2
1.2. Intended audience ......................................... 3
1.3. Scope ..................................................... 3
1.4. Compliance ................................................ 3
1.5. Definitions of terms and conventions used ................. 3
1.6. Changes from previous versions ............................ 3
2. Detailed specification ......................................... 4
2.1. Overall conventions ....................................... 4
2.2. File format ............................................... 5
2.3. Member format ............................................. 5
2.3.1. Member header and trailer ........................... 6
2.3.1.1. Extra field ................................... 8
2.3.1.2. Compliance .................................... 9
3. References .................................................. 9
4. Security Considerations .................................... 10
5. Acknowledgements ........................................... 10
6. Author's Address ........................................... 10
7. Appendix: Jean-Loup Gailly's gzip utility .................. 11
8. Appendix: Sample CRC Code .................................. 11
1. Introduction
1.1. Purpose
The purpose of this specification is to define a lossless
compressed data format that:
* Is independent of CPU type, operating system, file system,
and character set, and hence can be used for interchange;
* Can compress or decompress a data stream (as opposed to a
randomly accessible file) to produce another data stream,
using only an a priori bounded amount of intermediate
storage, and hence can be used in data communications or
similar structures such as Unix filters;
* Compresses data with efficiency comparable to the best
currently available general-purpose compression methods,
and in particular considerably better than the "compress"
program;
* Can be implemented readily in a manner not covered by
patents, and hence can be practiced freely;
* Is compatible with the file format produced by the current
widely used gzip utility, in that conforming decompressors
will be able to read data produced by the existing gzip
compressor.
Deutsch Informational [Page 2]
RFC 1952 GZIP File Format Specification May 1996
The data format defined by this specification does not attempt to:
* Provide random access to compressed data;
* Compress specialized data (e.g., raster graphics) as well as
the best currently available specialized algorithms.
1.2. Intended audience
This specification is intended for use by implementors of software
to compress data into gzip format and/or decompress data from gzip
format.
The text of the specification assumes a basic background in
programming at the level of bits and other primitive data
representations.
1.3. Scope
The specification specifies a compression method and a file format
(the latter assuming only that a file can store a sequence of
arbitrary bytes). It does not specify any particular interface to
a file system or anything about character sets or encodings
(except for file names and comments, which are optional).
1.4. Compliance
Unless otherwise indicated below, a compliant decompressor must be
able to accept and decompress any file that conforms to all the
specifications presented here; a compliant compressor must produce
files that conform to all the specifications presented here. The
material in the appendices is not part of the specification per se
and is not relevant to compliance.
1.5. Definitions of terms and conventions used
byte: 8 bits stored or transmitted as a unit (same as an octet).
(For this specification, a byte is exactly 8 bits, even on
machines which store a character on a number of bits different
from 8.) See below for the numbering of bits within a byte.
1.6. Changes from previous versions
There have been no technical changes to the gzip format since
version 4.1 of this specification. In version 4.2, some
terminology was changed, and the sample CRC code was rewritten for
clarity and to eliminate the requirement for the caller to do pre-
and post-conditioning. Version 4.3 is a conversion of the
specification to RFC style.
Deutsch Informational [Page 3]
RFC 1952 GZIP File Format Specification May 1996
2. Detailed specification
2.1. Overall conventions
In the diagrams below, a box like this:
+---+
| | <-- the vertical bars might be missing
+---+
represents one byte; a box like this:
+==============+
| |
+==============+
represents a variable number of bytes.
Bytes stored within a computer do not have a "bit order", since
they are always treated as a unit. However, a byte considered as
an integer between 0 and 255 does have a most- and least-
significant bit, and since we write numbers with the most-
significant digit on the left, we also write bytes with the most-
significant bit on the left. In the diagrams below, we number the
bits of a byte so that bit 0 is the least-significant bit, i.e.,
the bits are numbered:
+--------+
|76543210|
+--------+
This document does not address the issue of the order in which
bits of a byte are transmitted on a bit-sequential medium, since
the data format described here is byte- rather than bit-oriented.
Within a computer, a number may occupy multiple bytes. All
multi-byte numbers in the format described here are stored with
the least-significant byte first (at the lower memory address).
For example, the decimal number 520 is stored as:
0 1
+--------+--------+
|00001000|00000010|
+--------+--------+
^ ^
| |
| + more significant byte = 2 x 256
+ less significant byte = 8
Deutsch Informational [Page 4]
RFC 1952 GZIP File Format Specification May 1996
2.2. File format
A gzip file consists of a series of "members" (compressed data
sets). The format of each member is specified in the following
section. The members simply appear one after another in the file,
with no additional information before, between, or after them.
2.3. Member format
Each member has the following structure:
+---+---+---+---+---+---+---+---+---+---+
|ID1|ID2|CM |FLG| MTIME |XFL|OS | (more-->)
+---+---+---+---+---+---+---+---+---+---+
(if FLG.FEXTRA set)
+---+---+=================================+
| XLEN |...XLEN bytes of "extra field"...| (more-->)
+---+---+=================================+
(if FLG.FNAME set)
+=========================================+
|...original file name, zero-terminated...| (more-->)
+=========================================+
(if FLG.FCOMMENT set)
+===================================+
|...file comment, zero-terminated...| (more-->)
+===================================+
(if FLG.FHCRC set)
+---+---+
| CRC16 |
+---+---+
+=======================+
|...compressed blocks...| (more-->)
+=======================+
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| CRC32 | ISIZE |
+---+---+---+---+---+---+---+---+
Deutsch Informational [Page 5]
RFC 1952 GZIP File Format Specification May 1996
2.3.1. Member header and trailer
ID1 (IDentification 1)
ID2 (IDentification 2)
These have the fixed values ID1 = 31 (0x1f, \037), ID2 = 139
(0x8b, \213), to identify the file as being in gzip format.
CM (Compression Method)
This identifies the compression method used in the file. CM
= 0-7 are reserved. CM = 8 denotes the "deflate"
compression method, which is the one customarily used by
gzip and which is documented elsewhere.
FLG (FLaGs)
This flag byte is divided into individual bits as follows:
bit 0 FTEXT
bit 1 FHCRC
bit 2 FEXTRA
bit 3 FNAME
bit 4 FCOMMENT
bit 5 reserved
bit 6 reserved
bit 7 reserved
If FTEXT is set, the file is probably ASCII text. This is
an optional indication, which the compressor may set by
checking a small amount of the input data to see whether any
non-ASCII characters are present. In case of doubt, FTEXT
is cleared, indicating binary data. For systems which have
different file formats for ascii text and binary data, the
decompressor can use FTEXT to choose the appropriate format.
We deliberately do not specify the algorithm used to set
this bit, since a compressor always has the option of
leaving it cleared and a decompressor always has the option
of ignoring it and letting some other program handle issues
of data conversion.
If FHCRC is set, a CRC16 for the gzip header is present,
immediately before the compressed data. The CRC16 consists
of the two least significant bytes of the CRC32 for all
bytes of the gzip header up to and not including the CRC16.
[The FHCRC bit was never set by versions of gzip up to
1.2.4, even though it was documented with a different
meaning in gzip 1.2.4.]
If FEXTRA is set, optional extra fields are present, as
described in a following section.
Deutsch Informational [Page 6]
RFC 1952 GZIP File Format Specification May 1996
If FNAME is set, an original file name is present,
terminated by a zero byte. The name must consist of ISO
8859-1 (LATIN-1) characters; on operating systems using
EBCDIC or any other character set for file names, the name
must be translated to the ISO LATIN-1 character set. This
is the original name of the file being compressed, with any
directory components removed, and, if the file being
compressed is on a file system with case insensitive names,
forced to lower case. There is no original file name if the
data was compressed from a source other than a named file;
for example, if the source was stdin on a Unix system, there
is no file name.
If FCOMMENT is set, a zero-terminated file comment is
present. This comment is not interpreted; it is only
intended for human consumption. The comment must consist of
ISO 8859-1 (LATIN-1) characters. Line breaks should be
denoted by a single line feed character (10 decimal).
Reserved FLG bits must be zero.
MTIME (Modification TIME)
This gives the most recent modification time of the original
file being compressed. The time is in Unix format, i.e.,
seconds since 00:00:00 GMT, Jan. 1, 1970. (Note that this
may cause problems for MS-DOS and other systems that use
local rather than Universal time.) If the compressed data
did not come from a file, MTIME is set to the time at which
compression started. MTIME = 0 means no time stamp is
available.
XFL (eXtra FLags)
These flags are available for use by specific compression
methods. The "deflate" method (CM = 8) sets these flags as
follows:
XFL = 2 - compressor used maximum compression,
slowest algorithm
XFL = 4 - compressor used fastest algorithm
OS (Operating System)
This identifies the type of file system on which compression
took place. This may be useful in determining end-of-line
convention for text files. The currently defined values are
as follows:
Deutsch Informational [Page 7]
RFC 1952 GZIP File Format Specification May 1996
0 - FAT filesystem (MS-DOS, OS/2, NT/Win32)
1 - Amiga
2 - VMS (or OpenVMS)
3 - Unix
4 - VM/CMS
5 - Atari TOS
6 - HPFS filesystem (OS/2, NT)
7 - Macintosh
8 - Z-System
9 - CP/M
10 - TOPS-20
11 - NTFS filesystem (NT)
12 - QDOS
13 - Acorn RISCOS
255 - unknown
XLEN (eXtra LENgth)
If FLG.FEXTRA is set, this gives the length of the optional
extra field. See below for details.
CRC32 (CRC-32)
This contains a Cyclic Redundancy Check value of the
uncompressed data computed according to CRC-32 algorithm
used in the ISO 3309 standard and in section 8.1.1.6.2 of
ITU-T recommendation V.42. (See http://www.iso.ch for
ordering ISO documents. See gopher://info.itu.ch for an
online version of ITU-T V.42.)
ISIZE (Input SIZE)
This contains the size of the original (uncompressed) input
data modulo 2^32.
2.3.1.1. Extra field
If the FLG.FEXTRA bit is set, an "extra field" is present in
the header, with total length XLEN bytes. It consists of a
series of subfields, each of the form:
+---+---+---+---+==================================+
|SI1|SI2| LEN |... LEN bytes of subfield data ...|
+---+---+---+---+==================================+
SI1 and SI2 provide a subfield ID, typically two ASCII letters
with some mnemonic value. Jean-Loup Gailly
<gzip@prep.ai.mit.edu> is maintaining a registry of subfield
IDs; please send him any subfield ID you wish to use. Subfield
IDs with SI2 = 0 are reserved for future use. The following
IDs are currently defined:
Deutsch Informational [Page 8]
RFC 1952 GZIP File Format Specification May 1996
SI1 SI2 Data
---------- ---------- ----
0x41 ('A') 0x70 ('P') Apollo file type information
LEN gives the length of the subfield data, excluding the 4
initial bytes.
2.3.1.2. Compliance
A compliant compressor must produce files with correct ID1,
ID2, CM, CRC32, and ISIZE, but may set all the other fields in
the fixed-length part of the header to default values (255 for
OS, 0 for all others). The compressor must set all reserved
bits to zero.
A compliant decompressor must check ID1, ID2, and CM, and
provide an error indication if any of these have incorrect
values. It must examine FEXTRA/XLEN, FNAME, FCOMMENT and FHCRC
at least so it can skip over the optional fields if they are
present. It need not examine any other part of the header or
trailer; in particular, a decompressor may ignore FTEXT and OS
and always produce binary output, and still be compliant. A
compliant decompressor must give an error indication if any
reserved bit is non-zero, since such a bit could indicate the
presence of a new field that would cause subsequent data to be
interpreted incorrectly.
3. References
[1] "Information Processing - 8-bit single-byte coded graphic
character sets - Part 1: Latin alphabet No.1" (ISO 8859-1:1987).
The ISO 8859-1 (Latin-1) character set is a superset of 7-bit
ASCII. Files defining this character set are available as
iso_8859-1.* in ftp://ftp.uu.net/graphics/png/documents/
[2] ISO 3309
[3] ITU-T recommendation V.42
[4] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
[5] Gailly, J.-L., GZIP documentation, available as gzip-*.tar in
ftp://prep.ai.mit.edu/pub/gnu/
[6] Sarwate, D.V., "Computation of Cyclic Redundancy Checks via Table
Look-Up", Communications of the ACM, 31(8), pp.1008-1013.
Deutsch Informational [Page 9]
RFC 1952 GZIP File Format Specification May 1996
[7] Schwaderer, W.D., "CRC Calculation", April 85 PC Tech Journal,
pp.118-133.
[8] ftp://ftp.adelaide.edu.au/pub/rocksoft/papers/crc_v3.txt,
describing the CRC concept.
4. Security Considerations
Any data compression method involves the reduction of redundancy in
the data. Consequently, any corruption of the data is likely to have
severe effects and be difficult to correct. Uncompressed text, on
the other hand, will probably still be readable despite the presence
of some corrupted bytes.
It is recommended that systems using this data format provide some
means of validating the integrity of the compressed data, such as by
setting and checking the CRC-32 check value.
5. Acknowledgements
Trademarks cited in this document are the property of their
respective owners.
Jean-Loup Gailly designed the gzip format and wrote, with Mark Adler,
the related software described in this specification. Glenn
Randers-Pehrson converted this document to RFC and HTML format.
6. Author's Address
L. Peter Deutsch
Aladdin Enterprises
203 Santa Margarita Ave.
Menlo Park, CA 94025
Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMail: <ghost@aladdin.com>
Questions about the technical content of this specification can be
sent by email to:
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
Mark Adler <madler@alumni.caltech.edu>
Editorial comments on this specification can be sent by email to:
L. Peter Deutsch <ghost@aladdin.com> and
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
Deutsch Informational [Page 10]
RFC 1952 GZIP File Format Specification May 1996
7. Appendix: Jean-Loup Gailly's gzip utility
The most widely used implementation of gzip compression, and the
original documentation on which this specification is based, were
created by Jean-Loup Gailly <gzip@prep.ai.mit.edu>. Since this
implementation is a de facto standard, we mention some more of its
features here. Again, the material in this section is not part of
the specification per se, and implementations need not follow it to
be compliant.
When compressing or decompressing a file, gzip preserves the
protection, ownership, and modification time attributes on the local
file system, since there is no provision for representing protection
attributes in the gzip file format itself. Since the file format
includes a modification time, the gzip decompressor provides a
command line switch that assigns the modification time from the file,
rather than the local modification time of the compressed input, to
the decompressed output.
8. Appendix: Sample CRC Code
The following sample code represents a practical implementation of
the CRC (Cyclic Redundancy Check). (See also ISO 3309 and ITU-T V.42
for a formal specification.)
The sample code is in the ANSI C programming language. Non C users
may find it easier to read with these hints:
& Bitwise AND operator.
^ Bitwise exclusive-OR operator.
>> Bitwise right shift operator. When applied to an
unsigned quantity, as here, right shift inserts zero
bit(s) at the left.
! Logical NOT operator.
++ "n++" increments the variable n.
0xNNN 0x introduces a hexadecimal (base 16) constant.
Suffix L indicates a long value (at least 32 bits).
/* Table of CRCs of all 8-bit messages. */
unsigned long crc_table[256];
/* Flag: has the table been computed? Initially false. */
int crc_table_computed = 0;
/* Make the table for a fast CRC. */
void make_crc_table(void)
{
unsigned long c;
Deutsch Informational [Page 11]
RFC 1952 GZIP File Format Specification May 1996
int n, k;
for (n = 0; n < 256; n++) {
c = (unsigned long) n;
for (k = 0; k < 8; k++) {
if (c & 1) {
c = 0xedb88320L ^ (c >> 1);
} else {
c = c >> 1;
}
}
crc_table[n] = c;
}
crc_table_computed = 1;
}
/*
Update a running crc with the bytes buf[0..len-1] and return
the updated crc. The crc should be initialized to zero. Pre- and
post-conditioning (one's complement) is performed within this
function so it shouldn't be done by the caller. Usage example:
unsigned long crc = 0L;
while (read_buffer(buffer, length) != EOF) {
crc = update_crc(crc, buffer, length);
}
if (crc != original_crc) error();
*/
unsigned long update_crc(unsigned long crc,
unsigned char *buf, int len)
{
unsigned long c = crc ^ 0xffffffffL;
int n;
if (!crc_table_computed)
make_crc_table();
for (n = 0; n < len; n++) {
c = crc_table[(c ^ buf[n]) & 0xff] ^ (c >> 8);
}
return c ^ 0xffffffffL;
}
/* Return the CRC of the bytes buf[0..len-1]. */
unsigned long crc(unsigned char *buf, int len)
{
return update_crc(0L, buf, len);
}
Deutsch Informational [Page 12]

View File

@ -1,107 +0,0 @@
A Fast Method for Identifying Plain Text Files
==============================================
Introduction
------------
Given a file coming from an unknown source, it is sometimes desirable
to find out whether the format of that file is plain text. Although
this may appear like a simple task, a fully accurate detection of the
file type requires heavy-duty semantic analysis on the file contents.
It is, however, possible to obtain satisfactory results by employing
various heuristics.
Previous versions of PKZip and other zip-compatible compression tools
were using a crude detection scheme: if more than 80% (4/5) of the bytes
found in a certain buffer are within the range [7..127], the file is
labeled as plain text, otherwise it is labeled as binary. A prominent
limitation of this scheme is the restriction to Latin-based alphabets.
Other alphabets, like Greek, Cyrillic or Asian, make extensive use of
the bytes within the range [128..255], and texts using these alphabets
are most often misidentified by this scheme; in other words, the rate
of false negatives is sometimes too high, which means that the recall
is low. Another weakness of this scheme is a reduced precision, due to
the false positives that may occur when binary files containing large
amounts of textual characters are misidentified as plain text.
In this article we propose a new, simple detection scheme that features
a much increased precision and a near-100% recall. This scheme is
designed to work on ASCII, Unicode and other ASCII-derived alphabets,
and it handles single-byte encodings (ISO-8859, MacRoman, KOI8, etc.)
and variable-sized encodings (ISO-2022, UTF-8, etc.). Wider encodings
(UCS-2/UTF-16 and UCS-4/UTF-32) are not handled, however.
The Algorithm
-------------
The algorithm works by dividing the set of bytecodes [0..255] into three
categories:
- The white list of textual bytecodes:
9 (TAB), 10 (LF), 13 (CR), 32 (SPACE) to 255.
- The gray list of tolerated bytecodes:
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB), 27 (ESC).
- The black list of undesired, non-textual bytecodes:
0 (NUL) to 6, 14 to 31.
If a file contains at least one byte that belongs to the white list and
no byte that belongs to the black list, then the file is categorized as
plain text; otherwise, it is categorized as binary. (The boundary case,
when the file is empty, automatically falls into the latter category.)
Rationale
---------
The idea behind this algorithm relies on two observations.
The first observation is that, although the full range of 7-bit codes
[0..127] is properly specified by the ASCII standard, most control
characters in the range [0..31] are not used in practice. The only
widely-used, almost universally-portable control codes are 9 (TAB),
10 (LF) and 13 (CR). There are a few more control codes that are
recognized on a reduced range of platforms and text viewers/editors:
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB) and 27 (ESC); but these
codes are rarely (if ever) used alone, without being accompanied by
some printable text. Even the newer, portable text formats such as
XML avoid using control characters outside the list mentioned here.
The second observation is that most of the binary files tend to contain
control characters, especially 0 (NUL). Even though the older text
detection schemes observe the presence of non-ASCII codes from the range
[128..255], the precision rarely has to suffer if this upper range is
labeled as textual, because the files that are genuinely binary tend to
contain both control characters and codes from the upper range. On the
other hand, the upper range needs to be labeled as textual, because it
is used by virtually all ASCII extensions. In particular, this range is
used for encoding non-Latin scripts.
Since there is no counting involved, other than simply observing the
presence or the absence of some byte values, the algorithm produces
consistent results, regardless what alphabet encoding is being used.
(If counting were involved, it could be possible to obtain different
results on a text encoded, say, using ISO-8859-16 versus UTF-8.)
There is an extra category of plain text files that are "polluted" with
one or more black-listed codes, either by mistake or by peculiar design
considerations. In such cases, a scheme that tolerates a small fraction
of black-listed codes would provide an increased recall (i.e. more true
positives). This, however, incurs a reduced precision overall, since
false positives are more likely to appear in binary files that contain
large chunks of textual data. Furthermore, "polluted" plain text should
be regarded as binary by general-purpose text detection schemes, because
general-purpose text processing algorithms might not be applicable.
Under this premise, it is safe to say that our detection method provides
a near-100% recall.
Experiments have been run on many files coming from various platforms
and applications. We tried plain text files, system logs, source code,
formatted office documents, compiled object code, etc. The results
confirm the optimistic assumptions about the capabilities of this
algorithm.
--
Cosmin Truta
Last updated: 2006-May-28

View File

@ -1,49 +0,0 @@
This directory contains examples of the use of zlib and other relevant
programs and documentation.
enough.c
calculation and justification of ENOUGH parameter in inftrees.h
- calculates the maximum table space used in inflate tree
construction over all possible Huffman codes
fitblk.c
compress just enough input to nearly fill a requested output size
- zlib isn't designed to do this, but fitblk does it anyway
gun.c
uncompress a gzip file
- illustrates the use of inflateBack() for high speed file-to-file
decompression using call-back functions
- is approximately twice as fast as gzip -d
- also provides Unix uncompress functionality, again twice as fast
gzappend.c
append to a gzip file
- illustrates the use of the Z_BLOCK flush parameter for inflate()
- illustrates the use of deflatePrime() to start at any bit
gzjoin.c
join gzip files without recalculating the crc or recompressing
- illustrates the use of the Z_BLOCK flush parameter for inflate()
- illustrates the use of crc32_combine()
gzlog.c
gzlog.h
efficiently and robustly maintain a message log file in gzip format
- illustrates use of raw deflate, Z_PARTIAL_FLUSH, deflatePrime(),
and deflateSetDictionary()
- illustrates use of a gzip header extra field
zlib_how.html
painfully comprehensive description of zpipe.c (see below)
- describes in excruciating detail the use of deflate() and inflate()
zpipe.c
reads and writes zlib streams from stdin to stdout
- illustrates the proper use of deflate() and inflate()
- deeply commented in zlib_how.html (see above)
zran.c
index a zlib or gzip stream and randomly access it
- illustrates the use of Z_BLOCK, inflatePrime(), and
inflateSetDictionary() to provide random access

View File

@ -1,572 +0,0 @@
/* enough.c -- determine the maximum size of inflate's Huffman code tables over
* all possible valid and complete Huffman codes, subject to a length limit.
* Copyright (C) 2007, 2008, 2012 Mark Adler
* Version 1.4 18 August 2012 Mark Adler
*/
/* Version history:
1.0 3 Jan 2007 First version (derived from codecount.c version 1.4)
1.1 4 Jan 2007 Use faster incremental table usage computation
Prune examine() search on previously visited states
1.2 5 Jan 2007 Comments clean up
As inflate does, decrease root for short codes
Refuse cases where inflate would increase root
1.3 17 Feb 2008 Add argument for initial root table size
Fix bug for initial root table size == max - 1
Use a macro to compute the history index
1.4 18 Aug 2012 Avoid shifts more than bits in type (caused endless loop!)
Clean up comparisons of different types
Clean up code indentation
*/
/*
Examine all possible Huffman codes for a given number of symbols and a
maximum code length in bits to determine the maximum table size for zilb's
inflate. Only complete Huffman codes are counted.
Two codes are considered distinct if the vectors of the number of codes per
length are not identical. So permutations of the symbol assignments result
in the same code for the counting, as do permutations of the assignments of
the bit values to the codes (i.e. only canonical codes are counted).
We build a code from shorter to longer lengths, determining how many symbols
are coded at each length. At each step, we have how many symbols remain to
be coded, what the last code length used was, and how many bit patterns of
that length remain unused. Then we add one to the code length and double the
number of unused patterns to graduate to the next code length. We then
assign all portions of the remaining symbols to that code length that
preserve the properties of a correct and eventually complete code. Those
properties are: we cannot use more bit patterns than are available; and when
all the symbols are used, there are exactly zero possible bit patterns
remaining.
The inflate Huffman decoding algorithm uses two-level lookup tables for
speed. There is a single first-level table to decode codes up to root bits
in length (root == 9 in the current inflate implementation). The table
has 1 << root entries and is indexed by the next root bits of input. Codes
shorter than root bits have replicated table entries, so that the correct
entry is pointed to regardless of the bits that follow the short code. If
the code is longer than root bits, then the table entry points to a second-
level table. The size of that table is determined by the longest code with
that root-bit prefix. If that longest code has length len, then the table
has size 1 << (len - root), to index the remaining bits in that set of
codes. Each subsequent root-bit prefix then has its own sub-table. The
total number of table entries required by the code is calculated
incrementally as the number of codes at each bit length is populated. When
all of the codes are shorter than root bits, then root is reduced to the
longest code length, resulting in a single, smaller, one-level table.
The inflate algorithm also provides for small values of root (relative to
the log2 of the number of symbols), where the shortest code has more bits
than root. In that case, root is increased to the length of the shortest
code. This program, by design, does not handle that case, so it is verified
that the number of symbols is less than 2^(root + 1).
In order to speed up the examination (by about ten orders of magnitude for
the default arguments), the intermediate states in the build-up of a code
are remembered and previously visited branches are pruned. The memory
required for this will increase rapidly with the total number of symbols and
the maximum code length in bits. However this is a very small price to pay
for the vast speedup.
First, all of the possible Huffman codes are counted, and reachable
intermediate states are noted by a non-zero count in a saved-results array.
Second, the intermediate states that lead to (root + 1) bit or longer codes
are used to look at all sub-codes from those junctures for their inflate
memory usage. (The amount of memory used is not affected by the number of
codes of root bits or less in length.) Third, the visited states in the
construction of those sub-codes and the associated calculation of the table
size is recalled in order to avoid recalculating from the same juncture.
Beginning the code examination at (root + 1) bit codes, which is enabled by
identifying the reachable nodes, accounts for about six of the orders of
magnitude of improvement for the default arguments. About another four
orders of magnitude come from not revisiting previous states. Out of
approximately 2x10^16 possible Huffman codes, only about 2x10^6 sub-codes
need to be examined to cover all of the possible table memory usage cases
for the default arguments of 286 symbols limited to 15-bit codes.
Note that an unsigned long long type is used for counting. It is quite easy
to exceed the capacity of an eight-byte integer with a large number of
symbols and a large maximum code length, so multiple-precision arithmetic
would need to replace the unsigned long long arithmetic in that case. This
program will abort if an overflow occurs. The big_t type identifies where
the counting takes place.
An unsigned long long type is also used for calculating the number of
possible codes remaining at the maximum length. This limits the maximum
code length to the number of bits in a long long minus the number of bits
needed to represent the symbols in a flat code. The code_t type identifies
where the bit pattern counting takes place.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#define local static
/* special data types */
typedef unsigned long long big_t; /* type for code counting */
typedef unsigned long long code_t; /* type for bit pattern counting */
struct tab { /* type for been here check */
size_t len; /* length of bit vector in char's */
char *vec; /* allocated bit vector */
};
/* The array for saving results, num[], is indexed with this triplet:
syms: number of symbols remaining to code
left: number of available bit patterns at length len
len: number of bits in the codes currently being assigned
Those indices are constrained thusly when saving results:
syms: 3..totsym (totsym == total symbols to code)
left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
len: 1..max - 1 (max == maximum code length in bits)
syms == 2 is not saved since that immediately leads to a single code. left
must be even, since it represents the number of available bit patterns at
the current length, which is double the number at the previous length.
left ends at syms-1 since left == syms immediately results in a single code.
(left > sym is not allowed since that would result in an incomplete code.)
len is less than max, since the code completes immediately when len == max.
The offset into the array is calculated for the three indices with the
first one (syms) being outermost, and the last one (len) being innermost.
We build the array with length max-1 lists for the len index, with syms-3
of those for each symbol. There are totsym-2 of those, with each one
varying in length as a function of sym. See the calculation of index in
count() for the index, and the calculation of size in main() for the size
of the array.
For the deflate example of 286 symbols limited to 15-bit codes, the array
has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than
half of the space allocated for saved results is actually used -- not all
possible triplets are reached in the generation of valid Huffman codes.
*/
/* The array for tracking visited states, done[], is itself indexed identically
to the num[] array as described above for the (syms, left, len) triplet.
Each element in the array is further indexed by the (mem, rem) doublet,
where mem is the amount of inflate table space used so far, and rem is the
remaining unused entries in the current inflate sub-table. Each indexed
element is simply one bit indicating whether the state has been visited or
not. Since the ranges for mem and rem are not known a priori, each bit
vector is of a variable size, and grows as needed to accommodate the visited
states. mem and rem are used to calculate a single index in a triangular
array. Since the range of mem is expected in the default case to be about
ten times larger than the range of rem, the array is skewed to reduce the
memory usage, with eight times the range for mem than for rem. See the
calculations for offset and bit in beenhere() for the details.
For the deflate example of 286 symbols limited to 15-bit codes, the bit
vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[]
array itself.
*/
/* Globals to avoid propagating constants or constant pointers recursively */
local int max; /* maximum allowed bit length for the codes */
local int root; /* size of base code table in bits */
local int large; /* largest code table so far */
local size_t size; /* number of elements in num and done */
local int *code; /* number of symbols assigned to each bit length */
local big_t *num; /* saved results array for code counting */
local struct tab *done; /* states already evaluated array */
/* Index function for num[] and done[] */
#define INDEX(i,j,k) (((size_t)((i-1)>>1)*((i-2)>>1)+(j>>1)-1)*(max-1)+k-1)
/* Free allocated space. Uses globals code, num, and done. */
local void cleanup(void)
{
size_t n;
if (done != NULL) {
for (n = 0; n < size; n++)
if (done[n].len)
free(done[n].vec);
free(done);
}
if (num != NULL)
free(num);
if (code != NULL)
free(code);
}
/* Return the number of possible Huffman codes using bit patterns of lengths
len through max inclusive, coding syms symbols, with left bit patterns of
length len unused -- return -1 if there is an overflow in the counting.
Keep a record of previous results in num to prevent repeating the same
calculation. Uses the globals max and num. */
local big_t count(int syms, int len, int left)
{
big_t sum; /* number of possible codes from this juncture */
big_t got; /* value returned from count() */
int least; /* least number of syms to use at this juncture */
int most; /* most number of syms to use at this juncture */
int use; /* number of bit patterns to use in next call */
size_t index; /* index of this case in *num */
/* see if only one possible code */
if (syms == left)
return 1;
/* note and verify the expected state */
assert(syms > left && left > 0 && len < max);
/* see if we've done this one already */
index = INDEX(syms, left, len);
got = num[index];
if (got)
return got; /* we have -- return the saved result */
/* we need to use at least this many bit patterns so that the code won't be
incomplete at the next length (more bit patterns than symbols) */
least = (left << 1) - syms;
if (least < 0)
least = 0;
/* we can use at most this many bit patterns, lest there not be enough
available for the remaining symbols at the maximum length (if there were
no limit to the code length, this would become: most = left - 1) */
most = (((code_t)left << (max - len)) - syms) /
(((code_t)1 << (max - len)) - 1);
/* count all possible codes from this juncture and add them up */
sum = 0;
for (use = least; use <= most; use++) {
got = count(syms - use, len + 1, (left - use) << 1);
sum += got;
if (got == (big_t)0 - 1 || sum < got) /* overflow */
return (big_t)0 - 1;
}
/* verify that all recursive calls are productive */
assert(sum != 0);
/* save the result and return it */
num[index] = sum;
return sum;
}
/* Return true if we've been here before, set to true if not. Set a bit in a
bit vector to indicate visiting this state. Each (syms,len,left) state
has a variable size bit vector indexed by (mem,rem). The bit vector is
lengthened if needed to allow setting the (mem,rem) bit. */
local int beenhere(int syms, int len, int left, int mem, int rem)
{
size_t index; /* index for this state's bit vector */
size_t offset; /* offset in this state's bit vector */
int bit; /* mask for this state's bit */
size_t length; /* length of the bit vector in bytes */
char *vector; /* new or enlarged bit vector */
/* point to vector for (syms,left,len), bit in vector for (mem,rem) */
index = INDEX(syms, left, len);
mem -= 1 << root;
offset = (mem >> 3) + rem;
offset = ((offset * (offset + 1)) >> 1) + rem;
bit = 1 << (mem & 7);
/* see if we've been here */
length = done[index].len;
if (offset < length && (done[index].vec[offset] & bit) != 0)
return 1; /* done this! */
/* we haven't been here before -- set the bit to show we have now */
/* see if we need to lengthen the vector in order to set the bit */
if (length <= offset) {
/* if we have one already, enlarge it, zero out the appended space */
if (length) {
do {
length <<= 1;
} while (length <= offset);
vector = realloc(done[index].vec, length);
if (vector != NULL)
memset(vector + done[index].len, 0, length - done[index].len);
}
/* otherwise we need to make a new vector and zero it out */
else {
length = 1 << (len - root);
while (length <= offset)
length <<= 1;
vector = calloc(length, sizeof(char));
}
/* in either case, bail if we can't get the memory */
if (vector == NULL) {
fputs("abort: unable to allocate enough memory\n", stderr);
cleanup();
exit(1);
}
/* install the new vector */
done[index].len = length;
done[index].vec = vector;
}
/* set the bit */
done[index].vec[offset] |= bit;
return 0;
}
/* Examine all possible codes from the given node (syms, len, left). Compute
the amount of memory required to build inflate's decoding tables, where the
number of code structures used so far is mem, and the number remaining in
the current sub-table is rem. Uses the globals max, code, root, large, and
done. */
local void examine(int syms, int len, int left, int mem, int rem)
{
int least; /* least number of syms to use at this juncture */
int most; /* most number of syms to use at this juncture */
int use; /* number of bit patterns to use in next call */
/* see if we have a complete code */
if (syms == left) {
/* set the last code entry */
code[len] = left;
/* complete computation of memory used by this code */
while (rem < left) {
left -= rem;
rem = 1 << (len - root);
mem += rem;
}
assert(rem == left);
/* if this is a new maximum, show the entries used and the sub-code */
if (mem > large) {
large = mem;
printf("max %d: ", mem);
for (use = root + 1; use <= max; use++)
if (code[use])
printf("%d[%d] ", code[use], use);
putchar('\n');
fflush(stdout);
}
/* remove entries as we drop back down in the recursion */
code[len] = 0;
return;
}
/* prune the tree if we can */
if (beenhere(syms, len, left, mem, rem))
return;
/* we need to use at least this many bit patterns so that the code won't be
incomplete at the next length (more bit patterns than symbols) */
least = (left << 1) - syms;
if (least < 0)
least = 0;
/* we can use at most this many bit patterns, lest there not be enough
available for the remaining symbols at the maximum length (if there were
no limit to the code length, this would become: most = left - 1) */
most = (((code_t)left << (max - len)) - syms) /
(((code_t)1 << (max - len)) - 1);
/* occupy least table spaces, creating new sub-tables as needed */
use = least;
while (rem < use) {
use -= rem;
rem = 1 << (len - root);
mem += rem;
}
rem -= use;
/* examine codes from here, updating table space as we go */
for (use = least; use <= most; use++) {
code[len] = use;
examine(syms - use, len + 1, (left - use) << 1,
mem + (rem ? 1 << (len - root) : 0), rem << 1);
if (rem == 0) {
rem = 1 << (len - root);
mem += rem;
}
rem--;
}
/* remove entries as we drop back down in the recursion */
code[len] = 0;
}
/* Look at all sub-codes starting with root + 1 bits. Look at only the valid
intermediate code states (syms, left, len). For each completed code,
calculate the amount of memory required by inflate to build the decoding
tables. Find the maximum amount of memory required and show the code that
requires that maximum. Uses the globals max, root, and num. */
local void enough(int syms)
{
int n; /* number of remaing symbols for this node */
int left; /* number of unused bit patterns at this length */
size_t index; /* index of this case in *num */
/* clear code */
for (n = 0; n <= max; n++)
code[n] = 0;
/* look at all (root + 1) bit and longer codes */
large = 1 << root; /* base table */
if (root < max) /* otherwise, there's only a base table */
for (n = 3; n <= syms; n++)
for (left = 2; left < n; left += 2)
{
/* look at all reachable (root + 1) bit nodes, and the
resulting codes (complete at root + 2 or more) */
index = INDEX(n, left, root + 1);
if (root + 1 < max && num[index]) /* reachable node */
examine(n, root + 1, left, 1 << root, 0);
/* also look at root bit codes with completions at root + 1
bits (not saved in num, since complete), just in case */
if (num[index - 1] && n <= left << 1)
examine((n - left) << 1, root + 1, (n - left) << 1,
1 << root, 0);
}
/* done */
printf("done: maximum of %d table entries\n", large);
}
/*
Examine and show the total number of possible Huffman codes for a given
maximum number of symbols, initial root table size, and maximum code length
in bits -- those are the command arguments in that order. The default
values are 286, 9, and 15 respectively, for the deflate literal/length code.
The possible codes are counted for each number of coded symbols from two to
the maximum. The counts for each of those and the total number of codes are
shown. The maximum number of inflate table entires is then calculated
across all possible codes. Each new maximum number of table entries and the
associated sub-code (starting at root + 1 == 10 bits) is shown.
To count and examine Huffman codes that are not length-limited, provide a
maximum length equal to the number of symbols minus one.
For the deflate literal/length code, use "enough". For the deflate distance
code, use "enough 30 6".
This uses the %llu printf format to print big_t numbers, which assumes that
big_t is an unsigned long long. If the big_t type is changed (for example
to a multiple precision type), the method of printing will also need to be
updated.
*/
int main(int argc, char **argv)
{
int syms; /* total number of symbols to code */
int n; /* number of symbols to code for this run */
big_t got; /* return value of count() */
big_t sum; /* accumulated number of codes over n */
code_t word; /* for counting bits in code_t */
/* set up globals for cleanup() */
code = NULL;
num = NULL;
done = NULL;
/* get arguments -- default to the deflate literal/length code */
syms = 286;
root = 9;
max = 15;
if (argc > 1) {
syms = atoi(argv[1]);
if (argc > 2) {
root = atoi(argv[2]);
if (argc > 3)
max = atoi(argv[3]);
}
}
if (argc > 4 || syms < 2 || root < 1 || max < 1) {
fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
stderr);
return 1;
}
/* if not restricting the code length, the longest is syms - 1 */
if (max > syms - 1)
max = syms - 1;
/* determine the number of bits in a code_t */
for (n = 0, word = 1; word; n++, word <<= 1)
;
/* make sure that the calculation of most will not overflow */
if (max > n || (code_t)(syms - 2) >= (((code_t)0 - 1) >> (max - 1))) {
fputs("abort: code length too long for internal types\n", stderr);
return 1;
}
/* reject impossible code requests */
if ((code_t)(syms - 1) > ((code_t)1 << max) - 1) {
fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
syms, max);
return 1;
}
/* allocate code vector */
code = calloc(max + 1, sizeof(int));
if (code == NULL) {
fputs("abort: unable to allocate enough memory\n", stderr);
return 1;
}
/* determine size of saved results array, checking for overflows,
allocate and clear the array (set all to zero with calloc()) */
if (syms == 2) /* iff max == 1 */
num = NULL; /* won't be saving any results */
else {
size = syms >> 1;
if (size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) ||
(size *= n, size > ((size_t)0 - 1) / (n = max - 1)) ||
(size *= n, size > ((size_t)0 - 1) / sizeof(big_t)) ||
(num = calloc(size, sizeof(big_t))) == NULL) {
fputs("abort: unable to allocate enough memory\n", stderr);
cleanup();
return 1;
}
}
/* count possible codes for all numbers of symbols, add up counts */
sum = 0;
for (n = 2; n <= syms; n++) {
got = count(n, 1, 2);
sum += got;
if (got == (big_t)0 - 1 || sum < got) { /* overflow */
fputs("abort: can't count that high!\n", stderr);
cleanup();
return 1;
}
printf("%llu %d-codes\n", got, n);
}
printf("%llu total codes for 2 to %d symbols", sum, syms);
if (max < syms - 1)
printf(" (%d-bit length limit)\n", max);
else
puts(" (no length limit)");
/* allocate and clear done array for beenhere() */
if (syms == 2)
done = NULL;
else if (size > ((size_t)0 - 1) / sizeof(struct tab) ||
(done = calloc(size, sizeof(struct tab))) == NULL) {
fputs("abort: unable to allocate enough memory\n", stderr);
cleanup();
return 1;
}
/* find and show maximum inflate table usage */
if (root > max) /* reduce root to max length */
root = max;
if ((code_t)syms < ((code_t)1 << (root + 1)))
enough(syms);
else
puts("cannot handle minimum code lengths > root");
/* done */
cleanup();
return 0;
}

View File

@ -1,233 +0,0 @@
/* fitblk.c: example of fitting compressed output to a specified size
Not copyrighted -- provided to the public domain
Version 1.1 25 November 2004 Mark Adler */
/* Version history:
1.0 24 Nov 2004 First version
1.1 25 Nov 2004 Change deflateInit2() to deflateInit()
Use fixed-size, stack-allocated raw buffers
Simplify code moving compression to subroutines
Use assert() for internal errors
Add detailed description of approach
*/
/* Approach to just fitting a requested compressed size:
fitblk performs three compression passes on a portion of the input
data in order to determine how much of that input will compress to
nearly the requested output block size. The first pass generates
enough deflate blocks to produce output to fill the requested
output size plus a specfied excess amount (see the EXCESS define
below). The last deflate block may go quite a bit past that, but
is discarded. The second pass decompresses and recompresses just
the compressed data that fit in the requested plus excess sized
buffer. The deflate process is terminated after that amount of
input, which is less than the amount consumed on the first pass.
The last deflate block of the result will be of a comparable size
to the final product, so that the header for that deflate block and
the compression ratio for that block will be about the same as in
the final product. The third compression pass decompresses the
result of the second step, but only the compressed data up to the
requested size minus an amount to allow the compressed stream to
complete (see the MARGIN define below). That will result in a
final compressed stream whose length is less than or equal to the
requested size. Assuming sufficient input and a requested size
greater than a few hundred bytes, the shortfall will typically be
less than ten bytes.
If the input is short enough that the first compression completes
before filling the requested output size, then that compressed
stream is return with no recompression.
EXCESS is chosen to be just greater than the shortfall seen in a
two pass approach similar to the above. That shortfall is due to
the last deflate block compressing more efficiently with a smaller
header on the second pass. EXCESS is set to be large enough so
that there is enough uncompressed data for the second pass to fill
out the requested size, and small enough so that the final deflate
block of the second pass will be close in size to the final deflate
block of the third and final pass. MARGIN is chosen to be just
large enough to assure that the final compression has enough room
to complete in all cases.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "zlib.h"
#define local static
/* print nastygram and leave */
local void quit(char *why)
{
fprintf(stderr, "fitblk abort: %s\n", why);
exit(1);
}
#define RAWLEN 4096 /* intermediate uncompressed buffer size */
/* compress from file to def until provided buffer is full or end of
input reached; return last deflate() return value, or Z_ERRNO if
there was read error on the file */
local int partcompress(FILE *in, z_streamp def)
{
int ret, flush;
unsigned char raw[RAWLEN];
flush = Z_NO_FLUSH;
do {
def->avail_in = fread(raw, 1, RAWLEN, in);
if (ferror(in))
return Z_ERRNO;
def->next_in = raw;
if (feof(in))
flush = Z_FINISH;
ret = deflate(def, flush);
assert(ret != Z_STREAM_ERROR);
} while (def->avail_out != 0 && flush == Z_NO_FLUSH);
return ret;
}
/* recompress from inf's input to def's output; the input for inf and
the output for def are set in those structures before calling;
return last deflate() return value, or Z_MEM_ERROR if inflate()
was not able to allocate enough memory when it needed to */
local int recompress(z_streamp inf, z_streamp def)
{
int ret, flush;
unsigned char raw[RAWLEN];
flush = Z_NO_FLUSH;
do {
/* decompress */
inf->avail_out = RAWLEN;
inf->next_out = raw;
ret = inflate(inf, Z_NO_FLUSH);
assert(ret != Z_STREAM_ERROR && ret != Z_DATA_ERROR &&
ret != Z_NEED_DICT);
if (ret == Z_MEM_ERROR)
return ret;
/* compress what was decompresed until done or no room */
def->avail_in = RAWLEN - inf->avail_out;
def->next_in = raw;
if (inf->avail_out != 0)
flush = Z_FINISH;
ret = deflate(def, flush);
assert(ret != Z_STREAM_ERROR);
} while (ret != Z_STREAM_END && def->avail_out != 0);
return ret;
}
#define EXCESS 256 /* empirically determined stream overage */
#define MARGIN 8 /* amount to back off for completion */
/* compress from stdin to fixed-size block on stdout */
int main(int argc, char **argv)
{
int ret; /* return code */
unsigned size; /* requested fixed output block size */
unsigned have; /* bytes written by deflate() call */
unsigned char *blk; /* intermediate and final stream */
unsigned char *tmp; /* close to desired size stream */
z_stream def, inf; /* zlib deflate and inflate states */
/* get requested output size */
if (argc != 2)
quit("need one argument: size of output block");
ret = strtol(argv[1], argv + 1, 10);
if (argv[1][0] != 0)
quit("argument must be a number");
if (ret < 8) /* 8 is minimum zlib stream size */
quit("need positive size of 8 or greater");
size = (unsigned)ret;
/* allocate memory for buffers and compression engine */
blk = malloc(size + EXCESS);
def.zalloc = Z_NULL;
def.zfree = Z_NULL;
def.opaque = Z_NULL;
ret = deflateInit(&def, Z_DEFAULT_COMPRESSION);
if (ret != Z_OK || blk == NULL)
quit("out of memory");
/* compress from stdin until output full, or no more input */
def.avail_out = size + EXCESS;
def.next_out = blk;
ret = partcompress(stdin, &def);
if (ret == Z_ERRNO)
quit("error reading input");
/* if it all fit, then size was undersubscribed -- done! */
if (ret == Z_STREAM_END && def.avail_out >= EXCESS) {
/* write block to stdout */
have = size + EXCESS - def.avail_out;
if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
quit("error writing output");
/* clean up and print results to stderr */
ret = deflateEnd(&def);
assert(ret != Z_STREAM_ERROR);
free(blk);
fprintf(stderr,
"%u bytes unused out of %u requested (all input)\n",
size - have, size);
return 0;
}
/* it didn't all fit -- set up for recompression */
inf.zalloc = Z_NULL;
inf.zfree = Z_NULL;
inf.opaque = Z_NULL;
inf.avail_in = 0;
inf.next_in = Z_NULL;
ret = inflateInit(&inf);
tmp = malloc(size + EXCESS);
if (ret != Z_OK || tmp == NULL)
quit("out of memory");
ret = deflateReset(&def);
assert(ret != Z_STREAM_ERROR);
/* do first recompression close to the right amount */
inf.avail_in = size + EXCESS;
inf.next_in = blk;
def.avail_out = size + EXCESS;
def.next_out = tmp;
ret = recompress(&inf, &def);
if (ret == Z_MEM_ERROR)
quit("out of memory");
/* set up for next reocmpression */
ret = inflateReset(&inf);
assert(ret != Z_STREAM_ERROR);
ret = deflateReset(&def);
assert(ret != Z_STREAM_ERROR);
/* do second and final recompression (third compression) */
inf.avail_in = size - MARGIN; /* assure stream will complete */
inf.next_in = tmp;
def.avail_out = size;
def.next_out = blk;
ret = recompress(&inf, &def);
if (ret == Z_MEM_ERROR)
quit("out of memory");
assert(ret == Z_STREAM_END); /* otherwise MARGIN too small */
/* done -- write block to stdout */
have = size - def.avail_out;
if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
quit("error writing output");
/* clean up and print results to stderr */
free(tmp);
ret = inflateEnd(&inf);
assert(ret != Z_STREAM_ERROR);
ret = deflateEnd(&def);
assert(ret != Z_STREAM_ERROR);
free(blk);
fprintf(stderr,
"%u bytes unused out of %u requested (%lu input)\n",
size - have, size, def.total_in);
return 0;
}

View File

@ -1,702 +0,0 @@
/* gun.c -- simple gunzip to give an example of the use of inflateBack()
* Copyright (C) 2003, 2005, 2008, 2010, 2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
Version 1.7 12 August 2012 Mark Adler */
/* Version history:
1.0 16 Feb 2003 First version for testing of inflateBack()
1.1 21 Feb 2005 Decompress concatenated gzip streams
Remove use of "this" variable (C++ keyword)
Fix return value for in()
Improve allocation failure checking
Add typecasting for void * structures
Add -h option for command version and usage
Add a bunch of comments
1.2 20 Mar 2005 Add Unix compress (LZW) decompression
Copy file attributes from input file to output file
1.3 12 Jun 2005 Add casts for error messages [Oberhumer]
1.4 8 Dec 2006 LZW decompression speed improvements
1.5 9 Feb 2008 Avoid warning in latest version of gcc
1.6 17 Jan 2010 Avoid signed/unsigned comparison warnings
1.7 12 Aug 2012 Update for z_const usage in zlib 1.2.8
*/
/*
gun [ -t ] [ name ... ]
decompresses the data in the named gzip files. If no arguments are given,
gun will decompress from stdin to stdout. The names must end in .gz, -gz,
.z, -z, _z, or .Z. The uncompressed data will be written to a file name
with the suffix stripped. On success, the original file is deleted. On
failure, the output file is deleted. For most failures, the command will
continue to process the remaining names on the command line. A memory
allocation failure will abort the command. If -t is specified, then the
listed files or stdin will be tested as gzip files for integrity (without
checking for a proper suffix), no output will be written, and no files
will be deleted.
Like gzip, gun allows concatenated gzip streams and will decompress them,
writing all of the uncompressed data to the output. Unlike gzip, gun allows
an empty file on input, and will produce no error writing an empty output
file.
gun will also decompress files made by Unix compress, which uses LZW
compression. These files are automatically detected by virtue of their
magic header bytes. Since the end of Unix compress stream is marked by the
end-of-file, they cannot be concantenated. If a Unix compress stream is
encountered in an input file, it is the last stream in that file.
Like gunzip and uncompress, the file attributes of the orignal compressed
file are maintained in the final uncompressed file, to the extent that the
user permissions allow it.
On my Mac OS X PowerPC G4, gun is almost twice as fast as gunzip (version
1.2.4) is on the same file, when gun is linked with zlib 1.2.2. Also the
LZW decompression provided by gun is about twice as fast as the standard
Unix uncompress command.
*/
/* external functions and related types and constants */
#include <stdio.h> /* fprintf() */
#include <stdlib.h> /* malloc(), free() */
#include <string.h> /* strerror(), strcmp(), strlen(), memcpy() */
#include <errno.h> /* errno */
#include <fcntl.h> /* open() */
#include <unistd.h> /* read(), write(), close(), chown(), unlink() */
#include <sys/types.h>
#include <sys/stat.h> /* stat(), chmod() */
#include <utime.h> /* utime() */
#include "zlib.h" /* inflateBackInit(), inflateBack(), */
/* inflateBackEnd(), crc32() */
/* function declaration */
#define local static
/* buffer constants */
#define SIZE 32768U /* input and output buffer sizes */
#define PIECE 16384 /* limits i/o chunks for 16-bit int case */
/* structure for infback() to pass to input function in() -- it maintains the
input file and a buffer of size SIZE */
struct ind {
int infile;
unsigned char *inbuf;
};
/* Load input buffer, assumed to be empty, and return bytes loaded and a
pointer to them. read() is called until the buffer is full, or until it
returns end-of-file or error. Return 0 on error. */
local unsigned in(void *in_desc, z_const unsigned char **buf)
{
int ret;
unsigned len;
unsigned char *next;
struct ind *me = (struct ind *)in_desc;
next = me->inbuf;
*buf = next;
len = 0;
do {
ret = PIECE;
if ((unsigned)ret > SIZE - len)
ret = (int)(SIZE - len);
ret = (int)read(me->infile, next, ret);
if (ret == -1) {
len = 0;
break;
}
next += ret;
len += ret;
} while (ret != 0 && len < SIZE);
return len;
}
/* structure for infback() to pass to output function out() -- it maintains the
output file, a running CRC-32 check on the output and the total number of
bytes output, both for checking against the gzip trailer. (The length in
the gzip trailer is stored modulo 2^32, so it's ok if a long is 32 bits and
the output is greater than 4 GB.) */
struct outd {
int outfile;
int check; /* true if checking crc and total */
unsigned long crc;
unsigned long total;
};
/* Write output buffer and update the CRC-32 and total bytes written. write()
is called until all of the output is written or an error is encountered.
On success out() returns 0. For a write failure, out() returns 1. If the
output file descriptor is -1, then nothing is written.
*/
local int out(void *out_desc, unsigned char *buf, unsigned len)
{
int ret;
struct outd *me = (struct outd *)out_desc;
if (me->check) {
me->crc = crc32(me->crc, buf, len);
me->total += len;
}
if (me->outfile != -1)
do {
ret = PIECE;
if ((unsigned)ret > len)
ret = (int)len;
ret = (int)write(me->outfile, buf, ret);
if (ret == -1)
return 1;
buf += ret;
len -= ret;
} while (len != 0);
return 0;
}
/* next input byte macro for use inside lunpipe() and gunpipe() */
#define NEXT() (have ? 0 : (have = in(indp, &next)), \
last = have ? (have--, (int)(*next++)) : -1)
/* memory for gunpipe() and lunpipe() --
the first 256 entries of prefix[] and suffix[] are never used, could
have offset the index, but it's faster to waste the memory */
unsigned char inbuf[SIZE]; /* input buffer */
unsigned char outbuf[SIZE]; /* output buffer */
unsigned short prefix[65536]; /* index to LZW prefix string */
unsigned char suffix[65536]; /* one-character LZW suffix */
unsigned char match[65280 + 2]; /* buffer for reversed match or gzip
32K sliding window */
/* throw out what's left in the current bits byte buffer (this is a vestigial
aspect of the compressed data format derived from an implementation that
made use of a special VAX machine instruction!) */
#define FLUSHCODE() \
do { \
left = 0; \
rem = 0; \
if (chunk > have) { \
chunk -= have; \
have = 0; \
if (NEXT() == -1) \
break; \
chunk--; \
if (chunk > have) { \
chunk = have = 0; \
break; \
} \
} \
have -= chunk; \
next += chunk; \
chunk = 0; \
} while (0)
/* Decompress a compress (LZW) file from indp to outfile. The compress magic
header (two bytes) has already been read and verified. There are have bytes
of buffered input at next. strm is used for passing error information back
to gunpipe().
lunpipe() will return Z_OK on success, Z_BUF_ERROR for an unexpected end of
file, read error, or write error (a write error indicated by strm->next_in
not equal to Z_NULL), or Z_DATA_ERROR for invalid input.
*/
local int lunpipe(unsigned have, z_const unsigned char *next, struct ind *indp,
int outfile, z_stream *strm)
{
int last; /* last byte read by NEXT(), or -1 if EOF */
unsigned chunk; /* bytes left in current chunk */
int left; /* bits left in rem */
unsigned rem; /* unused bits from input */
int bits; /* current bits per code */
unsigned code; /* code, table traversal index */
unsigned mask; /* mask for current bits codes */
int max; /* maximum bits per code for this stream */
unsigned flags; /* compress flags, then block compress flag */
unsigned end; /* last valid entry in prefix/suffix tables */
unsigned temp; /* current code */
unsigned prev; /* previous code */
unsigned final; /* last character written for previous code */
unsigned stack; /* next position for reversed string */
unsigned outcnt; /* bytes in output buffer */
struct outd outd; /* output structure */
unsigned char *p;
/* set up output */
outd.outfile = outfile;
outd.check = 0;
/* process remainder of compress header -- a flags byte */
flags = NEXT();
if (last == -1)
return Z_BUF_ERROR;
if (flags & 0x60) {
strm->msg = (char *)"unknown lzw flags set";
return Z_DATA_ERROR;
}
max = flags & 0x1f;
if (max < 9 || max > 16) {
strm->msg = (char *)"lzw bits out of range";
return Z_DATA_ERROR;
}
if (max == 9) /* 9 doesn't really mean 9 */
max = 10;
flags &= 0x80; /* true if block compress */
/* clear table */
bits = 9;
mask = 0x1ff;
end = flags ? 256 : 255;
/* set up: get first 9-bit code, which is the first decompressed byte, but
don't create a table entry until the next code */
if (NEXT() == -1) /* no compressed data is ok */
return Z_OK;
final = prev = (unsigned)last; /* low 8 bits of code */
if (NEXT() == -1) /* missing a bit */
return Z_BUF_ERROR;
if (last & 1) { /* code must be < 256 */
strm->msg = (char *)"invalid lzw code";
return Z_DATA_ERROR;
}
rem = (unsigned)last >> 1; /* remaining 7 bits */
left = 7;
chunk = bits - 2; /* 7 bytes left in this chunk */
outbuf[0] = (unsigned char)final; /* write first decompressed byte */
outcnt = 1;
/* decode codes */
stack = 0;
for (;;) {
/* if the table will be full after this, increment the code size */
if (end >= mask && bits < max) {
FLUSHCODE();
bits++;
mask <<= 1;
mask++;
}
/* get a code of length bits */
if (chunk == 0) /* decrement chunk modulo bits */
chunk = bits;
code = rem; /* low bits of code */
if (NEXT() == -1) { /* EOF is end of compressed data */
/* write remaining buffered output */
if (outcnt && out(&outd, outbuf, outcnt)) {
strm->next_in = outbuf; /* signal write error */
return Z_BUF_ERROR;
}
return Z_OK;
}
code += (unsigned)last << left; /* middle (or high) bits of code */
left += 8;
chunk--;
if (bits > left) { /* need more bits */
if (NEXT() == -1) /* can't end in middle of code */
return Z_BUF_ERROR;
code += (unsigned)last << left; /* high bits of code */
left += 8;
chunk--;
}
code &= mask; /* mask to current code length */
left -= bits; /* number of unused bits */
rem = (unsigned)last >> (8 - left); /* unused bits from last byte */
/* process clear code (256) */
if (code == 256 && flags) {
FLUSHCODE();
bits = 9; /* initialize bits and mask */
mask = 0x1ff;
end = 255; /* empty table */
continue; /* get next code */
}
/* special code to reuse last match */
temp = code; /* save the current code */
if (code > end) {
/* Be picky on the allowed code here, and make sure that the code
we drop through (prev) will be a valid index so that random
input does not cause an exception. The code != end + 1 check is
empirically derived, and not checked in the original uncompress
code. If this ever causes a problem, that check could be safely
removed. Leaving this check in greatly improves gun's ability
to detect random or corrupted input after a compress header.
In any case, the prev > end check must be retained. */
if (code != end + 1 || prev > end) {
strm->msg = (char *)"invalid lzw code";
return Z_DATA_ERROR;
}
match[stack++] = (unsigned char)final;
code = prev;
}
/* walk through linked list to generate output in reverse order */
p = match + stack;
while (code >= 256) {
*p++ = suffix[code];
code = prefix[code];
}
stack = p - match;
match[stack++] = (unsigned char)code;
final = code;
/* link new table entry */
if (end < mask) {
end++;
prefix[end] = (unsigned short)prev;
suffix[end] = (unsigned char)final;
}
/* set previous code for next iteration */
prev = temp;
/* write output in forward order */
while (stack > SIZE - outcnt) {
while (outcnt < SIZE)
outbuf[outcnt++] = match[--stack];
if (out(&outd, outbuf, outcnt)) {
strm->next_in = outbuf; /* signal write error */
return Z_BUF_ERROR;
}
outcnt = 0;
}
p = match + stack;
do {
outbuf[outcnt++] = *--p;
} while (p > match);
stack = 0;
/* loop for next code with final and prev as the last match, rem and
left provide the first 0..7 bits of the next code, end is the last
valid table entry */
}
}
/* Decompress a gzip file from infile to outfile. strm is assumed to have been
successfully initialized with inflateBackInit(). The input file may consist
of a series of gzip streams, in which case all of them will be decompressed
to the output file. If outfile is -1, then the gzip stream(s) integrity is
checked and nothing is written.
The return value is a zlib error code: Z_MEM_ERROR if out of memory,
Z_DATA_ERROR if the header or the compressed data is invalid, or if the
trailer CRC-32 check or length doesn't match, Z_BUF_ERROR if the input ends
prematurely or a write error occurs, or Z_ERRNO if junk (not a another gzip
stream) follows a valid gzip stream.
*/
local int gunpipe(z_stream *strm, int infile, int outfile)
{
int ret, first, last;
unsigned have, flags, len;
z_const unsigned char *next = NULL;
struct ind ind, *indp;
struct outd outd;
/* setup input buffer */
ind.infile = infile;
ind.inbuf = inbuf;
indp = &ind;
/* decompress concatenated gzip streams */
have = 0; /* no input data read in yet */
first = 1; /* looking for first gzip header */
strm->next_in = Z_NULL; /* so Z_BUF_ERROR means EOF */
for (;;) {
/* look for the two magic header bytes for a gzip stream */
if (NEXT() == -1) {
ret = Z_OK;
break; /* empty gzip stream is ok */
}
if (last != 31 || (NEXT() != 139 && last != 157)) {
strm->msg = (char *)"incorrect header check";
ret = first ? Z_DATA_ERROR : Z_ERRNO;
break; /* not a gzip or compress header */
}
first = 0; /* next non-header is junk */
/* process a compress (LZW) file -- can't be concatenated after this */
if (last == 157) {
ret = lunpipe(have, next, indp, outfile, strm);
break;
}
/* process remainder of gzip header */
ret = Z_BUF_ERROR;
if (NEXT() != 8) { /* only deflate method allowed */
if (last == -1) break;
strm->msg = (char *)"unknown compression method";
ret = Z_DATA_ERROR;
break;
}
flags = NEXT(); /* header flags */
NEXT(); /* discard mod time, xflgs, os */
NEXT();
NEXT();
NEXT();
NEXT();
NEXT();
if (last == -1) break;
if (flags & 0xe0) {
strm->msg = (char *)"unknown header flags set";
ret = Z_DATA_ERROR;
break;
}
if (flags & 4) { /* extra field */
len = NEXT();
len += (unsigned)(NEXT()) << 8;
if (last == -1) break;
while (len > have) {
len -= have;
have = 0;
if (NEXT() == -1) break;
len--;
}
if (last == -1) break;
have -= len;
next += len;
}
if (flags & 8) /* file name */
while (NEXT() != 0 && last != -1)
;
if (flags & 16) /* comment */
while (NEXT() != 0 && last != -1)
;
if (flags & 2) { /* header crc */
NEXT();
NEXT();
}
if (last == -1) break;
/* set up output */
outd.outfile = outfile;
outd.check = 1;
outd.crc = crc32(0L, Z_NULL, 0);
outd.total = 0;
/* decompress data to output */
strm->next_in = next;
strm->avail_in = have;
ret = inflateBack(strm, in, indp, out, &outd);
if (ret != Z_STREAM_END) break;
next = strm->next_in;
have = strm->avail_in;
strm->next_in = Z_NULL; /* so Z_BUF_ERROR means EOF */
/* check trailer */
ret = Z_BUF_ERROR;
if (NEXT() != (int)(outd.crc & 0xff) ||
NEXT() != (int)((outd.crc >> 8) & 0xff) ||
NEXT() != (int)((outd.crc >> 16) & 0xff) ||
NEXT() != (int)((outd.crc >> 24) & 0xff)) {
/* crc error */
if (last != -1) {
strm->msg = (char *)"incorrect data check";
ret = Z_DATA_ERROR;
}
break;
}
if (NEXT() != (int)(outd.total & 0xff) ||
NEXT() != (int)((outd.total >> 8) & 0xff) ||
NEXT() != (int)((outd.total >> 16) & 0xff) ||
NEXT() != (int)((outd.total >> 24) & 0xff)) {
/* length error */
if (last != -1) {
strm->msg = (char *)"incorrect length check";
ret = Z_DATA_ERROR;
}
break;
}
/* go back and look for another gzip stream */
}
/* clean up and return */
return ret;
}
/* Copy file attributes, from -> to, as best we can. This is best effort, so
no errors are reported. The mode bits, including suid, sgid, and the sticky
bit are copied (if allowed), the owner's user id and group id are copied
(again if allowed), and the access and modify times are copied. */
local void copymeta(char *from, char *to)
{
struct stat was;
struct utimbuf when;
/* get all of from's Unix meta data, return if not a regular file */
if (stat(from, &was) != 0 || (was.st_mode & S_IFMT) != S_IFREG)
return;
/* set to's mode bits, ignore errors */
(void)chmod(to, was.st_mode & 07777);
/* copy owner's user and group, ignore errors */
(void)chown(to, was.st_uid, was.st_gid);
/* copy access and modify times, ignore errors */
when.actime = was.st_atime;
when.modtime = was.st_mtime;
(void)utime(to, &when);
}
/* Decompress the file inname to the file outnname, of if test is true, just
decompress without writing and check the gzip trailer for integrity. If
inname is NULL or an empty string, read from stdin. If outname is NULL or
an empty string, write to stdout. strm is a pre-initialized inflateBack
structure. When appropriate, copy the file attributes from inname to
outname.
gunzip() returns 1 if there is an out-of-memory error or an unexpected
return code from gunpipe(). Otherwise it returns 0.
*/
local int gunzip(z_stream *strm, char *inname, char *outname, int test)
{
int ret;
int infile, outfile;
/* open files */
if (inname == NULL || *inname == 0) {
inname = "-";
infile = 0; /* stdin */
}
else {
infile = open(inname, O_RDONLY, 0);
if (infile == -1) {
fprintf(stderr, "gun cannot open %s\n", inname);
return 0;
}
}
if (test)
outfile = -1;
else if (outname == NULL || *outname == 0) {
outname = "-";
outfile = 1; /* stdout */
}
else {
outfile = open(outname, O_CREAT | O_TRUNC | O_WRONLY, 0666);
if (outfile == -1) {
close(infile);
fprintf(stderr, "gun cannot create %s\n", outname);
return 0;
}
}
errno = 0;
/* decompress */
ret = gunpipe(strm, infile, outfile);
if (outfile > 2) close(outfile);
if (infile > 2) close(infile);
/* interpret result */
switch (ret) {
case Z_OK:
case Z_ERRNO:
if (infile > 2 && outfile > 2) {
copymeta(inname, outname); /* copy attributes */
unlink(inname);
}
if (ret == Z_ERRNO)
fprintf(stderr, "gun warning: trailing garbage ignored in %s\n",
inname);
break;
case Z_DATA_ERROR:
if (outfile > 2) unlink(outname);
fprintf(stderr, "gun data error on %s: %s\n", inname, strm->msg);
break;
case Z_MEM_ERROR:
if (outfile > 2) unlink(outname);
fprintf(stderr, "gun out of memory error--aborting\n");
return 1;
case Z_BUF_ERROR:
if (outfile > 2) unlink(outname);
if (strm->next_in != Z_NULL) {
fprintf(stderr, "gun write error on %s: %s\n",
outname, strerror(errno));
}
else if (errno) {
fprintf(stderr, "gun read error on %s: %s\n",
inname, strerror(errno));
}
else {
fprintf(stderr, "gun unexpected end of file on %s\n",
inname);
}
break;
default:
if (outfile > 2) unlink(outname);
fprintf(stderr, "gun internal error--aborting\n");
return 1;
}
return 0;
}
/* Process the gun command line arguments. See the command syntax near the
beginning of this source file. */
int main(int argc, char **argv)
{
int ret, len, test;
char *outname;
unsigned char *window;
z_stream strm;
/* initialize inflateBack state for repeated use */
window = match; /* reuse LZW match buffer */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
ret = inflateBackInit(&strm, 15, window);
if (ret != Z_OK) {
fprintf(stderr, "gun out of memory error--aborting\n");
return 1;
}
/* decompress each file to the same name with the suffix removed */
argc--;
argv++;
test = 0;
if (argc && strcmp(*argv, "-h") == 0) {
fprintf(stderr, "gun 1.6 (17 Jan 2010)\n");
fprintf(stderr, "Copyright (C) 2003-2010 Mark Adler\n");
fprintf(stderr, "usage: gun [-t] [file1.gz [file2.Z ...]]\n");
return 0;
}
if (argc && strcmp(*argv, "-t") == 0) {
test = 1;
argc--;
argv++;
}
if (argc)
do {
if (test)
outname = NULL;
else {
len = (int)strlen(*argv);
if (strcmp(*argv + len - 3, ".gz") == 0 ||
strcmp(*argv + len - 3, "-gz") == 0)
len -= 3;
else if (strcmp(*argv + len - 2, ".z") == 0 ||
strcmp(*argv + len - 2, "-z") == 0 ||
strcmp(*argv + len - 2, "_z") == 0 ||
strcmp(*argv + len - 2, ".Z") == 0)
len -= 2;
else {
fprintf(stderr, "gun error: no gz type on %s--skipping\n",
*argv);
continue;
}
outname = malloc(len + 1);
if (outname == NULL) {
fprintf(stderr, "gun out of memory error--aborting\n");
ret = 1;
break;
}
memcpy(outname, *argv, len);
outname[len] = 0;
}
ret = gunzip(&strm, *argv, outname, test);
if (outname != NULL) free(outname);
if (ret) break;
} while (argv++, --argc);
else
ret = gunzip(&strm, NULL, NULL, test);
/* clean up */
inflateBackEnd(&strm);
return ret;
}

View File

@ -1,504 +0,0 @@
/* gzappend -- command to append to a gzip file
Copyright (C) 2003, 2012 Mark Adler, all rights reserved
version 1.2, 11 Oct 2012
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler madler@alumni.caltech.edu
*/
/*
* Change history:
*
* 1.0 19 Oct 2003 - First version
* 1.1 4 Nov 2003 - Expand and clarify some comments and notes
* - Add version and copyright to help
* - Send help to stdout instead of stderr
* - Add some preemptive typecasts
* - Add L to constants in lseek() calls
* - Remove some debugging information in error messages
* - Use new data_type definition for zlib 1.2.1
* - Simplfy and unify file operations
* - Finish off gzip file in gztack()
* - Use deflatePrime() instead of adding empty blocks
* - Keep gzip file clean on appended file read errors
* - Use in-place rotate instead of auxiliary buffer
* (Why you ask? Because it was fun to write!)
* 1.2 11 Oct 2012 - Fix for proper z_const usage
* - Check for input buffer malloc failure
*/
/*
gzappend takes a gzip file and appends to it, compressing files from the
command line or data from stdin. The gzip file is written to directly, to
avoid copying that file, in case it's large. Note that this results in the
unfriendly behavior that if gzappend fails, the gzip file is corrupted.
This program was written to illustrate the use of the new Z_BLOCK option of
zlib 1.2.x's inflate() function. This option returns from inflate() at each
block boundary to facilitate locating and modifying the last block bit at
the start of the final deflate block. Also whether using Z_BLOCK or not,
another required feature of zlib 1.2.x is that inflate() now provides the
number of unusued bits in the last input byte used. gzappend will not work
with versions of zlib earlier than 1.2.1.
gzappend first decompresses the gzip file internally, discarding all but
the last 32K of uncompressed data, and noting the location of the last block
bit and the number of unused bits in the last byte of the compressed data.
The gzip trailer containing the CRC-32 and length of the uncompressed data
is verified. This trailer will be later overwritten.
Then the last block bit is cleared by seeking back in the file and rewriting
the byte that contains it. Seeking forward, the last byte of the compressed
data is saved along with the number of unused bits to initialize deflate.
A deflate process is initialized, using the last 32K of the uncompressed
data from the gzip file to initialize the dictionary. If the total
uncompressed data was less than 32K, then all of it is used to initialize
the dictionary. The deflate output bit buffer is also initialized with the
last bits from the original deflate stream. From here on, the data to
append is simply compressed using deflate, and written to the gzip file.
When that is complete, the new CRC-32 and uncompressed length are written
as the trailer of the gzip file.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include "zlib.h"
#define local static
#define LGCHUNK 14
#define CHUNK (1U << LGCHUNK)
#define DSIZE 32768U
/* print an error message and terminate with extreme prejudice */
local void bye(char *msg1, char *msg2)
{
fprintf(stderr, "gzappend error: %s%s\n", msg1, msg2);
exit(1);
}
/* return the greatest common divisor of a and b using Euclid's algorithm,
modified to be fast when one argument much greater than the other, and
coded to avoid unnecessary swapping */
local unsigned gcd(unsigned a, unsigned b)
{
unsigned c;
while (a && b)
if (a > b) {
c = b;
while (a - c >= c)
c <<= 1;
a -= c;
}
else {
c = a;
while (b - c >= c)
c <<= 1;
b -= c;
}
return a + b;
}
/* rotate list[0..len-1] left by rot positions, in place */
local void rotate(unsigned char *list, unsigned len, unsigned rot)
{
unsigned char tmp;
unsigned cycles;
unsigned char *start, *last, *to, *from;
/* normalize rot and handle degenerate cases */
if (len < 2) return;
if (rot >= len) rot %= len;
if (rot == 0) return;
/* pointer to last entry in list */
last = list + (len - 1);
/* do simple left shift by one */
if (rot == 1) {
tmp = *list;
memcpy(list, list + 1, len - 1);
*last = tmp;
return;
}
/* do simple right shift by one */
if (rot == len - 1) {
tmp = *last;
memmove(list + 1, list, len - 1);
*list = tmp;
return;
}
/* otherwise do rotate as a set of cycles in place */
cycles = gcd(len, rot); /* number of cycles */
do {
start = from = list + cycles; /* start index is arbitrary */
tmp = *from; /* save entry to be overwritten */
for (;;) {
to = from; /* next step in cycle */
from += rot; /* go right rot positions */
if (from > last) from -= len; /* (pointer better not wrap) */
if (from == start) break; /* all but one shifted */
*to = *from; /* shift left */
}
*to = tmp; /* complete the circle */
} while (--cycles);
}
/* structure for gzip file read operations */
typedef struct {
int fd; /* file descriptor */
int size; /* 1 << size is bytes in buf */
unsigned left; /* bytes available at next */
unsigned char *buf; /* buffer */
z_const unsigned char *next; /* next byte in buffer */
char *name; /* file name for error messages */
} file;
/* reload buffer */
local int readin(file *in)
{
int len;
len = read(in->fd, in->buf, 1 << in->size);
if (len == -1) bye("error reading ", in->name);
in->left = (unsigned)len;
in->next = in->buf;
return len;
}
/* read from file in, exit if end-of-file */
local int readmore(file *in)
{
if (readin(in) == 0) bye("unexpected end of ", in->name);
return 0;
}
#define read1(in) (in->left == 0 ? readmore(in) : 0, \
in->left--, *(in->next)++)
/* skip over n bytes of in */
local void skip(file *in, unsigned n)
{
unsigned bypass;
if (n > in->left) {
n -= in->left;
bypass = n & ~((1U << in->size) - 1);
if (bypass) {
if (lseek(in->fd, (off_t)bypass, SEEK_CUR) == -1)
bye("seeking ", in->name);
n -= bypass;
}
readmore(in);
if (n > in->left)
bye("unexpected end of ", in->name);
}
in->left -= n;
in->next += n;
}
/* read a four-byte unsigned integer, little-endian, from in */
unsigned long read4(file *in)
{
unsigned long val;
val = read1(in);
val += (unsigned)read1(in) << 8;
val += (unsigned long)read1(in) << 16;
val += (unsigned long)read1(in) << 24;
return val;
}
/* skip over gzip header */
local void gzheader(file *in)
{
int flags;
unsigned n;
if (read1(in) != 31 || read1(in) != 139) bye(in->name, " not a gzip file");
if (read1(in) != 8) bye("unknown compression method in", in->name);
flags = read1(in);
if (flags & 0xe0) bye("unknown header flags set in", in->name);
skip(in, 6);
if (flags & 4) {
n = read1(in);
n += (unsigned)(read1(in)) << 8;
skip(in, n);
}
if (flags & 8) while (read1(in) != 0) ;
if (flags & 16) while (read1(in) != 0) ;
if (flags & 2) skip(in, 2);
}
/* decompress gzip file "name", return strm with a deflate stream ready to
continue compression of the data in the gzip file, and return a file
descriptor pointing to where to write the compressed data -- the deflate
stream is initialized to compress using level "level" */
local int gzscan(char *name, z_stream *strm, int level)
{
int ret, lastbit, left, full;
unsigned have;
unsigned long crc, tot;
unsigned char *window;
off_t lastoff, end;
file gz;
/* open gzip file */
gz.name = name;
gz.fd = open(name, O_RDWR, 0);
if (gz.fd == -1) bye("cannot open ", name);
gz.buf = malloc(CHUNK);
if (gz.buf == NULL) bye("out of memory", "");
gz.size = LGCHUNK;
gz.left = 0;
/* skip gzip header */
gzheader(&gz);
/* prepare to decompress */
window = malloc(DSIZE);
if (window == NULL) bye("out of memory", "");
strm->zalloc = Z_NULL;
strm->zfree = Z_NULL;
strm->opaque = Z_NULL;
ret = inflateInit2(strm, -15);
if (ret != Z_OK) bye("out of memory", " or library mismatch");
/* decompress the deflate stream, saving append information */
lastbit = 0;
lastoff = lseek(gz.fd, 0L, SEEK_CUR) - gz.left;
left = 0;
strm->avail_in = gz.left;
strm->next_in = gz.next;
crc = crc32(0L, Z_NULL, 0);
have = full = 0;
do {
/* if needed, get more input */
if (strm->avail_in == 0) {
readmore(&gz);
strm->avail_in = gz.left;
strm->next_in = gz.next;
}
/* set up output to next available section of sliding window */
strm->avail_out = DSIZE - have;
strm->next_out = window + have;
/* inflate and check for errors */
ret = inflate(strm, Z_BLOCK);
if (ret == Z_STREAM_ERROR) bye("internal stream error!", "");
if (ret == Z_MEM_ERROR) bye("out of memory", "");
if (ret == Z_DATA_ERROR)
bye("invalid compressed data--format violated in", name);
/* update crc and sliding window pointer */
crc = crc32(crc, window + have, DSIZE - have - strm->avail_out);
if (strm->avail_out)
have = DSIZE - strm->avail_out;
else {
have = 0;
full = 1;
}
/* process end of block */
if (strm->data_type & 128) {
if (strm->data_type & 64)
left = strm->data_type & 0x1f;
else {
lastbit = strm->data_type & 0x1f;
lastoff = lseek(gz.fd, 0L, SEEK_CUR) - strm->avail_in;
}
}
} while (ret != Z_STREAM_END);
inflateEnd(strm);
gz.left = strm->avail_in;
gz.next = strm->next_in;
/* save the location of the end of the compressed data */
end = lseek(gz.fd, 0L, SEEK_CUR) - gz.left;
/* check gzip trailer and save total for deflate */
if (crc != read4(&gz))
bye("invalid compressed data--crc mismatch in ", name);
tot = strm->total_out;
if ((tot & 0xffffffffUL) != read4(&gz))
bye("invalid compressed data--length mismatch in", name);
/* if not at end of file, warn */
if (gz.left || readin(&gz))
fprintf(stderr,
"gzappend warning: junk at end of gzip file overwritten\n");
/* clear last block bit */
lseek(gz.fd, lastoff - (lastbit != 0), SEEK_SET);
if (read(gz.fd, gz.buf, 1) != 1) bye("reading after seek on ", name);
*gz.buf = (unsigned char)(*gz.buf ^ (1 << ((8 - lastbit) & 7)));
lseek(gz.fd, -1L, SEEK_CUR);
if (write(gz.fd, gz.buf, 1) != 1) bye("writing after seek to ", name);
/* if window wrapped, build dictionary from window by rotating */
if (full) {
rotate(window, DSIZE, have);
have = DSIZE;
}
/* set up deflate stream with window, crc, total_in, and leftover bits */
ret = deflateInit2(strm, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
if (ret != Z_OK) bye("out of memory", "");
deflateSetDictionary(strm, window, have);
strm->adler = crc;
strm->total_in = tot;
if (left) {
lseek(gz.fd, --end, SEEK_SET);
if (read(gz.fd, gz.buf, 1) != 1) bye("reading after seek on ", name);
deflatePrime(strm, 8 - left, *gz.buf);
}
lseek(gz.fd, end, SEEK_SET);
/* clean up and return */
free(window);
free(gz.buf);
return gz.fd;
}
/* append file "name" to gzip file gd using deflate stream strm -- if last
is true, then finish off the deflate stream at the end */
local void gztack(char *name, int gd, z_stream *strm, int last)
{
int fd, len, ret;
unsigned left;
unsigned char *in, *out;
/* open file to compress and append */
fd = 0;
if (name != NULL) {
fd = open(name, O_RDONLY, 0);
if (fd == -1)
fprintf(stderr, "gzappend warning: %s not found, skipping ...\n",
name);
}
/* allocate buffers */
in = malloc(CHUNK);
out = malloc(CHUNK);
if (in == NULL || out == NULL) bye("out of memory", "");
/* compress input file and append to gzip file */
do {
/* get more input */
len = read(fd, in, CHUNK);
if (len == -1) {
fprintf(stderr,
"gzappend warning: error reading %s, skipping rest ...\n",
name);
len = 0;
}
strm->avail_in = (unsigned)len;
strm->next_in = in;
if (len) strm->adler = crc32(strm->adler, in, (unsigned)len);
/* compress and write all available output */
do {
strm->avail_out = CHUNK;
strm->next_out = out;
ret = deflate(strm, last && len == 0 ? Z_FINISH : Z_NO_FLUSH);
left = CHUNK - strm->avail_out;
while (left) {
len = write(gd, out + CHUNK - strm->avail_out - left, left);
if (len == -1) bye("writing gzip file", "");
left -= (unsigned)len;
}
} while (strm->avail_out == 0 && ret != Z_STREAM_END);
} while (len != 0);
/* write trailer after last entry */
if (last) {
deflateEnd(strm);
out[0] = (unsigned char)(strm->adler);
out[1] = (unsigned char)(strm->adler >> 8);
out[2] = (unsigned char)(strm->adler >> 16);
out[3] = (unsigned char)(strm->adler >> 24);
out[4] = (unsigned char)(strm->total_in);
out[5] = (unsigned char)(strm->total_in >> 8);
out[6] = (unsigned char)(strm->total_in >> 16);
out[7] = (unsigned char)(strm->total_in >> 24);
len = 8;
do {
ret = write(gd, out + 8 - len, len);
if (ret == -1) bye("writing gzip file", "");
len -= ret;
} while (len);
close(gd);
}
/* clean up and return */
free(out);
free(in);
if (fd > 0) close(fd);
}
/* process the compression level option if present, scan the gzip file, and
append the specified files, or append the data from stdin if no other file
names are provided on the command line -- the gzip file must be writable
and seekable */
int main(int argc, char **argv)
{
int gd, level;
z_stream strm;
/* ignore command name */
argc--; argv++;
/* provide usage if no arguments */
if (*argv == NULL) {
printf(
"gzappend 1.2 (11 Oct 2012) Copyright (C) 2003, 2012 Mark Adler\n"
);
printf(
"usage: gzappend [-level] file.gz [ addthis [ andthis ... ]]\n");
return 0;
}
/* set compression level */
level = Z_DEFAULT_COMPRESSION;
if (argv[0][0] == '-') {
if (argv[0][1] < '0' || argv[0][1] > '9' || argv[0][2] != 0)
bye("invalid compression level", "");
level = argv[0][1] - '0';
if (*++argv == NULL) bye("no gzip file name after options", "");
}
/* prepare to append to gzip file */
gd = gzscan(*argv++, &strm, level);
/* append files on command line, or from stdin if none */
if (*argv == NULL)
gztack(NULL, gd, &strm, 1);
else
do {
gztack(*argv, gd, &strm, argv[1] == NULL);
} while (*++argv != NULL);
return 0;
}

View File

@ -1,449 +0,0 @@
/* gzjoin -- command to join gzip files into one gzip file
Copyright (C) 2004, 2005, 2012 Mark Adler, all rights reserved
version 1.2, 14 Aug 2012
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler madler@alumni.caltech.edu
*/
/*
* Change history:
*
* 1.0 11 Dec 2004 - First version
* 1.1 12 Jun 2005 - Changed ssize_t to long for portability
* 1.2 14 Aug 2012 - Clean up for z_const usage
*/
/*
gzjoin takes one or more gzip files on the command line and writes out a
single gzip file that will uncompress to the concatenation of the
uncompressed data from the individual gzip files. gzjoin does this without
having to recompress any of the data and without having to calculate a new
crc32 for the concatenated uncompressed data. gzjoin does however have to
decompress all of the input data in order to find the bits in the compressed
data that need to be modified to concatenate the streams.
gzjoin does not do an integrity check on the input gzip files other than
checking the gzip header and decompressing the compressed data. They are
otherwise assumed to be complete and correct.
Each joint between gzip files removes at least 18 bytes of previous trailer
and subsequent header, and inserts an average of about three bytes to the
compressed data in order to connect the streams. The output gzip file
has a minimal ten-byte gzip header with no file name or modification time.
This program was written to illustrate the use of the Z_BLOCK option of
inflate() and the crc32_combine() function. gzjoin will not compile with
versions of zlib earlier than 1.2.3.
*/
#include <stdio.h> /* fputs(), fprintf(), fwrite(), putc() */
#include <stdlib.h> /* exit(), malloc(), free() */
#include <fcntl.h> /* open() */
#include <unistd.h> /* close(), read(), lseek() */
#include "zlib.h"
/* crc32(), crc32_combine(), inflateInit2(), inflate(), inflateEnd() */
#define local static
/* exit with an error (return a value to allow use in an expression) */
local int bail(char *why1, char *why2)
{
fprintf(stderr, "gzjoin error: %s%s, output incomplete\n", why1, why2);
exit(1);
return 0;
}
/* -- simple buffered file input with access to the buffer -- */
#define CHUNK 32768 /* must be a power of two and fit in unsigned */
/* bin buffered input file type */
typedef struct {
char *name; /* name of file for error messages */
int fd; /* file descriptor */
unsigned left; /* bytes remaining at next */
unsigned char *next; /* next byte to read */
unsigned char *buf; /* allocated buffer of length CHUNK */
} bin;
/* close a buffered file and free allocated memory */
local void bclose(bin *in)
{
if (in != NULL) {
if (in->fd != -1)
close(in->fd);
if (in->buf != NULL)
free(in->buf);
free(in);
}
}
/* open a buffered file for input, return a pointer to type bin, or NULL on
failure */
local bin *bopen(char *name)
{
bin *in;
in = malloc(sizeof(bin));
if (in == NULL)
return NULL;
in->buf = malloc(CHUNK);
in->fd = open(name, O_RDONLY, 0);
if (in->buf == NULL || in->fd == -1) {
bclose(in);
return NULL;
}
in->left = 0;
in->next = in->buf;
in->name = name;
return in;
}
/* load buffer from file, return -1 on read error, 0 or 1 on success, with
1 indicating that end-of-file was reached */
local int bload(bin *in)
{
long len;
if (in == NULL)
return -1;
if (in->left != 0)
return 0;
in->next = in->buf;
do {
len = (long)read(in->fd, in->buf + in->left, CHUNK - in->left);
if (len < 0)
return -1;
in->left += (unsigned)len;
} while (len != 0 && in->left < CHUNK);
return len == 0 ? 1 : 0;
}
/* get a byte from the file, bail if end of file */
#define bget(in) (in->left ? 0 : bload(in), \
in->left ? (in->left--, *(in->next)++) : \
bail("unexpected end of file on ", in->name))
/* get a four-byte little-endian unsigned integer from file */
local unsigned long bget4(bin *in)
{
unsigned long val;
val = bget(in);
val += (unsigned long)(bget(in)) << 8;
val += (unsigned long)(bget(in)) << 16;
val += (unsigned long)(bget(in)) << 24;
return val;
}
/* skip bytes in file */
local void bskip(bin *in, unsigned skip)
{
/* check pointer */
if (in == NULL)
return;
/* easy case -- skip bytes in buffer */
if (skip <= in->left) {
in->left -= skip;
in->next += skip;
return;
}
/* skip what's in buffer, discard buffer contents */
skip -= in->left;
in->left = 0;
/* seek past multiples of CHUNK bytes */
if (skip > CHUNK) {
unsigned left;
left = skip & (CHUNK - 1);
if (left == 0) {
/* exact number of chunks: seek all the way minus one byte to check
for end-of-file with a read */
lseek(in->fd, skip - 1, SEEK_CUR);
if (read(in->fd, in->buf, 1) != 1)
bail("unexpected end of file on ", in->name);
return;
}
/* skip the integral chunks, update skip with remainder */
lseek(in->fd, skip - left, SEEK_CUR);
skip = left;
}
/* read more input and skip remainder */
bload(in);
if (skip > in->left)
bail("unexpected end of file on ", in->name);
in->left -= skip;
in->next += skip;
}
/* -- end of buffered input functions -- */
/* skip the gzip header from file in */
local void gzhead(bin *in)
{
int flags;
/* verify gzip magic header and compression method */
if (bget(in) != 0x1f || bget(in) != 0x8b || bget(in) != 8)
bail(in->name, " is not a valid gzip file");
/* get and verify flags */
flags = bget(in);
if ((flags & 0xe0) != 0)
bail("unknown reserved bits set in ", in->name);
/* skip modification time, extra flags, and os */
bskip(in, 6);
/* skip extra field if present */
if (flags & 4) {
unsigned len;
len = bget(in);
len += (unsigned)(bget(in)) << 8;
bskip(in, len);
}
/* skip file name if present */
if (flags & 8)
while (bget(in) != 0)
;
/* skip comment if present */
if (flags & 16)
while (bget(in) != 0)
;
/* skip header crc if present */
if (flags & 2)
bskip(in, 2);
}
/* write a four-byte little-endian unsigned integer to out */
local void put4(unsigned long val, FILE *out)
{
putc(val & 0xff, out);
putc((val >> 8) & 0xff, out);
putc((val >> 16) & 0xff, out);
putc((val >> 24) & 0xff, out);
}
/* Load up zlib stream from buffered input, bail if end of file */
local void zpull(z_streamp strm, bin *in)
{
if (in->left == 0)
bload(in);
if (in->left == 0)
bail("unexpected end of file on ", in->name);
strm->avail_in = in->left;
strm->next_in = in->next;
}
/* Write header for gzip file to out and initialize trailer. */
local void gzinit(unsigned long *crc, unsigned long *tot, FILE *out)
{
fwrite("\x1f\x8b\x08\0\0\0\0\0\0\xff", 1, 10, out);
*crc = crc32(0L, Z_NULL, 0);
*tot = 0;
}
/* Copy the compressed data from name, zeroing the last block bit of the last
block if clr is true, and adding empty blocks as needed to get to a byte
boundary. If clr is false, then the last block becomes the last block of
the output, and the gzip trailer is written. crc and tot maintains the
crc and length (modulo 2^32) of the output for the trailer. The resulting
gzip file is written to out. gzinit() must be called before the first call
of gzcopy() to write the gzip header and to initialize crc and tot. */
local void gzcopy(char *name, int clr, unsigned long *crc, unsigned long *tot,
FILE *out)
{
int ret; /* return value from zlib functions */
int pos; /* where the "last block" bit is in byte */
int last; /* true if processing the last block */
bin *in; /* buffered input file */
unsigned char *start; /* start of compressed data in buffer */
unsigned char *junk; /* buffer for uncompressed data -- discarded */
z_off_t len; /* length of uncompressed data (support > 4 GB) */
z_stream strm; /* zlib inflate stream */
/* open gzip file and skip header */
in = bopen(name);
if (in == NULL)
bail("could not open ", name);
gzhead(in);
/* allocate buffer for uncompressed data and initialize raw inflate
stream */
junk = malloc(CHUNK);
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit2(&strm, -15);
if (junk == NULL || ret != Z_OK)
bail("out of memory", "");
/* inflate and copy compressed data, clear last-block bit if requested */
len = 0;
zpull(&strm, in);
start = in->next;
last = start[0] & 1;
if (last && clr)
start[0] &= ~1;
strm.avail_out = 0;
for (;;) {
/* if input used and output done, write used input and get more */
if (strm.avail_in == 0 && strm.avail_out != 0) {
fwrite(start, 1, strm.next_in - start, out);
start = in->buf;
in->left = 0;
zpull(&strm, in);
}
/* decompress -- return early when end-of-block reached */
strm.avail_out = CHUNK;
strm.next_out = junk;
ret = inflate(&strm, Z_BLOCK);
switch (ret) {
case Z_MEM_ERROR:
bail("out of memory", "");
case Z_DATA_ERROR:
bail("invalid compressed data in ", in->name);
}
/* update length of uncompressed data */
len += CHUNK - strm.avail_out;
/* check for block boundary (only get this when block copied out) */
if (strm.data_type & 128) {
/* if that was the last block, then done */
if (last)
break;
/* number of unused bits in last byte */
pos = strm.data_type & 7;
/* find the next last-block bit */
if (pos != 0) {
/* next last-block bit is in last used byte */
pos = 0x100 >> pos;
last = strm.next_in[-1] & pos;
if (last && clr)
in->buf[strm.next_in - in->buf - 1] &= ~pos;
}
else {
/* next last-block bit is in next unused byte */
if (strm.avail_in == 0) {
/* don't have that byte yet -- get it */
fwrite(start, 1, strm.next_in - start, out);
start = in->buf;
in->left = 0;
zpull(&strm, in);
}
last = strm.next_in[0] & 1;
if (last && clr)
in->buf[strm.next_in - in->buf] &= ~1;
}
}
}
/* update buffer with unused input */
in->left = strm.avail_in;
in->next = in->buf + (strm.next_in - in->buf);
/* copy used input, write empty blocks to get to byte boundary */
pos = strm.data_type & 7;
fwrite(start, 1, in->next - start - 1, out);
last = in->next[-1];
if (pos == 0 || !clr)
/* already at byte boundary, or last file: write last byte */
putc(last, out);
else {
/* append empty blocks to last byte */
last &= ((0x100 >> pos) - 1); /* assure unused bits are zero */
if (pos & 1) {
/* odd -- append an empty stored block */
putc(last, out);
if (pos == 1)
putc(0, out); /* two more bits in block header */
fwrite("\0\0\xff\xff", 1, 4, out);
}
else {
/* even -- append 1, 2, or 3 empty fixed blocks */
switch (pos) {
case 6:
putc(last | 8, out);
last = 0;
case 4:
putc(last | 0x20, out);
last = 0;
case 2:
putc(last | 0x80, out);
putc(0, out);
}
}
}
/* update crc and tot */
*crc = crc32_combine(*crc, bget4(in), len);
*tot += (unsigned long)len;
/* clean up */
inflateEnd(&strm);
free(junk);
bclose(in);
/* write trailer if this is the last gzip file */
if (!clr) {
put4(*crc, out);
put4(*tot, out);
}
}
/* join the gzip files on the command line, write result to stdout */
int main(int argc, char **argv)
{
unsigned long crc, tot; /* running crc and total uncompressed length */
/* skip command name */
argc--;
argv++;
/* show usage if no arguments */
if (argc == 0) {
fputs("gzjoin usage: gzjoin f1.gz [f2.gz [f3.gz ...]] > fjoin.gz\n",
stderr);
return 0;
}
/* join gzip files on command line and write to stdout */
gzinit(&crc, &tot, stdout);
while (argc--)
gzcopy(*argv++, argc, &crc, &tot, stdout);
/* done */
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,91 +0,0 @@
/* gzlog.h
Copyright (C) 2004, 2008, 2012 Mark Adler, all rights reserved
version 2.2, 14 Aug 2012
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler madler@alumni.caltech.edu
*/
/* Version History:
1.0 26 Nov 2004 First version
2.0 25 Apr 2008 Complete redesign for recovery of interrupted operations
Interface changed slightly in that now path is a prefix
Compression now occurs as needed during gzlog_write()
gzlog_write() now always leaves the log file as valid gzip
2.1 8 Jul 2012 Fix argument checks in gzlog_compress() and gzlog_write()
2.2 14 Aug 2012 Clean up signed comparisons
*/
/*
The gzlog object allows writing short messages to a gzipped log file,
opening the log file locked for small bursts, and then closing it. The log
object works by appending stored (uncompressed) data to the gzip file until
1 MB has been accumulated. At that time, the stored data is compressed, and
replaces the uncompressed data in the file. The log file is truncated to
its new size at that time. After each write operation, the log file is a
valid gzip file that can decompressed to recover what was written.
The gzlog operations can be interupted at any point due to an application or
system crash, and the log file will be recovered the next time the log is
opened with gzlog_open().
*/
#ifndef GZLOG_H
#define GZLOG_H
/* gzlog object type */
typedef void gzlog;
/* Open a gzlog object, creating the log file if it does not exist. Return
NULL on error. Note that gzlog_open() could take a while to complete if it
has to wait to verify that a lock is stale (possibly for five minutes), or
if there is significant contention with other instantiations of this object
when locking the resource. path is the prefix of the file names created by
this object. If path is "foo", then the log file will be "foo.gz", and
other auxiliary files will be created and destroyed during the process:
"foo.dict" for a compression dictionary, "foo.temp" for a temporary (next)
dictionary, "foo.add" for data being added or compressed, "foo.lock" for the
lock file, and "foo.repairs" to log recovery operations performed due to
interrupted gzlog operations. A gzlog_open() followed by a gzlog_close()
will recover a previously interrupted operation, if any. */
gzlog *gzlog_open(char *path);
/* Write to a gzlog object. Return zero on success, -1 if there is a file i/o
error on any of the gzlog files (this should not happen if gzlog_open()
succeeded, unless the device has run out of space or leftover auxiliary
files have permissions or ownership that prevent their use), -2 if there is
a memory allocation failure, or -3 if the log argument is invalid (e.g. if
it was not created by gzlog_open()). This function will write data to the
file uncompressed, until 1 MB has been accumulated, at which time that data
will be compressed. The log file will be a valid gzip file upon successful
return. */
int gzlog_write(gzlog *log, void *data, size_t len);
/* Force compression of any uncompressed data in the log. This should be used
sparingly, if at all. The main application would be when a log file will
not be appended to again. If this is used to compress frequently while
appending, it will both significantly increase the execution time and
reduce the compression ratio. The return codes are the same as for
gzlog_write(). */
int gzlog_compress(gzlog *log);
/* Close a gzlog object. Return zero on success, -3 if the log argument is
invalid. The log object is freed, and so cannot be referenced again. */
int gzlog_close(gzlog *log);
#endif

View File

@ -1,545 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>zlib Usage Example</title>
<!-- Copyright (c) 2004, 2005 Mark Adler. -->
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#00A000">
<h2 align="center"> zlib Usage Example </h2>
We often get questions about how the <tt>deflate()</tt> and <tt>inflate()</tt> functions should be used.
Users wonder when they should provide more input, when they should use more output,
what to do with a <tt>Z_BUF_ERROR</tt>, how to make sure the process terminates properly, and
so on. So for those who have read <tt>zlib.h</tt> (a few times), and
would like further edification, below is an annotated example in C of simple routines to compress and decompress
from an input file to an output file using <tt>deflate()</tt> and <tt>inflate()</tt> respectively. The
annotations are interspersed between lines of the code. So please read between the lines.
We hope this helps explain some of the intricacies of <em>zlib</em>.
<p>
Without further adieu, here is the program <a href="zpipe.c"><tt>zpipe.c</tt></a>:
<pre><b>
/* zpipe.c: example of proper use of zlib's inflate() and deflate()
Not copyrighted -- provided to the public domain
Version 1.4 11 December 2005 Mark Adler */
/* Version history:
1.0 30 Oct 2004 First version
1.1 8 Nov 2004 Add void casting for unused return values
Use switch statement for inflate() return values
1.2 9 Nov 2004 Add assertions to document zlib guarantees
1.3 6 Apr 2005 Remove incorrect assertion in inf()
1.4 11 Dec 2005 Add hack to avoid MSDOS end-of-line conversions
Avoid some compiler warnings for input and output buffers
*/
</b></pre><!-- -->
We now include the header files for the required definitions. From
<tt>stdio.h</tt> we use <tt>fopen()</tt>, <tt>fread()</tt>, <tt>fwrite()</tt>,
<tt>feof()</tt>, <tt>ferror()</tt>, and <tt>fclose()</tt> for file i/o, and
<tt>fputs()</tt> for error messages. From <tt>string.h</tt> we use
<tt>strcmp()</tt> for command line argument processing.
From <tt>assert.h</tt> we use the <tt>assert()</tt> macro.
From <tt>zlib.h</tt>
we use the basic compression functions <tt>deflateInit()</tt>,
<tt>deflate()</tt>, and <tt>deflateEnd()</tt>, and the basic decompression
functions <tt>inflateInit()</tt>, <tt>inflate()</tt>, and
<tt>inflateEnd()</tt>.
<pre><b>
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;assert.h&gt;
#include "zlib.h"
</b></pre><!-- -->
This is an ugly hack required to avoid corruption of the input and output data on
Windows/MS-DOS systems. Without this, those systems would assume that the input and output
files are text, and try to convert the end-of-line characters from one standard to
another. That would corrupt binary data, and in particular would render the compressed data unusable.
This sets the input and output to binary which suppresses the end-of-line conversions.
<tt>SET_BINARY_MODE()</tt> will be used later on <tt>stdin</tt> and <tt>stdout</tt>, at the beginning of <tt>main()</tt>.
<pre><b>
#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
# include &lt;fcntl.h&gt;
# include &lt;io.h&gt;
# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
#else
# define SET_BINARY_MODE(file)
#endif
</b></pre><!-- -->
<tt>CHUNK</tt> is simply the buffer size for feeding data to and pulling data
from the <em>zlib</em> routines. Larger buffer sizes would be more efficient,
especially for <tt>inflate()</tt>. If the memory is available, buffers sizes
on the order of 128K or 256K bytes should be used.
<pre><b>
#define CHUNK 16384
</b></pre><!-- -->
The <tt>def()</tt> routine compresses data from an input file to an output file. The output data
will be in the <em>zlib</em> format, which is different from the <em>gzip</em> or <em>zip</em>
formats. The <em>zlib</em> format has a very small header of only two bytes to identify it as
a <em>zlib</em> stream and to provide decoding information, and a four-byte trailer with a fast
check value to verify the integrity of the uncompressed data after decoding.
<pre><b>
/* Compress from file source to file dest until EOF on source.
def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
allocated for processing, Z_STREAM_ERROR if an invalid compression
level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
version of the library linked do not match, or Z_ERRNO if there is
an error reading or writing the files. */
int def(FILE *source, FILE *dest, int level)
{
</b></pre>
Here are the local variables for <tt>def()</tt>. <tt>ret</tt> will be used for <em>zlib</em>
return codes. <tt>flush</tt> will keep track of the current flushing state for <tt>deflate()</tt>,
which is either no flushing, or flush to completion after the end of the input file is reached.
<tt>have</tt> is the amount of data returned from <tt>deflate()</tt>. The <tt>strm</tt> structure
is used to pass information to and from the <em>zlib</em> routines, and to maintain the
<tt>deflate()</tt> state. <tt>in</tt> and <tt>out</tt> are the input and output buffers for
<tt>deflate()</tt>.
<pre><b>
int ret, flush;
unsigned have;
z_stream strm;
unsigned char in[CHUNK];
unsigned char out[CHUNK];
</b></pre><!-- -->
The first thing we do is to initialize the <em>zlib</em> state for compression using
<tt>deflateInit()</tt>. This must be done before the first use of <tt>deflate()</tt>.
The <tt>zalloc</tt>, <tt>zfree</tt>, and <tt>opaque</tt> fields in the <tt>strm</tt>
structure must be initialized before calling <tt>deflateInit()</tt>. Here they are
set to the <em>zlib</em> constant <tt>Z_NULL</tt> to request that <em>zlib</em> use
the default memory allocation routines. An application may also choose to provide
custom memory allocation routines here. <tt>deflateInit()</tt> will allocate on the
order of 256K bytes for the internal state.
(See <a href="zlib_tech.html"><em>zlib Technical Details</em></a>.)
<p>
<tt>deflateInit()</tt> is called with a pointer to the structure to be initialized and
the compression level, which is an integer in the range of -1 to 9. Lower compression
levels result in faster execution, but less compression. Higher levels result in
greater compression, but slower execution. The <em>zlib</em> constant Z_DEFAULT_COMPRESSION,
equal to -1,
provides a good compromise between compression and speed and is equivalent to level 6.
Level 0 actually does no compression at all, and in fact expands the data slightly to produce
the <em>zlib</em> format (it is not a byte-for-byte copy of the input).
More advanced applications of <em>zlib</em>
may use <tt>deflateInit2()</tt> here instead. Such an application may want to reduce how
much memory will be used, at some price in compression. Or it may need to request a
<em>gzip</em> header and trailer instead of a <em>zlib</em> header and trailer, or raw
encoding with no header or trailer at all.
<p>
We must check the return value of <tt>deflateInit()</tt> against the <em>zlib</em> constant
<tt>Z_OK</tt> to make sure that it was able to
allocate memory for the internal state, and that the provided arguments were valid.
<tt>deflateInit()</tt> will also check that the version of <em>zlib</em> that the <tt>zlib.h</tt>
file came from matches the version of <em>zlib</em> actually linked with the program. This
is especially important for environments in which <em>zlib</em> is a shared library.
<p>
Note that an application can initialize multiple, independent <em>zlib</em> streams, which can
operate in parallel. The state information maintained in the structure allows the <em>zlib</em>
routines to be reentrant.
<pre><b>
/* allocate deflate state */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
ret = deflateInit(&amp;strm, level);
if (ret != Z_OK)
return ret;
</b></pre><!-- -->
With the pleasantries out of the way, now we can get down to business. The outer <tt>do</tt>-loop
reads all of the input file and exits at the bottom of the loop once end-of-file is reached.
This loop contains the only call of <tt>deflate()</tt>. So we must make sure that all of the
input data has been processed and that all of the output data has been generated and consumed
before we fall out of the loop at the bottom.
<pre><b>
/* compress until end of file */
do {
</b></pre>
We start off by reading data from the input file. The number of bytes read is put directly
into <tt>avail_in</tt>, and a pointer to those bytes is put into <tt>next_in</tt>. We also
check to see if end-of-file on the input has been reached. If we are at the end of file, then <tt>flush</tt> is set to the
<em>zlib</em> constant <tt>Z_FINISH</tt>, which is later passed to <tt>deflate()</tt> to
indicate that this is the last chunk of input data to compress. We need to use <tt>feof()</tt>
to check for end-of-file as opposed to seeing if fewer than <tt>CHUNK</tt> bytes have been read. The
reason is that if the input file length is an exact multiple of <tt>CHUNK</tt>, we will miss
the fact that we got to the end-of-file, and not know to tell <tt>deflate()</tt> to finish
up the compressed stream. If we are not yet at the end of the input, then the <em>zlib</em>
constant <tt>Z_NO_FLUSH</tt> will be passed to <tt>deflate</tt> to indicate that we are still
in the middle of the uncompressed data.
<p>
If there is an error in reading from the input file, the process is aborted with
<tt>deflateEnd()</tt> being called to free the allocated <em>zlib</em> state before returning
the error. We wouldn't want a memory leak, now would we? <tt>deflateEnd()</tt> can be called
at any time after the state has been initialized. Once that's done, <tt>deflateInit()</tt> (or
<tt>deflateInit2()</tt>) would have to be called to start a new compression process. There is
no point here in checking the <tt>deflateEnd()</tt> return code. The deallocation can't fail.
<pre><b>
strm.avail_in = fread(in, 1, CHUNK, source);
if (ferror(source)) {
(void)deflateEnd(&amp;strm);
return Z_ERRNO;
}
flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
strm.next_in = in;
</b></pre><!-- -->
The inner <tt>do</tt>-loop passes our chunk of input data to <tt>deflate()</tt>, and then
keeps calling <tt>deflate()</tt> until it is done producing output. Once there is no more
new output, <tt>deflate()</tt> is guaranteed to have consumed all of the input, i.e.,
<tt>avail_in</tt> will be zero.
<pre><b>
/* run deflate() on input until output buffer not full, finish
compression if all of source has been read in */
do {
</b></pre>
Output space is provided to <tt>deflate()</tt> by setting <tt>avail_out</tt> to the number
of available output bytes and <tt>next_out</tt> to a pointer to that space.
<pre><b>
strm.avail_out = CHUNK;
strm.next_out = out;
</b></pre>
Now we call the compression engine itself, <tt>deflate()</tt>. It takes as many of the
<tt>avail_in</tt> bytes at <tt>next_in</tt> as it can process, and writes as many as
<tt>avail_out</tt> bytes to <tt>next_out</tt>. Those counters and pointers are then
updated past the input data consumed and the output data written. It is the amount of
output space available that may limit how much input is consumed.
Hence the inner loop to make sure that
all of the input is consumed by providing more output space each time. Since <tt>avail_in</tt>
and <tt>next_in</tt> are updated by <tt>deflate()</tt>, we don't have to mess with those
between <tt>deflate()</tt> calls until it's all used up.
<p>
The parameters to <tt>deflate()</tt> are a pointer to the <tt>strm</tt> structure containing
the input and output information and the internal compression engine state, and a parameter
indicating whether and how to flush data to the output. Normally <tt>deflate</tt> will consume
several K bytes of input data before producing any output (except for the header), in order
to accumulate statistics on the data for optimum compression. It will then put out a burst of
compressed data, and proceed to consume more input before the next burst. Eventually,
<tt>deflate()</tt>
must be told to terminate the stream, complete the compression with provided input data, and
write out the trailer check value. <tt>deflate()</tt> will continue to compress normally as long
as the flush parameter is <tt>Z_NO_FLUSH</tt>. Once the <tt>Z_FINISH</tt> parameter is provided,
<tt>deflate()</tt> will begin to complete the compressed output stream. However depending on how
much output space is provided, <tt>deflate()</tt> may have to be called several times until it
has provided the complete compressed stream, even after it has consumed all of the input. The flush
parameter must continue to be <tt>Z_FINISH</tt> for those subsequent calls.
<p>
There are other values of the flush parameter that are used in more advanced applications. You can
force <tt>deflate()</tt> to produce a burst of output that encodes all of the input data provided
so far, even if it wouldn't have otherwise, for example to control data latency on a link with
compressed data. You can also ask that <tt>deflate()</tt> do that as well as erase any history up to
that point so that what follows can be decompressed independently, for example for random access
applications. Both requests will degrade compression by an amount depending on how often such
requests are made.
<p>
<tt>deflate()</tt> has a return value that can indicate errors, yet we do not check it here. Why
not? Well, it turns out that <tt>deflate()</tt> can do no wrong here. Let's go through
<tt>deflate()</tt>'s return values and dispense with them one by one. The possible values are
<tt>Z_OK</tt>, <tt>Z_STREAM_END</tt>, <tt>Z_STREAM_ERROR</tt>, or <tt>Z_BUF_ERROR</tt>. <tt>Z_OK</tt>
is, well, ok. <tt>Z_STREAM_END</tt> is also ok and will be returned for the last call of
<tt>deflate()</tt>. This is already guaranteed by calling <tt>deflate()</tt> with <tt>Z_FINISH</tt>
until it has no more output. <tt>Z_STREAM_ERROR</tt> is only possible if the stream is not
initialized properly, but we did initialize it properly. There is no harm in checking for
<tt>Z_STREAM_ERROR</tt> here, for example to check for the possibility that some
other part of the application inadvertently clobbered the memory containing the <em>zlib</em> state.
<tt>Z_BUF_ERROR</tt> will be explained further below, but
suffice it to say that this is simply an indication that <tt>deflate()</tt> could not consume
more input or produce more output. <tt>deflate()</tt> can be called again with more output space
or more available input, which it will be in this code.
<pre><b>
ret = deflate(&amp;strm, flush); /* no bad return value */
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
</b></pre>
Now we compute how much output <tt>deflate()</tt> provided on the last call, which is the
difference between how much space was provided before the call, and how much output space
is still available after the call. Then that data, if any, is written to the output file.
We can then reuse the output buffer for the next call of <tt>deflate()</tt>. Again if there
is a file i/o error, we call <tt>deflateEnd()</tt> before returning to avoid a memory leak.
<pre><b>
have = CHUNK - strm.avail_out;
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
(void)deflateEnd(&amp;strm);
return Z_ERRNO;
}
</b></pre>
The inner <tt>do</tt>-loop is repeated until the last <tt>deflate()</tt> call fails to fill the
provided output buffer. Then we know that <tt>deflate()</tt> has done as much as it can with
the provided input, and that all of that input has been consumed. We can then fall out of this
loop and reuse the input buffer.
<p>
The way we tell that <tt>deflate()</tt> has no more output is by seeing that it did not fill
the output buffer, leaving <tt>avail_out</tt> greater than zero. However suppose that
<tt>deflate()</tt> has no more output, but just so happened to exactly fill the output buffer!
<tt>avail_out</tt> is zero, and we can't tell that <tt>deflate()</tt> has done all it can.
As far as we know, <tt>deflate()</tt>
has more output for us. So we call it again. But now <tt>deflate()</tt> produces no output
at all, and <tt>avail_out</tt> remains unchanged as <tt>CHUNK</tt>. That <tt>deflate()</tt> call
wasn't able to do anything, either consume input or produce output, and so it returns
<tt>Z_BUF_ERROR</tt>. (See, I told you I'd cover this later.) However this is not a problem at
all. Now we finally have the desired indication that <tt>deflate()</tt> is really done,
and so we drop out of the inner loop to provide more input to <tt>deflate()</tt>.
<p>
With <tt>flush</tt> set to <tt>Z_FINISH</tt>, this final set of <tt>deflate()</tt> calls will
complete the output stream. Once that is done, subsequent calls of <tt>deflate()</tt> would return
<tt>Z_STREAM_ERROR</tt> if the flush parameter is not <tt>Z_FINISH</tt>, and do no more processing
until the state is reinitialized.
<p>
Some applications of <em>zlib</em> have two loops that call <tt>deflate()</tt>
instead of the single inner loop we have here. The first loop would call
without flushing and feed all of the data to <tt>deflate()</tt>. The second loop would call
<tt>deflate()</tt> with no more
data and the <tt>Z_FINISH</tt> parameter to complete the process. As you can see from this
example, that can be avoided by simply keeping track of the current flush state.
<pre><b>
} while (strm.avail_out == 0);
assert(strm.avail_in == 0); /* all input will be used */
</b></pre><!-- -->
Now we check to see if we have already processed all of the input file. That information was
saved in the <tt>flush</tt> variable, so we see if that was set to <tt>Z_FINISH</tt>. If so,
then we're done and we fall out of the outer loop. We're guaranteed to get <tt>Z_STREAM_END</tt>
from the last <tt>deflate()</tt> call, since we ran it until the last chunk of input was
consumed and all of the output was generated.
<pre><b>
/* done when last data in file processed */
} while (flush != Z_FINISH);
assert(ret == Z_STREAM_END); /* stream will be complete */
</b></pre><!-- -->
The process is complete, but we still need to deallocate the state to avoid a memory leak
(or rather more like a memory hemorrhage if you didn't do this). Then
finally we can return with a happy return value.
<pre><b>
/* clean up and return */
(void)deflateEnd(&amp;strm);
return Z_OK;
}
</b></pre><!-- -->
Now we do the same thing for decompression in the <tt>inf()</tt> routine. <tt>inf()</tt>
decompresses what is hopefully a valid <em>zlib</em> stream from the input file and writes the
uncompressed data to the output file. Much of the discussion above for <tt>def()</tt>
applies to <tt>inf()</tt> as well, so the discussion here will focus on the differences between
the two.
<pre><b>
/* Decompress from file source to file dest until stream ends or EOF.
inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
allocated for processing, Z_DATA_ERROR if the deflate data is
invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
the version of the library linked do not match, or Z_ERRNO if there
is an error reading or writing the files. */
int inf(FILE *source, FILE *dest)
{
</b></pre>
The local variables have the same functionality as they do for <tt>def()</tt>. The
only difference is that there is no <tt>flush</tt> variable, since <tt>inflate()</tt>
can tell from the <em>zlib</em> stream itself when the stream is complete.
<pre><b>
int ret;
unsigned have;
z_stream strm;
unsigned char in[CHUNK];
unsigned char out[CHUNK];
</b></pre><!-- -->
The initialization of the state is the same, except that there is no compression level,
of course, and two more elements of the structure are initialized. <tt>avail_in</tt>
and <tt>next_in</tt> must be initialized before calling <tt>inflateInit()</tt>. This
is because the application has the option to provide the start of the zlib stream in
order for <tt>inflateInit()</tt> to have access to information about the compression
method to aid in memory allocation. In the current implementation of <em>zlib</em>
(up through versions 1.2.x), the method-dependent memory allocations are deferred to the first call of
<tt>inflate()</tt> anyway. However those fields must be initialized since later versions
of <em>zlib</em> that provide more compression methods may take advantage of this interface.
In any case, no decompression is performed by <tt>inflateInit()</tt>, so the
<tt>avail_out</tt> and <tt>next_out</tt> fields do not need to be initialized before calling.
<p>
Here <tt>avail_in</tt> is set to zero and <tt>next_in</tt> is set to <tt>Z_NULL</tt> to
indicate that no input data is being provided.
<pre><b>
/* allocate inflate state */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit(&amp;strm);
if (ret != Z_OK)
return ret;
</b></pre><!-- -->
The outer <tt>do</tt>-loop decompresses input until <tt>inflate()</tt> indicates
that it has reached the end of the compressed data and has produced all of the uncompressed
output. This is in contrast to <tt>def()</tt> which processes all of the input file.
If end-of-file is reached before the compressed data self-terminates, then the compressed
data is incomplete and an error is returned.
<pre><b>
/* decompress until deflate stream ends or end of file */
do {
</b></pre>
We read input data and set the <tt>strm</tt> structure accordingly. If we've reached the
end of the input file, then we leave the outer loop and report an error, since the
compressed data is incomplete. Note that we may read more data than is eventually consumed
by <tt>inflate()</tt>, if the input file continues past the <em>zlib</em> stream.
For applications where <em>zlib</em> streams are embedded in other data, this routine would
need to be modified to return the unused data, or at least indicate how much of the input
data was not used, so the application would know where to pick up after the <em>zlib</em> stream.
<pre><b>
strm.avail_in = fread(in, 1, CHUNK, source);
if (ferror(source)) {
(void)inflateEnd(&amp;strm);
return Z_ERRNO;
}
if (strm.avail_in == 0)
break;
strm.next_in = in;
</b></pre><!-- -->
The inner <tt>do</tt>-loop has the same function it did in <tt>def()</tt>, which is to
keep calling <tt>inflate()</tt> until has generated all of the output it can with the
provided input.
<pre><b>
/* run inflate() on input until output buffer not full */
do {
</b></pre>
Just like in <tt>def()</tt>, the same output space is provided for each call of <tt>inflate()</tt>.
<pre><b>
strm.avail_out = CHUNK;
strm.next_out = out;
</b></pre>
Now we run the decompression engine itself. There is no need to adjust the flush parameter, since
the <em>zlib</em> format is self-terminating. The main difference here is that there are
return values that we need to pay attention to. <tt>Z_DATA_ERROR</tt>
indicates that <tt>inflate()</tt> detected an error in the <em>zlib</em> compressed data format,
which means that either the data is not a <em>zlib</em> stream to begin with, or that the data was
corrupted somewhere along the way since it was compressed. The other error to be processed is
<tt>Z_MEM_ERROR</tt>, which can occur since memory allocation is deferred until <tt>inflate()</tt>
needs it, unlike <tt>deflate()</tt>, whose memory is allocated at the start by <tt>deflateInit()</tt>.
<p>
Advanced applications may use
<tt>deflateSetDictionary()</tt> to prime <tt>deflate()</tt> with a set of likely data to improve the
first 32K or so of compression. This is noted in the <em>zlib</em> header, so <tt>inflate()</tt>
requests that that dictionary be provided before it can start to decompress. Without the dictionary,
correct decompression is not possible. For this routine, we have no idea what the dictionary is,
so the <tt>Z_NEED_DICT</tt> indication is converted to a <tt>Z_DATA_ERROR</tt>.
<p>
<tt>inflate()</tt> can also return <tt>Z_STREAM_ERROR</tt>, which should not be possible here,
but could be checked for as noted above for <tt>def()</tt>. <tt>Z_BUF_ERROR</tt> does not need to be
checked for here, for the same reasons noted for <tt>def()</tt>. <tt>Z_STREAM_END</tt> will be
checked for later.
<pre><b>
ret = inflate(&amp;strm, Z_NO_FLUSH);
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
switch (ret) {
case Z_NEED_DICT:
ret = Z_DATA_ERROR; /* and fall through */
case Z_DATA_ERROR:
case Z_MEM_ERROR:
(void)inflateEnd(&amp;strm);
return ret;
}
</b></pre>
The output of <tt>inflate()</tt> is handled identically to that of <tt>deflate()</tt>.
<pre><b>
have = CHUNK - strm.avail_out;
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
(void)inflateEnd(&amp;strm);
return Z_ERRNO;
}
</b></pre>
The inner <tt>do</tt>-loop ends when <tt>inflate()</tt> has no more output as indicated
by not filling the output buffer, just as for <tt>deflate()</tt>. In this case, we cannot
assert that <tt>strm.avail_in</tt> will be zero, since the deflate stream may end before the file
does.
<pre><b>
} while (strm.avail_out == 0);
</b></pre><!-- -->
The outer <tt>do</tt>-loop ends when <tt>inflate()</tt> reports that it has reached the
end of the input <em>zlib</em> stream, has completed the decompression and integrity
check, and has provided all of the output. This is indicated by the <tt>inflate()</tt>
return value <tt>Z_STREAM_END</tt>. The inner loop is guaranteed to leave <tt>ret</tt>
equal to <tt>Z_STREAM_END</tt> if the last chunk of the input file read contained the end
of the <em>zlib</em> stream. So if the return value is not <tt>Z_STREAM_END</tt>, the
loop continues to read more input.
<pre><b>
/* done when inflate() says it's done */
} while (ret != Z_STREAM_END);
</b></pre><!-- -->
At this point, decompression successfully completed, or we broke out of the loop due to no
more data being available from the input file. If the last <tt>inflate()</tt> return value
is not <tt>Z_STREAM_END</tt>, then the <em>zlib</em> stream was incomplete and a data error
is returned. Otherwise, we return with a happy return value. Of course, <tt>inflateEnd()</tt>
is called first to avoid a memory leak.
<pre><b>
/* clean up and return */
(void)inflateEnd(&amp;strm);
return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
}
</b></pre><!-- -->
That ends the routines that directly use <em>zlib</em>. The following routines make this
a command-line program by running data through the above routines from <tt>stdin</tt> to
<tt>stdout</tt>, and handling any errors reported by <tt>def()</tt> or <tt>inf()</tt>.
<p>
<tt>zerr()</tt> is used to interpret the possible error codes from <tt>def()</tt>
and <tt>inf()</tt>, as detailed in their comments above, and print out an error message.
Note that these are only a subset of the possible return values from <tt>deflate()</tt>
and <tt>inflate()</tt>.
<pre><b>
/* report a zlib or i/o error */
void zerr(int ret)
{
fputs("zpipe: ", stderr);
switch (ret) {
case Z_ERRNO:
if (ferror(stdin))
fputs("error reading stdin\n", stderr);
if (ferror(stdout))
fputs("error writing stdout\n", stderr);
break;
case Z_STREAM_ERROR:
fputs("invalid compression level\n", stderr);
break;
case Z_DATA_ERROR:
fputs("invalid or incomplete deflate data\n", stderr);
break;
case Z_MEM_ERROR:
fputs("out of memory\n", stderr);
break;
case Z_VERSION_ERROR:
fputs("zlib version mismatch!\n", stderr);
}
}
</b></pre><!-- -->
Here is the <tt>main()</tt> routine used to test <tt>def()</tt> and <tt>inf()</tt>. The
<tt>zpipe</tt> command is simply a compression pipe from <tt>stdin</tt> to <tt>stdout</tt>, if
no arguments are given, or it is a decompression pipe if <tt>zpipe -d</tt> is used. If any other
arguments are provided, no compression or decompression is performed. Instead a usage
message is displayed. Examples are <tt>zpipe < foo.txt > foo.txt.z</tt> to compress, and
<tt>zpipe -d < foo.txt.z > foo.txt</tt> to decompress.
<pre><b>
/* compress or decompress from stdin to stdout */
int main(int argc, char **argv)
{
int ret;
/* avoid end-of-line conversions */
SET_BINARY_MODE(stdin);
SET_BINARY_MODE(stdout);
/* do compression if no arguments */
if (argc == 1) {
ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
if (ret != Z_OK)
zerr(ret);
return ret;
}
/* do decompression if -d specified */
else if (argc == 2 &amp;&amp; strcmp(argv[1], "-d") == 0) {
ret = inf(stdin, stdout);
if (ret != Z_OK)
zerr(ret);
return ret;
}
/* otherwise, report usage */
else {
fputs("zpipe usage: zpipe [-d] &lt; source &gt; dest\n", stderr);
return 1;
}
}
</b></pre>
<hr>
<i>Copyright (c) 2004, 2005 by Mark Adler<br>Last modified 11 December 2005</i>
</body>
</html>

View File

@ -1,205 +0,0 @@
/* zpipe.c: example of proper use of zlib's inflate() and deflate()
Not copyrighted -- provided to the public domain
Version 1.4 11 December 2005 Mark Adler */
/* Version history:
1.0 30 Oct 2004 First version
1.1 8 Nov 2004 Add void casting for unused return values
Use switch statement for inflate() return values
1.2 9 Nov 2004 Add assertions to document zlib guarantees
1.3 6 Apr 2005 Remove incorrect assertion in inf()
1.4 11 Dec 2005 Add hack to avoid MSDOS end-of-line conversions
Avoid some compiler warnings for input and output buffers
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "zlib.h"
#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
# include <fcntl.h>
# include <io.h>
# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
#else
# define SET_BINARY_MODE(file)
#endif
#define CHUNK 16384
/* Compress from file source to file dest until EOF on source.
def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
allocated for processing, Z_STREAM_ERROR if an invalid compression
level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
version of the library linked do not match, or Z_ERRNO if there is
an error reading or writing the files. */
int def(FILE *source, FILE *dest, int level)
{
int ret, flush;
unsigned have;
z_stream strm;
unsigned char in[CHUNK];
unsigned char out[CHUNK];
/* allocate deflate state */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
ret = deflateInit(&strm, level);
if (ret != Z_OK)
return ret;
/* compress until end of file */
do {
strm.avail_in = fread(in, 1, CHUNK, source);
if (ferror(source)) {
(void)deflateEnd(&strm);
return Z_ERRNO;
}
flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
strm.next_in = in;
/* run deflate() on input until output buffer not full, finish
compression if all of source has been read in */
do {
strm.avail_out = CHUNK;
strm.next_out = out;
ret = deflate(&strm, flush); /* no bad return value */
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
have = CHUNK - strm.avail_out;
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
(void)deflateEnd(&strm);
return Z_ERRNO;
}
} while (strm.avail_out == 0);
assert(strm.avail_in == 0); /* all input will be used */
/* done when last data in file processed */
} while (flush != Z_FINISH);
assert(ret == Z_STREAM_END); /* stream will be complete */
/* clean up and return */
(void)deflateEnd(&strm);
return Z_OK;
}
/* Decompress from file source to file dest until stream ends or EOF.
inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
allocated for processing, Z_DATA_ERROR if the deflate data is
invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
the version of the library linked do not match, or Z_ERRNO if there
is an error reading or writing the files. */
int inf(FILE *source, FILE *dest)
{
int ret;
unsigned have;
z_stream strm;
unsigned char in[CHUNK];
unsigned char out[CHUNK];
/* allocate inflate state */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit(&strm);
if (ret != Z_OK)
return ret;
/* decompress until deflate stream ends or end of file */
do {
strm.avail_in = fread(in, 1, CHUNK, source);
if (ferror(source)) {
(void)inflateEnd(&strm);
return Z_ERRNO;
}
if (strm.avail_in == 0)
break;
strm.next_in = in;
/* run inflate() on input until output buffer not full */
do {
strm.avail_out = CHUNK;
strm.next_out = out;
ret = inflate(&strm, Z_NO_FLUSH);
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
switch (ret) {
case Z_NEED_DICT:
ret = Z_DATA_ERROR; /* and fall through */
case Z_DATA_ERROR:
case Z_MEM_ERROR:
(void)inflateEnd(&strm);
return ret;
}
have = CHUNK - strm.avail_out;
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
(void)inflateEnd(&strm);
return Z_ERRNO;
}
} while (strm.avail_out == 0);
/* done when inflate() says it's done */
} while (ret != Z_STREAM_END);
/* clean up and return */
(void)inflateEnd(&strm);
return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
}
/* report a zlib or i/o error */
void zerr(int ret)
{
fputs("zpipe: ", stderr);
switch (ret) {
case Z_ERRNO:
if (ferror(stdin))
fputs("error reading stdin\n", stderr);
if (ferror(stdout))
fputs("error writing stdout\n", stderr);
break;
case Z_STREAM_ERROR:
fputs("invalid compression level\n", stderr);
break;
case Z_DATA_ERROR:
fputs("invalid or incomplete deflate data\n", stderr);
break;
case Z_MEM_ERROR:
fputs("out of memory\n", stderr);
break;
case Z_VERSION_ERROR:
fputs("zlib version mismatch!\n", stderr);
}
}
/* compress or decompress from stdin to stdout */
int main(int argc, char **argv)
{
int ret;
/* avoid end-of-line conversions */
SET_BINARY_MODE(stdin);
SET_BINARY_MODE(stdout);
/* do compression if no arguments */
if (argc == 1) {
ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
if (ret != Z_OK)
zerr(ret);
return ret;
}
/* do decompression if -d specified */
else if (argc == 2 && strcmp(argv[1], "-d") == 0) {
ret = inf(stdin, stdout);
if (ret != Z_OK)
zerr(ret);
return ret;
}
/* otherwise, report usage */
else {
fputs("zpipe usage: zpipe [-d] < source > dest\n", stderr);
return 1;
}
}

View File

@ -1,409 +0,0 @@
/* zran.c -- example of zlib/gzip stream indexing and random access
* Copyright (C) 2005, 2012 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
Version 1.1 29 Sep 2012 Mark Adler */
/* Version History:
1.0 29 May 2005 First version
1.1 29 Sep 2012 Fix memory reallocation error
*/
/* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
for random access of a compressed file. A file containing a zlib or gzip
stream is provided on the command line. The compressed stream is decoded in
its entirety, and an index built with access points about every SPAN bytes
in the uncompressed output. The compressed file is left open, and can then
be read randomly, having to decompress on the average SPAN/2 uncompressed
bytes before getting to the desired block of data.
An access point can be created at the start of any deflate block, by saving
the starting file offset and bit of that block, and the 32K bytes of
uncompressed data that precede that block. Also the uncompressed offset of
that block is saved to provide a referece for locating a desired starting
point in the uncompressed stream. build_index() works by decompressing the
input zlib or gzip stream a block at a time, and at the end of each block
deciding if enough uncompressed data has gone by to justify the creation of
a new access point. If so, that point is saved in a data structure that
grows as needed to accommodate the points.
To use the index, an offset in the uncompressed data is provided, for which
the latest accees point at or preceding that offset is located in the index.
The input file is positioned to the specified location in the index, and if
necessary the first few bits of the compressed data is read from the file.
inflate is initialized with those bits and the 32K of uncompressed data, and
the decompression then proceeds until the desired offset in the file is
reached. Then the decompression continues to read the desired uncompressed
data from the file.
Another approach would be to generate the index on demand. In that case,
requests for random access reads from the compressed data would try to use
the index, but if a read far enough past the end of the index is required,
then further index entries would be generated and added.
There is some fair bit of overhead to starting inflation for the random
access, mainly copying the 32K byte dictionary. So if small pieces of the
file are being accessed, it would make sense to implement a cache to hold
some lookahead and avoid many calls to extract() for small lengths.
Another way to build an index would be to use inflateCopy(). That would
not be constrained to have access points at block boundaries, but requires
more memory per access point, and also cannot be saved to file due to the
use of pointers in the state. The approach here allows for storage of the
index in a file.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "zlib.h"
#define local static
#define SPAN 1048576L /* desired distance between access points */
#define WINSIZE 32768U /* sliding window size */
#define CHUNK 16384 /* file input buffer size */
/* access point entry */
struct point {
off_t out; /* corresponding offset in uncompressed data */
off_t in; /* offset in input file of first full byte */
int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
};
/* access point list */
struct access {
int have; /* number of list entries filled in */
int size; /* number of list entries allocated */
struct point *list; /* allocated list */
};
/* Deallocate an index built by build_index() */
local void free_index(struct access *index)
{
if (index != NULL) {
free(index->list);
free(index);
}
}
/* Add an entry to the access point list. If out of memory, deallocate the
existing list and return NULL. */
local struct access *addpoint(struct access *index, int bits,
off_t in, off_t out, unsigned left, unsigned char *window)
{
struct point *next;
/* if list is empty, create it (start with eight points) */
if (index == NULL) {
index = malloc(sizeof(struct access));
if (index == NULL) return NULL;
index->list = malloc(sizeof(struct point) << 3);
if (index->list == NULL) {
free(index);
return NULL;
}
index->size = 8;
index->have = 0;
}
/* if list is full, make it bigger */
else if (index->have == index->size) {
index->size <<= 1;
next = realloc(index->list, sizeof(struct point) * index->size);
if (next == NULL) {
free_index(index);
return NULL;
}
index->list = next;
}
/* fill in entry and increment how many we have */
next = index->list + index->have;
next->bits = bits;
next->in = in;
next->out = out;
if (left)
memcpy(next->window, window + WINSIZE - left, left);
if (left < WINSIZE)
memcpy(next->window + left, window, WINSIZE - left);
index->have++;
/* return list, possibly reallocated */
return index;
}
/* Make one entire pass through the compressed stream and build an index, with
access points about every span bytes of uncompressed output -- span is
chosen to balance the speed of random access against the memory requirements
of the list, about 32K bytes per access point. Note that data after the end
of the first zlib or gzip stream in the file is ignored. build_index()
returns the number of access points on success (>= 1), Z_MEM_ERROR for out
of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
file read error. On success, *built points to the resulting index. */
local int build_index(FILE *in, off_t span, struct access **built)
{
int ret;
off_t totin, totout; /* our own total counters to avoid 4GB limit */
off_t last; /* totout value of last access point */
struct access *index; /* access points being generated */
z_stream strm;
unsigned char input[CHUNK];
unsigned char window[WINSIZE];
/* initialize inflate */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
if (ret != Z_OK)
return ret;
/* inflate the input, maintain a sliding window, and build an index -- this
also validates the integrity of the compressed data using the check
information at the end of the gzip or zlib stream */
totin = totout = last = 0;
index = NULL; /* will be allocated by first addpoint() */
strm.avail_out = 0;
do {
/* get some compressed data from input file */
strm.avail_in = fread(input, 1, CHUNK, in);
if (ferror(in)) {
ret = Z_ERRNO;
goto build_index_error;
}
if (strm.avail_in == 0) {
ret = Z_DATA_ERROR;
goto build_index_error;
}
strm.next_in = input;
/* process all of that, or until end of stream */
do {
/* reset sliding window if necessary */
if (strm.avail_out == 0) {
strm.avail_out = WINSIZE;
strm.next_out = window;
}
/* inflate until out of input, output, or at end of block --
update the total input and output counters */
totin += strm.avail_in;
totout += strm.avail_out;
ret = inflate(&strm, Z_BLOCK); /* return at end of block */
totin -= strm.avail_in;
totout -= strm.avail_out;
if (ret == Z_NEED_DICT)
ret = Z_DATA_ERROR;
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
goto build_index_error;
if (ret == Z_STREAM_END)
break;
/* if at end of block, consider adding an index entry (note that if
data_type indicates an end-of-block, then all of the
uncompressed data from that block has been delivered, and none
of the compressed data after that block has been consumed,
except for up to seven bits) -- the totout == 0 provides an
entry point after the zlib or gzip header, and assures that the
index always has at least one access point; we avoid creating an
access point after the last block by checking bit 6 of data_type
*/
if ((strm.data_type & 128) && !(strm.data_type & 64) &&
(totout == 0 || totout - last > span)) {
index = addpoint(index, strm.data_type & 7, totin,
totout, strm.avail_out, window);
if (index == NULL) {
ret = Z_MEM_ERROR;
goto build_index_error;
}
last = totout;
}
} while (strm.avail_in != 0);
} while (ret != Z_STREAM_END);
/* clean up and return index (release unused entries in list) */
(void)inflateEnd(&strm);
index->list = realloc(index->list, sizeof(struct point) * index->have);
index->size = index->have;
*built = index;
return index->size;
/* return error */
build_index_error:
(void)inflateEnd(&strm);
if (index != NULL)
free_index(index);
return ret;
}
/* Use the index to read len bytes from offset into buf, return bytes read or
negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
the end of the uncompressed data, then extract() will return a value less
than len, indicating how much as actually read into buf. This function
should not return a data error unless the file was modified since the index
was generated. extract() may also return Z_ERRNO if there is an error on
reading or seeking the input file. */
local int extract(FILE *in, struct access *index, off_t offset,
unsigned char *buf, int len)
{
int ret, skip;
z_stream strm;
struct point *here;
unsigned char input[CHUNK];
unsigned char discard[WINSIZE];
/* proceed only if something reasonable to do */
if (len < 0)
return 0;
/* find where in stream to start */
here = index->list;
ret = index->have;
while (--ret && here[1].out <= offset)
here++;
/* initialize file and inflate state to start there */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit2(&strm, -15); /* raw inflate */
if (ret != Z_OK)
return ret;
ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
if (ret == -1)
goto extract_ret;
if (here->bits) {
ret = getc(in);
if (ret == -1) {
ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
goto extract_ret;
}
(void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
}
(void)inflateSetDictionary(&strm, here->window, WINSIZE);
/* skip uncompressed bytes until offset reached, then satisfy request */
offset -= here->out;
strm.avail_in = 0;
skip = 1; /* while skipping to offset */
do {
/* define where to put uncompressed data, and how much */
if (offset == 0 && skip) { /* at offset now */
strm.avail_out = len;
strm.next_out = buf;
skip = 0; /* only do this once */
}
if (offset > WINSIZE) { /* skip WINSIZE bytes */
strm.avail_out = WINSIZE;
strm.next_out = discard;
offset -= WINSIZE;
}
else if (offset != 0) { /* last skip */
strm.avail_out = (unsigned)offset;
strm.next_out = discard;
offset = 0;
}
/* uncompress until avail_out filled, or end of stream */
do {
if (strm.avail_in == 0) {
strm.avail_in = fread(input, 1, CHUNK, in);
if (ferror(in)) {
ret = Z_ERRNO;
goto extract_ret;
}
if (strm.avail_in == 0) {
ret = Z_DATA_ERROR;
goto extract_ret;
}
strm.next_in = input;
}
ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
if (ret == Z_NEED_DICT)
ret = Z_DATA_ERROR;
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
goto extract_ret;
if (ret == Z_STREAM_END)
break;
} while (strm.avail_out != 0);
/* if reach end of stream, then don't keep trying to get more */
if (ret == Z_STREAM_END)
break;
/* do until offset reached and requested data read, or stream ends */
} while (skip);
/* compute number of uncompressed bytes read after offset */
ret = skip ? 0 : len - strm.avail_out;
/* clean up and return bytes read or error */
extract_ret:
(void)inflateEnd(&strm);
return ret;
}
/* Demonstrate the use of build_index() and extract() by processing the file
provided on the command line, and the extracting 16K from about 2/3rds of
the way through the uncompressed output, and writing that to stdout. */
int main(int argc, char **argv)
{
int len;
off_t offset;
FILE *in;
struct access *index = NULL;
unsigned char buf[CHUNK];
/* open input file */
if (argc != 2) {
fprintf(stderr, "usage: zran file.gz\n");
return 1;
}
in = fopen(argv[1], "rb");
if (in == NULL) {
fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
return 1;
}
/* build index */
len = build_index(in, SPAN, &index);
if (len < 0) {
fclose(in);
switch (len) {
case Z_MEM_ERROR:
fprintf(stderr, "zran: out of memory\n");
break;
case Z_DATA_ERROR:
fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
break;
case Z_ERRNO:
fprintf(stderr, "zran: read error on %s\n", argv[1]);
break;
default:
fprintf(stderr, "zran: error %d while building index\n", len);
}
return 1;
}
fprintf(stderr, "zran: built index with %d access points\n", len);
/* use index by reading some bytes from an arbitrary offset */
offset = (index->list[index->have - 1].out << 1) / 3;
len = extract(in, index, offset, buf, CHUNK);
if (len < 0)
fprintf(stderr, "zran: extraction failed: %s error\n",
len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
else {
fwrite(buf, 1, len, stdout);
fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
}
/* clean up and exit */
free_index(index);
fclose(in);
return 0;
}

View File

@ -8,9 +8,7 @@
/* gzclose() is in a separate file so that it is linked in only if it is used.
That way the other gzclose functions can be used instead to avoid linking in
unneeded compression or decompression routines. */
int ZEXPORT gzclose(file)
gzFile file;
{
int ZEXPORT gzclose(gzFile file) {
#ifndef NO_GZCOMPRESS
gz_statep state;

View File

@ -1,5 +1,5 @@
/* gzguts.h -- zlib internal header definitions for gz* operations
* Copyright (C) 2004-2019 Mark Adler
* Copyright (C) 2004-2024 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -7,9 +7,8 @@
# ifndef _LARGEFILE_SOURCE
# define _LARGEFILE_SOURCE 1
# endif
# ifdef _FILE_OFFSET_BITS
# undef _FILE_OFFSET_BITS
# endif
# undef _FILE_OFFSET_BITS
# undef _TIME_BITS
#endif
#ifdef HAVE_HIDDEN
@ -119,8 +118,8 @@
/* gz* functions always use library allocation functions */
#ifndef STDC
extern voidp malloc OF((uInt size));
extern void free OF((voidpf ptr));
extern voidp malloc(uInt size);
extern void free(voidpf ptr);
#endif
/* get errno and strerror definition */
@ -138,10 +137,10 @@
/* provide prototypes for these when building zlib without LFS */
#if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
ZEXTERN z_off64_t ZEXPORT gzseek64(gzFile, z_off64_t, int);
ZEXTERN z_off64_t ZEXPORT gztell64(gzFile);
ZEXTERN z_off64_t ZEXPORT gzoffset64(gzFile);
#endif
/* default memLevel */
@ -203,17 +202,13 @@ typedef struct {
typedef gz_state FAR *gz_statep;
/* shared functions */
void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *));
void ZLIB_INTERNAL gz_error(gz_statep, int, const char *);
#if defined UNDER_CE
char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error));
char ZLIB_INTERNAL *gz_strwinerror(DWORD error);
#endif
/* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t
value -- needed when comparing unsigned to z_off64_t, which is signed
(possible z_off64_t types off_t, off64_t, and long are all signed) */
#ifdef INT_MAX
# define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX)
#else
unsigned ZLIB_INTERNAL gz_intmax OF((void));
# define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax())
#endif
unsigned ZLIB_INTERNAL gz_intmax(void);
#define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax())

113
external/zlib/gzlib.c vendored
View File

@ -1,5 +1,5 @@
/* gzlib.c -- zlib functions common to reading and writing gzip files
* Copyright (C) 2004-2019 Mark Adler
* Copyright (C) 2004-2024 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -15,10 +15,6 @@
#endif
#endif
/* Local functions */
local void gz_reset OF((gz_statep));
local gzFile gz_open OF((const void *, int, const char *));
#if defined UNDER_CE
/* Map the Windows error number in ERROR to a locale-dependent error message
@ -30,9 +26,7 @@ local gzFile gz_open OF((const void *, int, const char *));
The gz_strwinerror function does not change the current setting of
GetLastError. */
char ZLIB_INTERNAL *gz_strwinerror(error)
DWORD error;
{
char ZLIB_INTERNAL *gz_strwinerror(DWORD error) {
static char buf[1024];
wchar_t *msgbuf;
@ -72,9 +66,7 @@ char ZLIB_INTERNAL *gz_strwinerror(error)
#endif /* UNDER_CE */
/* Reset gzip file state */
local void gz_reset(state)
gz_statep state;
{
local void gz_reset(gz_statep state) {
state->x.have = 0; /* no output data available */
if (state->mode == GZ_READ) { /* for reading ... */
state->eof = 0; /* not at end of file */
@ -90,11 +82,7 @@ local void gz_reset(state)
}
/* Open a gzip file either by name or file descriptor. */
local gzFile gz_open(path, fd, mode)
const void *path;
int fd;
const char *mode;
{
local gzFile gz_open(const void *path, int fd, const char *mode) {
gz_statep state;
z_size_t len;
int oflag;
@ -269,26 +257,17 @@ local gzFile gz_open(path, fd, mode)
}
/* -- see zlib.h -- */
gzFile ZEXPORT gzopen(path, mode)
const char *path;
const char *mode;
{
gzFile ZEXPORT gzopen(const char *path, const char *mode) {
return gz_open(path, -1, mode);
}
/* -- see zlib.h -- */
gzFile ZEXPORT gzopen64(path, mode)
const char *path;
const char *mode;
{
gzFile ZEXPORT gzopen64(const char *path, const char *mode) {
return gz_open(path, -1, mode);
}
/* -- see zlib.h -- */
gzFile ZEXPORT gzdopen(fd, mode)
int fd;
const char *mode;
{
gzFile ZEXPORT gzdopen(int fd, const char *mode) {
char *path; /* identifier for error messages */
gzFile gz;
@ -306,19 +285,13 @@ gzFile ZEXPORT gzdopen(fd, mode)
/* -- see zlib.h -- */
#ifdef WIDECHAR
gzFile ZEXPORT gzopen_w(path, mode)
const wchar_t *path;
const char *mode;
{
gzFile ZEXPORT gzopen_w(const wchar_t *path, const char *mode) {
return gz_open(path, -2, mode);
}
#endif
/* -- see zlib.h -- */
int ZEXPORT gzbuffer(file, size)
gzFile file;
unsigned size;
{
int ZEXPORT gzbuffer(gzFile file, unsigned size) {
gz_statep state;
/* get internal structure and check integrity */
@ -335,16 +308,14 @@ int ZEXPORT gzbuffer(file, size)
/* check and set requested size */
if ((size << 1) < size)
return -1; /* need to be able to double it */
if (size < 2)
size = 2; /* need two bytes to check magic header */
if (size < 8)
size = 8; /* needed to behave well with flushing */
state->want = size;
return 0;
}
/* -- see zlib.h -- */
int ZEXPORT gzrewind(file)
gzFile file;
{
int ZEXPORT gzrewind(gzFile file) {
gz_statep state;
/* get internal structure */
@ -365,11 +336,7 @@ int ZEXPORT gzrewind(file)
}
/* -- see zlib.h -- */
z_off64_t ZEXPORT gzseek64(file, offset, whence)
gzFile file;
z_off64_t offset;
int whence;
{
z_off64_t ZEXPORT gzseek64(gzFile file, z_off64_t offset, int whence) {
unsigned n;
z_off64_t ret;
gz_statep state;
@ -442,11 +409,7 @@ z_off64_t ZEXPORT gzseek64(file, offset, whence)
}
/* -- see zlib.h -- */
z_off_t ZEXPORT gzseek(file, offset, whence)
gzFile file;
z_off_t offset;
int whence;
{
z_off_t ZEXPORT gzseek(gzFile file, z_off_t offset, int whence) {
z_off64_t ret;
ret = gzseek64(file, (z_off64_t)offset, whence);
@ -454,9 +417,7 @@ z_off_t ZEXPORT gzseek(file, offset, whence)
}
/* -- see zlib.h -- */
z_off64_t ZEXPORT gztell64(file)
gzFile file;
{
z_off64_t ZEXPORT gztell64(gzFile file) {
gz_statep state;
/* get internal structure and check integrity */
@ -471,9 +432,7 @@ z_off64_t ZEXPORT gztell64(file)
}
/* -- see zlib.h -- */
z_off_t ZEXPORT gztell(file)
gzFile file;
{
z_off_t ZEXPORT gztell(gzFile file) {
z_off64_t ret;
ret = gztell64(file);
@ -481,9 +440,7 @@ z_off_t ZEXPORT gztell(file)
}
/* -- see zlib.h -- */
z_off64_t ZEXPORT gzoffset64(file)
gzFile file;
{
z_off64_t ZEXPORT gzoffset64(gzFile file) {
z_off64_t offset;
gz_statep state;
@ -504,9 +461,7 @@ z_off64_t ZEXPORT gzoffset64(file)
}
/* -- see zlib.h -- */
z_off_t ZEXPORT gzoffset(file)
gzFile file;
{
z_off_t ZEXPORT gzoffset(gzFile file) {
z_off64_t ret;
ret = gzoffset64(file);
@ -514,9 +469,7 @@ z_off_t ZEXPORT gzoffset(file)
}
/* -- see zlib.h -- */
int ZEXPORT gzeof(file)
gzFile file;
{
int ZEXPORT gzeof(gzFile file) {
gz_statep state;
/* get internal structure and check integrity */
@ -531,10 +484,7 @@ int ZEXPORT gzeof(file)
}
/* -- see zlib.h -- */
const char * ZEXPORT gzerror(file, errnum)
gzFile file;
int *errnum;
{
const char * ZEXPORT gzerror(gzFile file, int *errnum) {
gz_statep state;
/* get internal structure and check integrity */
@ -552,9 +502,7 @@ const char * ZEXPORT gzerror(file, errnum)
}
/* -- see zlib.h -- */
void ZEXPORT gzclearerr(file)
gzFile file;
{
void ZEXPORT gzclearerr(gzFile file) {
gz_statep state;
/* get internal structure and check integrity */
@ -578,11 +526,7 @@ void ZEXPORT gzclearerr(file)
memory). Simply save the error message as a static string. If there is an
allocation failure constructing the error message, then convert the error to
out of memory. */
void ZLIB_INTERNAL gz_error(state, err, msg)
gz_statep state;
int err;
const char *msg;
{
void ZLIB_INTERNAL gz_error(gz_statep state, int err, const char *msg) {
/* free previously allocated message and clear */
if (state->msg != NULL) {
if (state->err != Z_MEM_ERROR)
@ -619,21 +563,20 @@ void ZLIB_INTERNAL gz_error(state, err, msg)
#endif
}
#ifndef INT_MAX
/* portably return maximum value for an int (when limits.h presumed not
available) -- we need to do this to cover cases where 2's complement not
used, since C standard permits 1's complement and sign-bit representations,
otherwise we could just use ((unsigned)-1) >> 1 */
unsigned ZLIB_INTERNAL gz_intmax()
{
unsigned p, q;
p = 1;
unsigned ZLIB_INTERNAL gz_intmax(void) {
#ifdef INT_MAX
return INT_MAX;
#else
unsigned p = 1, q;
do {
q = p;
p <<= 1;
p++;
} while (p > q);
return q >> 1;
}
#endif
}

View File

@ -5,25 +5,12 @@
#include "gzguts.h"
/* Local functions */
local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *));
local int gz_avail OF((gz_statep));
local int gz_look OF((gz_statep));
local int gz_decomp OF((gz_statep));
local int gz_fetch OF((gz_statep));
local int gz_skip OF((gz_statep, z_off64_t));
local z_size_t gz_read OF((gz_statep, voidp, z_size_t));
/* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from
state->fd, and update state->eof, state->err, and state->msg as appropriate.
This function needs to loop on read(), since read() is not guaranteed to
read the number of bytes requested, depending on the type of descriptor. */
local int gz_load(state, buf, len, have)
gz_statep state;
unsigned char *buf;
unsigned len;
unsigned *have;
{
local int gz_load(gz_statep state, unsigned char *buf, unsigned len,
unsigned *have) {
int ret;
unsigned get, max = ((unsigned)-1 >> 2) + 1;
@ -53,9 +40,7 @@ local int gz_load(state, buf, len, have)
If strm->avail_in != 0, then the current data is moved to the beginning of
the input buffer, and then the remainder of the buffer is loaded with the
available data from the input file. */
local int gz_avail(state)
gz_statep state;
{
local int gz_avail(gz_statep state) {
unsigned got;
z_streamp strm = &(state->strm);
@ -88,9 +73,7 @@ local int gz_avail(state)
case, all further file reads will be directly to either the output buffer or
a user buffer. If decompressing, the inflate state will be initialized.
gz_look() will return 0 on success or -1 on failure. */
local int gz_look(state)
gz_statep state;
{
local int gz_look(gz_statep state) {
z_streamp strm = &(state->strm);
/* allocate read buffers and inflate memory */
@ -170,9 +153,7 @@ local int gz_look(state)
data. If the gzip stream completes, state->how is reset to LOOK to look for
the next gzip stream or raw data, once state->x.have is depleted. Returns 0
on success, -1 on failure. */
local int gz_decomp(state)
gz_statep state;
{
local int gz_decomp(gz_statep state) {
int ret = Z_OK;
unsigned had;
z_streamp strm = &(state->strm);
@ -224,9 +205,7 @@ local int gz_decomp(state)
looked for to determine whether to copy or decompress. Returns -1 on error,
otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the
end of the input file has been reached and all data has been processed. */
local int gz_fetch(state)
gz_statep state;
{
local int gz_fetch(gz_statep state) {
z_streamp strm = &(state->strm);
do {
@ -254,10 +233,7 @@ local int gz_fetch(state)
}
/* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */
local int gz_skip(state, len)
gz_statep state;
z_off64_t len;
{
local int gz_skip(gz_statep state, z_off64_t len) {
unsigned n;
/* skip over len bytes or reach end-of-file, whichever comes first */
@ -289,11 +265,7 @@ local int gz_skip(state, len)
input. Return the number of bytes read. If zero is returned, either the
end of file was reached, or there was an error. state->err must be
consulted in that case to determine which. */
local z_size_t gz_read(state, buf, len)
gz_statep state;
voidp buf;
z_size_t len;
{
local z_size_t gz_read(gz_statep state, voidp buf, z_size_t len) {
z_size_t got;
unsigned n;
@ -370,11 +342,7 @@ local z_size_t gz_read(state, buf, len)
}
/* -- see zlib.h -- */
int ZEXPORT gzread(file, buf, len)
gzFile file;
voidp buf;
unsigned len;
{
int ZEXPORT gzread(gzFile file, voidp buf, unsigned len) {
gz_statep state;
/* get internal structure */
@ -406,12 +374,7 @@ int ZEXPORT gzread(file, buf, len)
}
/* -- see zlib.h -- */
z_size_t ZEXPORT gzfread(buf, size, nitems, file)
voidp buf;
z_size_t size;
z_size_t nitems;
gzFile file;
{
z_size_t ZEXPORT gzfread(voidp buf, z_size_t size, z_size_t nitems, gzFile file) {
z_size_t len;
gz_statep state;
@ -442,9 +405,7 @@ z_size_t ZEXPORT gzfread(buf, size, nitems, file)
#else
# undef gzgetc
#endif
int ZEXPORT gzgetc(file)
gzFile file;
{
int ZEXPORT gzgetc(gzFile file) {
unsigned char buf[1];
gz_statep state;
@ -469,17 +430,12 @@ int ZEXPORT gzgetc(file)
return gz_read(state, buf, 1) < 1 ? -1 : buf[0];
}
int ZEXPORT gzgetc_(file)
gzFile file;
{
int ZEXPORT gzgetc_(gzFile file) {
return gzgetc(file);
}
/* -- see zlib.h -- */
int ZEXPORT gzungetc(c, file)
int c;
gzFile file;
{
int ZEXPORT gzungetc(int c, gzFile file) {
gz_statep state;
/* get internal structure */
@ -487,6 +443,10 @@ int ZEXPORT gzungetc(c, file)
return -1;
state = (gz_statep)file;
/* in case this was just opened, set up the input buffer */
if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0)
(void)gz_look(state);
/* check that we're reading and that there's no (serious) error */
if (state->mode != GZ_READ ||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
@ -536,11 +496,7 @@ int ZEXPORT gzungetc(c, file)
}
/* -- see zlib.h -- */
char * ZEXPORT gzgets(file, buf, len)
gzFile file;
char *buf;
int len;
{
char * ZEXPORT gzgets(gzFile file, char *buf, int len) {
unsigned left, n;
char *str;
unsigned char *eol;
@ -600,9 +556,7 @@ char * ZEXPORT gzgets(file, buf, len)
}
/* -- see zlib.h -- */
int ZEXPORT gzdirect(file)
gzFile file;
{
int ZEXPORT gzdirect(gzFile file) {
gz_statep state;
/* get internal structure */
@ -620,9 +574,7 @@ int ZEXPORT gzdirect(file)
}
/* -- see zlib.h -- */
int ZEXPORT gzclose_r(file)
gzFile file;
{
int ZEXPORT gzclose_r(gzFile file) {
int ret, err;
gz_statep state;

View File

@ -5,18 +5,10 @@
#include "gzguts.h"
/* Local functions */
local int gz_init OF((gz_statep));
local int gz_comp OF((gz_statep, int));
local int gz_zero OF((gz_statep, z_off64_t));
local z_size_t gz_write OF((gz_statep, voidpc, z_size_t));
/* Initialize state for writing a gzip file. Mark initialization by setting
state->size to non-zero. Return -1 on a memory allocation failure, or 0 on
success. */
local int gz_init(state)
gz_statep state;
{
local int gz_init(gz_statep state) {
int ret;
z_streamp strm = &(state->strm);
@ -70,10 +62,7 @@ local int gz_init(state)
deflate() flush value. If flush is Z_FINISH, then the deflate() state is
reset to start a new gzip stream. If gz->direct is true, then simply write
to the output file without compressing, and ignore flush. */
local int gz_comp(state, flush)
gz_statep state;
int flush;
{
local int gz_comp(gz_statep state, int flush) {
int ret, writ;
unsigned have, put, max = ((unsigned)-1 >> 2) + 1;
z_streamp strm = &(state->strm);
@ -151,10 +140,7 @@ local int gz_comp(state, flush)
/* Compress len zeros to output. Return -1 on a write error or memory
allocation failure by gz_comp(), or 0 on success. */
local int gz_zero(state, len)
gz_statep state;
z_off64_t len;
{
local int gz_zero(gz_statep state, z_off64_t len) {
int first;
unsigned n;
z_streamp strm = &(state->strm);
@ -184,11 +170,7 @@ local int gz_zero(state, len)
/* Write len bytes from buf to file. Return the number of bytes written. If
the returned value is less than len, then there was an error. */
local z_size_t gz_write(state, buf, len)
gz_statep state;
voidpc buf;
z_size_t len;
{
local z_size_t gz_write(gz_statep state, voidpc buf, z_size_t len) {
z_size_t put = len;
/* if len is zero, avoid unnecessary operations */
@ -252,11 +234,7 @@ local z_size_t gz_write(state, buf, len)
}
/* -- see zlib.h -- */
int ZEXPORT gzwrite(file, buf, len)
gzFile file;
voidpc buf;
unsigned len;
{
int ZEXPORT gzwrite(gzFile file, voidpc buf, unsigned len) {
gz_statep state;
/* get internal structure */
@ -280,12 +258,8 @@ int ZEXPORT gzwrite(file, buf, len)
}
/* -- see zlib.h -- */
z_size_t ZEXPORT gzfwrite(buf, size, nitems, file)
voidpc buf;
z_size_t size;
z_size_t nitems;
gzFile file;
{
z_size_t ZEXPORT gzfwrite(voidpc buf, z_size_t size, z_size_t nitems,
gzFile file) {
z_size_t len;
gz_statep state;
@ -310,10 +284,7 @@ z_size_t ZEXPORT gzfwrite(buf, size, nitems, file)
}
/* -- see zlib.h -- */
int ZEXPORT gzputc(file, c)
gzFile file;
int c;
{
int ZEXPORT gzputc(gzFile file, int c) {
unsigned have;
unsigned char buf[1];
gz_statep state;
@ -358,10 +329,7 @@ int ZEXPORT gzputc(file, c)
}
/* -- see zlib.h -- */
int ZEXPORT gzputs(file, s)
gzFile file;
const char *s;
{
int ZEXPORT gzputs(gzFile file, const char *s) {
z_size_t len, put;
gz_statep state;
@ -388,8 +356,7 @@ int ZEXPORT gzputs(file, s)
#include <stdarg.h>
/* -- see zlib.h -- */
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va)
{
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) {
int len;
unsigned left;
char *next;
@ -460,8 +427,7 @@ int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va)
return len;
}
int ZEXPORTVA gzprintf(gzFile file, const char *format, ...)
{
int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) {
va_list va;
int ret;
@ -474,13 +440,10 @@ int ZEXPORTVA gzprintf(gzFile file, const char *format, ...)
#else /* !STDC && !Z_HAVE_STDARG_H */
/* -- see zlib.h -- */
int ZEXPORTVA gzprintf(file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
a11, a12, a13, a14, a15, a16, a17, a18, a19, a20)
gzFile file;
const char *format;
int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
a11, a12, a13, a14, a15, a16, a17, a18, a19, a20;
{
int ZEXPORTVA gzprintf(gzFile file, const char *format, int a1, int a2, int a3,
int a4, int a5, int a6, int a7, int a8, int a9, int a10,
int a11, int a12, int a13, int a14, int a15, int a16,
int a17, int a18, int a19, int a20) {
unsigned len, left;
char *next;
gz_statep state;
@ -562,10 +525,7 @@ int ZEXPORTVA gzprintf(file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
#endif
/* -- see zlib.h -- */
int ZEXPORT gzflush(file, flush)
gzFile file;
int flush;
{
int ZEXPORT gzflush(gzFile file, int flush) {
gz_statep state;
/* get internal structure */
@ -594,11 +554,7 @@ int ZEXPORT gzflush(file, flush)
}
/* -- see zlib.h -- */
int ZEXPORT gzsetparams(file, level, strategy)
gzFile file;
int level;
int strategy;
{
int ZEXPORT gzsetparams(gzFile file, int level, int strategy) {
gz_statep state;
z_streamp strm;
@ -609,7 +565,7 @@ int ZEXPORT gzsetparams(file, level, strategy)
strm = &(state->strm);
/* check that we're writing and that there's no error */
if (state->mode != GZ_WRITE || state->err != Z_OK)
if (state->mode != GZ_WRITE || state->err != Z_OK || state->direct)
return Z_STREAM_ERROR;
/* if no change is requested, then do nothing */
@ -636,9 +592,7 @@ int ZEXPORT gzsetparams(file, level, strategy)
}
/* -- see zlib.h -- */
int ZEXPORT gzclose_w(file)
gzFile file;
{
int ZEXPORT gzclose_w(gzFile file) {
int ret = Z_OK;
gz_statep state;

View File

@ -15,9 +15,6 @@
#include "inflate.h"
#include "inffast.h"
/* function prototypes */
local void fixedtables OF((struct inflate_state FAR *state));
/*
strm provides memory allocation functions in zalloc and zfree, or
Z_NULL to use the library memory allocation functions.
@ -25,13 +22,9 @@ local void fixedtables OF((struct inflate_state FAR *state));
windowBits is in the range 8..15, and window is a user-supplied
window and output buffer that is 2**windowBits bytes.
*/
int ZEXPORT inflateBackInit_(strm, windowBits, window, version, stream_size)
z_streamp strm;
int windowBits;
unsigned char FAR *window;
const char *version;
int stream_size;
{
int ZEXPORT inflateBackInit_(z_streamp strm, int windowBits,
unsigned char FAR *window, const char *version,
int stream_size) {
struct inflate_state FAR *state;
if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
@ -80,9 +73,7 @@ int stream_size;
used for threaded applications, since the rewriting of the tables and virgin
may not be thread-safe.
*/
local void fixedtables(state)
struct inflate_state FAR *state;
{
local void fixedtables(struct inflate_state FAR *state) {
#ifdef BUILDFIXED
static int virgin = 1;
static code *lenfix, *distfix;
@ -248,13 +239,8 @@ struct inflate_state FAR *state;
inflateBack() can also return Z_STREAM_ERROR if the input parameters
are not correct, i.e. strm is Z_NULL or the state was not initialized.
*/
int ZEXPORT inflateBack(strm, in, in_desc, out, out_desc)
z_streamp strm;
in_func in;
void FAR *in_desc;
out_func out;
void FAR *out_desc;
{
int ZEXPORT inflateBack(z_streamp strm, in_func in, void FAR *in_desc,
out_func out, void FAR *out_desc) {
struct inflate_state FAR *state;
z_const unsigned char FAR *next; /* next input */
unsigned char FAR *put; /* next output */
@ -632,9 +618,7 @@ void FAR *out_desc;
return ret;
}
int ZEXPORT inflateBackEnd(strm)
z_streamp strm;
{
int ZEXPORT inflateBackEnd(z_streamp strm) {
if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0)
return Z_STREAM_ERROR;
ZFREE(strm, strm->state);

View File

@ -47,10 +47,7 @@
requires strm->avail_out >= 258 for each loop to avoid checking for
output space.
*/
void ZLIB_INTERNAL inflate_fast(strm, start)
z_streamp strm;
unsigned start; /* inflate()'s starting value for strm->avail_out */
{
void ZLIB_INTERNAL inflate_fast(z_streamp strm, unsigned start) {
struct inflate_state FAR *state;
z_const unsigned char FAR *in; /* local strm->next_in */
z_const unsigned char FAR *last; /* have enough input while in < last */

View File

@ -8,4 +8,4 @@
subject to change. Applications should only use zlib.h.
*/
void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start));
void ZLIB_INTERNAL inflate_fast(z_streamp strm, unsigned start);

View File

@ -91,20 +91,7 @@
# endif
#endif
/* function prototypes */
local int inflateStateCheck OF((z_streamp strm));
local void fixedtables OF((struct inflate_state FAR *state));
local int updatewindow OF((z_streamp strm, const unsigned char FAR *end,
unsigned copy));
#ifdef BUILDFIXED
void makefixed OF((void));
#endif
local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf,
unsigned len));
local int inflateStateCheck(strm)
z_streamp strm;
{
local int inflateStateCheck(z_streamp strm) {
struct inflate_state FAR *state;
if (strm == Z_NULL ||
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
@ -116,9 +103,7 @@ z_streamp strm;
return 0;
}
int ZEXPORT inflateResetKeep(strm)
z_streamp strm;
{
int ZEXPORT inflateResetKeep(z_streamp strm) {
struct inflate_state FAR *state;
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
@ -142,9 +127,7 @@ z_streamp strm;
return Z_OK;
}
int ZEXPORT inflateReset(strm)
z_streamp strm;
{
int ZEXPORT inflateReset(z_streamp strm) {
struct inflate_state FAR *state;
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
@ -155,10 +138,7 @@ z_streamp strm;
return inflateResetKeep(strm);
}
int ZEXPORT inflateReset2(strm, windowBits)
z_streamp strm;
int windowBits;
{
int ZEXPORT inflateReset2(z_streamp strm, int windowBits) {
int wrap;
struct inflate_state FAR *state;
@ -195,12 +175,8 @@ int windowBits;
return inflateReset(strm);
}
int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size)
z_streamp strm;
int windowBits;
const char *version;
int stream_size;
{
int ZEXPORT inflateInit2_(z_streamp strm, int windowBits,
const char *version, int stream_size) {
int ret;
struct inflate_state FAR *state;
@ -239,22 +215,17 @@ int stream_size;
return ret;
}
int ZEXPORT inflateInit_(strm, version, stream_size)
z_streamp strm;
const char *version;
int stream_size;
{
int ZEXPORT inflateInit_(z_streamp strm, const char *version,
int stream_size) {
return inflateInit2_(strm, DEF_WBITS, version, stream_size);
}
int ZEXPORT inflatePrime(strm, bits, value)
z_streamp strm;
int bits;
int value;
{
int ZEXPORT inflatePrime(z_streamp strm, int bits, int value) {
struct inflate_state FAR *state;
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
if (bits == 0)
return Z_OK;
state = (struct inflate_state FAR *)strm->state;
if (bits < 0) {
state->hold = 0;
@ -278,9 +249,7 @@ int value;
used for threaded applications, since the rewriting of the tables and virgin
may not be thread-safe.
*/
local void fixedtables(state)
struct inflate_state FAR *state;
{
local void fixedtables(struct inflate_state FAR *state) {
#ifdef BUILDFIXED
static int virgin = 1;
static code *lenfix, *distfix;
@ -342,7 +311,7 @@ struct inflate_state FAR *state;
a.out > inffixed.h
*/
void makefixed()
void makefixed(void)
{
unsigned low, size;
struct inflate_state state;
@ -396,11 +365,7 @@ void makefixed()
output will fall in the output data, making match copies simpler and faster.
The advantage may be dependent on the size of the processor's data caches.
*/
local int updatewindow(strm, end, copy)
z_streamp strm;
const Bytef *end;
unsigned copy;
{
local int updatewindow(z_streamp strm, const Bytef *end, unsigned copy) {
struct inflate_state FAR *state;
unsigned dist;
@ -622,10 +587,7 @@ unsigned copy;
will return Z_BUF_ERROR if it has not reached the end of the stream.
*/
int ZEXPORT inflate(strm, flush)
z_streamp strm;
int flush;
{
int ZEXPORT inflate(z_streamp strm, int flush) {
struct inflate_state FAR *state;
z_const unsigned char FAR *next; /* next input */
unsigned char FAR *put; /* next output */
@ -1301,9 +1263,7 @@ int flush;
return ret;
}
int ZEXPORT inflateEnd(strm)
z_streamp strm;
{
int ZEXPORT inflateEnd(z_streamp strm) {
struct inflate_state FAR *state;
if (inflateStateCheck(strm))
return Z_STREAM_ERROR;
@ -1315,11 +1275,8 @@ z_streamp strm;
return Z_OK;
}
int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength)
z_streamp strm;
Bytef *dictionary;
uInt *dictLength;
{
int ZEXPORT inflateGetDictionary(z_streamp strm, Bytef *dictionary,
uInt *dictLength) {
struct inflate_state FAR *state;
/* check state */
@ -1338,11 +1295,8 @@ uInt *dictLength;
return Z_OK;
}
int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength)
z_streamp strm;
const Bytef *dictionary;
uInt dictLength;
{
int ZEXPORT inflateSetDictionary(z_streamp strm, const Bytef *dictionary,
uInt dictLength) {
struct inflate_state FAR *state;
unsigned long dictid;
int ret;
@ -1373,10 +1327,7 @@ uInt dictLength;
return Z_OK;
}
int ZEXPORT inflateGetHeader(strm, head)
z_streamp strm;
gz_headerp head;
{
int ZEXPORT inflateGetHeader(z_streamp strm, gz_headerp head) {
struct inflate_state FAR *state;
/* check state */
@ -1401,11 +1352,8 @@ gz_headerp head;
called again with more data and the *have state. *have is initialized to
zero for the first call.
*/
local unsigned syncsearch(have, buf, len)
unsigned FAR *have;
const unsigned char FAR *buf;
unsigned len;
{
local unsigned syncsearch(unsigned FAR *have, const unsigned char FAR *buf,
unsigned len) {
unsigned got;
unsigned next;
@ -1424,9 +1372,7 @@ unsigned len;
return next;
}
int ZEXPORT inflateSync(strm)
z_streamp strm;
{
int ZEXPORT inflateSync(z_streamp strm) {
unsigned len; /* number of bytes to look at or looked at */
int flags; /* temporary to save header status */
unsigned long in, out; /* temporary to save total_in and total_out */
@ -1441,7 +1387,7 @@ z_streamp strm;
/* if first time, start search in bit buffer */
if (state->mode != SYNC) {
state->mode = SYNC;
state->hold <<= state->bits & 7;
state->hold >>= state->bits & 7;
state->bits -= state->bits & 7;
len = 0;
while (state->bits >= 8) {
@ -1482,9 +1428,7 @@ z_streamp strm;
block. When decompressing, PPP checks that at the end of input packet,
inflate is waiting for these length bytes.
*/
int ZEXPORT inflateSyncPoint(strm)
z_streamp strm;
{
int ZEXPORT inflateSyncPoint(z_streamp strm) {
struct inflate_state FAR *state;
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
@ -1492,10 +1436,7 @@ z_streamp strm;
return state->mode == STORED && state->bits == 0;
}
int ZEXPORT inflateCopy(dest, source)
z_streamp dest;
z_streamp source;
{
int ZEXPORT inflateCopy(z_streamp dest, z_streamp source) {
struct inflate_state FAR *state;
struct inflate_state FAR *copy;
unsigned char FAR *window;
@ -1539,10 +1480,7 @@ z_streamp source;
return Z_OK;
}
int ZEXPORT inflateUndermine(strm, subvert)
z_streamp strm;
int subvert;
{
int ZEXPORT inflateUndermine(z_streamp strm, int subvert) {
struct inflate_state FAR *state;
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
@ -1557,10 +1495,7 @@ int subvert;
#endif
}
int ZEXPORT inflateValidate(strm, check)
z_streamp strm;
int check;
{
int ZEXPORT inflateValidate(z_streamp strm, int check) {
struct inflate_state FAR *state;
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
@ -1572,9 +1507,7 @@ int check;
return Z_OK;
}
long ZEXPORT inflateMark(strm)
z_streamp strm;
{
long ZEXPORT inflateMark(z_streamp strm) {
struct inflate_state FAR *state;
if (inflateStateCheck(strm))
@ -1585,9 +1518,7 @@ z_streamp strm;
(state->mode == MATCH ? state->was - state->length : 0));
}
unsigned long ZEXPORT inflateCodesUsed(strm)
z_streamp strm;
{
unsigned long ZEXPORT inflateCodesUsed(z_streamp strm) {
struct inflate_state FAR *state;
if (inflateStateCheck(strm)) return (unsigned long)-1;
state = (struct inflate_state FAR *)strm->state;

View File

@ -1,5 +1,5 @@
/* inftrees.c -- generate Huffman trees for efficient decoding
* Copyright (C) 1995-2022 Mark Adler
* Copyright (C) 1995-2024 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -9,7 +9,7 @@
#define MAXBITS 15
const char inflate_copyright[] =
" inflate 1.2.13 Copyright 1995-2022 Mark Adler ";
" inflate 1.3.1 Copyright 1995-2024 Mark Adler ";
/*
If you use the zlib library in a product, an acknowledgment is welcome
in the documentation of your product. If for some reason you cannot
@ -29,14 +29,9 @@ const char inflate_copyright[] =
table index bits. It will differ if the request is greater than the
longest code or if it is less than the shortest code.
*/
int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work)
codetype type;
unsigned short FAR *lens;
unsigned codes;
code FAR * FAR *table;
unsigned FAR *bits;
unsigned short FAR *work;
{
int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
unsigned codes, code FAR * FAR *table,
unsigned FAR *bits, unsigned short FAR *work) {
unsigned len; /* a code's length in bits */
unsigned sym; /* index of code symbols */
unsigned min, max; /* minimum and maximum code lengths */
@ -62,7 +57,7 @@ unsigned short FAR *work;
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
static const unsigned short lext[31] = { /* Length codes 257..285 extra */
16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 194, 65};
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 203, 77};
static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,

View File

@ -41,8 +41,8 @@ typedef struct {
examples/enough.c found in the zlib distribution. The arguments to that
program are the number of symbols, the initial root table size, and the
maximum bit length of a code. "enough 286 9 15" for literal/length codes
returns returns 852, and "enough 30 6 15" for distance codes returns 592.
The initial root table size (9 or 6) is found in the fifth argument of the
returns 852, and "enough 30 6 15" for distance codes returns 592. The
initial root table size (9 or 6) is found in the fifth argument of the
inflate_table() calls in inflate.c and infback.c. If the root table size is
changed, then these maximum sizes would be need to be recalculated and
updated. */
@ -57,6 +57,6 @@ typedef enum {
DISTS
} codetype;
int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens,
unsigned codes, code FAR * FAR *table,
unsigned FAR *bits, unsigned short FAR *work));
int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
unsigned codes, code FAR * FAR *table,
unsigned FAR *bits, unsigned short FAR *work);

View File

@ -14,9 +14,9 @@ $! 0.02 20061008 Adapt to new Makefile.in
$! 0.03 20091224 Add support for large file check
$! 0.04 20100110 Add new gzclose, gzlib, gzread, gzwrite
$! 0.05 20100221 Exchange zlibdefs.h by zconf.h.in
$! 0.06 20120111 Fix missing amiss_err, update zconf_h.in, fix new exmples
$! 0.06 20120111 Fix missing amiss_err, update zconf_h.in, fix new examples
$! subdir path, update module search in makefile.in
$! 0.07 20120115 Triggered by work done by Alexey Chupahin completly redesigned
$! 0.07 20120115 Triggered by work done by Alexey Chupahin completely redesigned
$! shared image creation
$! 0.08 20120219 Make it work on VAX again, pre-load missing symbols to shared
$! image

View File

@ -29,7 +29,7 @@ CC=gcc
#CFLAGS=-MMD -O
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
#CFLAGS=-MMD -g -DDEBUG
#CFLAGS=-MMD -g -DZLIB_DEBUG
CFLAGS=-MMD -O3 $(BUTT) -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
-Wstrict-prototypes -Wmissing-prototypes

View File

@ -11,7 +11,7 @@ CC=gcc
#CFLAGS=-MMD -O
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
#CFLAGS=-MMD -g -DDEBUG
#CFLAGS=-MMD -g -DZLIB_DEBUG
CFLAGS=-MMD -O3 $(BUTT) -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
-Wstrict-prototypes -Wmissing-prototypes

View File

@ -11,7 +11,7 @@ CC=gcc -Zwin32
#CFLAGS=-MMD -O
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
#CFLAGS=-MMD -g -DDEBUG
#CFLAGS=-MMD -g -DZLIB_DEBUG
CFLAGS=-MMD -O3 $(BUTT) -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
-Wstrict-prototypes -Wmissing-prototypes

View File

@ -14,7 +14,7 @@ CC=gcc -Zomf -s
CFLAGS=-O6 -Wall
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
#CFLAGS=-g -DDEBUG
#CFLAGS=-g -DZLIB_DEBUG
#CFLAGS=-O3 -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
# -Wstrict-prototypes -Wmissing-prototypes

View File

@ -115,7 +115,7 @@ SUCCESS Then
ReDim Preserve bytaryCpr(lngCprSiz - 1)
Open strCprPth For Binary Access Write As #1
Put #1, , bytaryCpr()
Put #1, , lngOriSiz 'Add the the original size value to the end
Put #1, , lngOriSiz 'Add the original size value to the end
(last 4 bytes)
Close #1
Else

View File

@ -25,10 +25,10 @@
<QPG:Files>
<QPG:Add file="../zconf.h" install="/opt/include/" user="root:sys" permission="644"/>
<QPG:Add file="../zlib.h" install="/opt/include/" user="root:sys" permission="644"/>
<QPG:Add file="../libz.so.1.2.8" install="/opt/lib/" user="root:bin" permission="644"/>
<QPG:Add file="libz.so" install="/opt/lib/" component="dev" filetype="symlink" linkto="libz.so.1.2.8"/>
<QPG:Add file="libz.so.1" install="/opt/lib/" filetype="symlink" linkto="libz.so.1.2.8"/>
<QPG:Add file="../libz.so.1.2.8" install="/opt/lib/" component="slib"/>
<QPG:Add file="../libz.so.1.3.1" install="/opt/lib/" user="root:bin" permission="644"/>
<QPG:Add file="libz.so" install="/opt/lib/" component="dev" filetype="symlink" linkto="libz.so.1.3.1"/>
<QPG:Add file="libz.so.1" install="/opt/lib/" filetype="symlink" linkto="libz.so.1.3.1"/>
<QPG:Add file="../libz.so.1.3.1" install="/opt/lib/" component="slib"/>
</QPG:Files>
<QPG:PackageFilter>
@ -63,7 +63,7 @@
</QPM:ProductDescription>
<QPM:ReleaseDescription>
<QPM:ReleaseVersion>1.2.8</QPM:ReleaseVersion>
<QPM:ReleaseVersion>1.3.1</QPM:ReleaseVersion>
<QPM:ReleaseUrgency>Medium</QPM:ReleaseUrgency>
<QPM:ReleaseStability>Stable</QPM:ReleaseStability>
<QPM:ReleaseNoteMinor></QPM:ReleaseNoteMinor>

View File

@ -1,6 +1,6 @@
<?xml version="1.0" ?>
<package name="zlib" version="1.2.13">
<library name="zlib" dlversion="1.2.13" dlname="z">
<package name="zlib" version="1.3.1">
<library name="zlib" dlversion="1.3.1" dlname="z">
<property name="description"> zip compression library </property>
<property name="include-target-dir" value="$(@PACKAGE/install-includedir)" />

542
external/zlib/trees.c vendored
View File

@ -1,5 +1,5 @@
/* trees.c -- output deflated data using Huffman coding
* Copyright (C) 1995-2021 Jean-loup Gailly
* Copyright (C) 1995-2024 Jean-loup Gailly
* detect_data_type() function provided freely by Cosmin Truta, 2006
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -122,39 +122,116 @@ struct static_tree_desc_s {
int max_length; /* max bit length for the codes */
};
local const static_tree_desc static_l_desc =
#ifdef NO_INIT_GLOBAL_POINTERS
# define TCONST
#else
# define TCONST const
#endif
local TCONST static_tree_desc static_l_desc =
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
local const static_tree_desc static_d_desc =
local TCONST static_tree_desc static_d_desc =
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
local const static_tree_desc static_bl_desc =
local TCONST static_tree_desc static_bl_desc =
{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
/* ===========================================================================
* Local (static) routines in this file.
* Output a short LSB first on the stream.
* IN assertion: there is enough room in pendingBuf.
*/
#define put_short(s, w) { \
put_byte(s, (uch)((w) & 0xff)); \
put_byte(s, (uch)((ush)(w) >> 8)); \
}
local void tr_static_init OF((void));
local void init_block OF((deflate_state *s));
local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
local void build_tree OF((deflate_state *s, tree_desc *desc));
local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
local int build_bl_tree OF((deflate_state *s));
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
int blcodes));
local void compress_block OF((deflate_state *s, const ct_data *ltree,
const ct_data *dtree));
local int detect_data_type OF((deflate_state *s));
local unsigned bi_reverse OF((unsigned code, int len));
local void bi_windup OF((deflate_state *s));
local void bi_flush OF((deflate_state *s));
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
local unsigned bi_reverse(unsigned code, int len) {
register unsigned res = 0;
do {
res |= code & 1;
code >>= 1, res <<= 1;
} while (--len > 0);
return res >> 1;
}
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
local void bi_flush(deflate_state *s) {
if (s->bi_valid == 16) {
put_short(s, s->bi_buf);
s->bi_buf = 0;
s->bi_valid = 0;
} else if (s->bi_valid >= 8) {
put_byte(s, (Byte)s->bi_buf);
s->bi_buf >>= 8;
s->bi_valid -= 8;
}
}
/* ===========================================================================
* Flush the bit buffer and align the output on a byte boundary
*/
local void bi_windup(deflate_state *s) {
if (s->bi_valid > 8) {
put_short(s, s->bi_buf);
} else if (s->bi_valid > 0) {
put_byte(s, (Byte)s->bi_buf);
}
s->bi_buf = 0;
s->bi_valid = 0;
#ifdef ZLIB_DEBUG
s->bits_sent = (s->bits_sent + 7) & ~7;
#endif
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
unsigned code = 0; /* running code value */
int bits; /* bit index */
int n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++) {
code = (code + bl_count[bits - 1]) << 1;
next_code[bits] = (ush)code;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
"inconsistent bit counts");
Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n++) {
int len = tree[n].Len;
if (len == 0) continue;
/* Now reverse the bits */
tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
}
}
#ifdef GEN_TREES_H
local void gen_trees_header OF((void));
local void gen_trees_header(void);
#endif
#ifndef ZLIB_DEBUG
@ -167,27 +244,12 @@ local void gen_trees_header OF((void));
send_bits(s, tree[c].Code, tree[c].Len); }
#endif
/* ===========================================================================
* Output a short LSB first on the stream.
* IN assertion: there is enough room in pendingBuf.
*/
#define put_short(s, w) { \
put_byte(s, (uch)((w) & 0xff)); \
put_byte(s, (uch)((ush)(w) >> 8)); \
}
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
#ifdef ZLIB_DEBUG
local void send_bits OF((deflate_state *s, int value, int length));
local void send_bits(s, value, length)
deflate_state *s;
int value; /* value to send */
int length; /* number of bits */
{
local void send_bits(deflate_state *s, int value, int length) {
Tracevv((stderr," l %2d v %4x ", length, value));
Assert(length > 0 && length <= 15, "invalid length");
s->bits_sent += (ulg)length;
@ -229,8 +291,7 @@ local void send_bits(s, value, length)
/* ===========================================================================
* Initialize the various 'constant' tables.
*/
local void tr_static_init()
{
local void tr_static_init(void) {
#if defined(GEN_TREES_H) || !defined(STDC)
static int static_init_done = 0;
int n; /* iterates over tree elements */
@ -323,8 +384,7 @@ local void tr_static_init()
((i) == (last)? "\n};\n\n" : \
((i) % (width) == (width) - 1 ? ",\n" : ", "))
void gen_trees_header()
{
void gen_trees_header(void) {
FILE *header = fopen("trees.h", "w");
int i;
@ -373,12 +433,26 @@ void gen_trees_header()
}
#endif /* GEN_TREES_H */
/* ===========================================================================
* Initialize a new block.
*/
local void init_block(deflate_state *s) {
int n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
s->dyn_ltree[END_BLOCK].Freq = 1;
s->opt_len = s->static_len = 0L;
s->sym_next = s->matches = 0;
}
/* ===========================================================================
* Initialize the tree data structures for a new zlib stream.
*/
void ZLIB_INTERNAL _tr_init(s)
deflate_state *s;
{
void ZLIB_INTERNAL _tr_init(deflate_state *s) {
tr_static_init();
s->l_desc.dyn_tree = s->dyn_ltree;
@ -401,24 +475,6 @@ void ZLIB_INTERNAL _tr_init(s)
init_block(s);
}
/* ===========================================================================
* Initialize a new block.
*/
local void init_block(s)
deflate_state *s;
{
int n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
s->dyn_ltree[END_BLOCK].Freq = 1;
s->opt_len = s->static_len = 0L;
s->sym_next = s->matches = 0;
}
#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */
@ -448,11 +504,7 @@ local void init_block(s)
* when the heap property is re-established (each father smaller than its
* two sons).
*/
local void pqdownheap(s, tree, k)
deflate_state *s;
ct_data *tree; /* the tree to restore */
int k; /* node to move down */
{
local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
int v = s->heap[k];
int j = k << 1; /* left son of k */
while (j <= s->heap_len) {
@ -483,10 +535,7 @@ local void pqdownheap(s, tree, k)
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
local void gen_bitlen(s, desc)
deflate_state *s;
tree_desc *desc; /* the tree descriptor */
{
local void gen_bitlen(deflate_state *s, tree_desc *desc) {
ct_data *tree = desc->dyn_tree;
int max_code = desc->max_code;
const ct_data *stree = desc->stat_desc->static_tree;
@ -561,48 +610,9 @@ local void gen_bitlen(s, desc)
}
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
local void gen_codes(tree, max_code, bl_count)
ct_data *tree; /* the tree to decorate */
int max_code; /* largest code with non zero frequency */
ushf *bl_count; /* number of codes at each bit length */
{
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
unsigned code = 0; /* running code value */
int bits; /* bit index */
int n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++) {
code = (code + bl_count[bits - 1]) << 1;
next_code[bits] = (ush)code;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
"inconsistent bit counts");
Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n++) {
int len = tree[n].Len;
if (len == 0) continue;
/* Now reverse the bits */
tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
}
}
#ifdef DUMP_BL_TREE
# include <stdio.h>
#endif
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
@ -612,10 +622,7 @@ local void gen_codes(tree, max_code, bl_count)
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
local void build_tree(s, desc)
deflate_state *s;
tree_desc *desc; /* the tree descriptor */
{
local void build_tree(deflate_state *s, tree_desc *desc) {
ct_data *tree = desc->dyn_tree;
const ct_data *stree = desc->stat_desc->static_tree;
int elems = desc->stat_desc->elems;
@ -700,11 +707,7 @@ local void build_tree(s, desc)
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
local void scan_tree(s, tree, max_code)
deflate_state *s;
ct_data *tree; /* the tree to be scanned */
int max_code; /* and its largest code of non zero frequency */
{
local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
@ -745,11 +748,7 @@ local void scan_tree(s, tree, max_code)
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
local void send_tree(s, tree, max_code)
deflate_state *s;
ct_data *tree; /* the tree to be scanned */
int max_code; /* and its largest code of non zero frequency */
{
local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
@ -796,9 +795,7 @@ local void send_tree(s, tree, max_code)
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
local int build_bl_tree(s)
deflate_state *s;
{
local int build_bl_tree(deflate_state *s) {
int max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
@ -831,10 +828,8 @@ local int build_bl_tree(s)
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
local void send_all_trees(s, lcodes, dcodes, blcodes)
deflate_state *s;
int lcodes, dcodes, blcodes; /* number of codes for each tree */
{
local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
int blcodes) {
int rank; /* index in bl_order */
Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
@ -860,12 +855,8 @@ local void send_all_trees(s, lcodes, dcodes, blcodes)
/* ===========================================================================
* Send a stored block
*/
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
deflate_state *s;
charf *buf; /* input block */
ulg stored_len; /* length of input block */
int last; /* one if this is the last block for a file */
{
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
ulg stored_len, int last) {
send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
bi_windup(s); /* align on byte boundary */
put_short(s, (ush)stored_len);
@ -884,9 +875,7 @@ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
/* ===========================================================================
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
*/
void ZLIB_INTERNAL _tr_flush_bits(s)
deflate_state *s;
{
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
bi_flush(s);
}
@ -894,9 +883,7 @@ void ZLIB_INTERNAL _tr_flush_bits(s)
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
*/
void ZLIB_INTERNAL _tr_align(s)
deflate_state *s;
{
void ZLIB_INTERNAL _tr_align(deflate_state *s) {
send_bits(s, STATIC_TREES<<1, 3);
send_code(s, END_BLOCK, static_ltree);
#ifdef ZLIB_DEBUG
@ -905,16 +892,108 @@ void ZLIB_INTERNAL _tr_align(s)
bi_flush(s);
}
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
local void compress_block(deflate_state *s, const ct_data *ltree,
const ct_data *dtree) {
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
unsigned sx = 0; /* running index in symbol buffers */
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */
if (s->sym_next != 0) do {
#ifdef LIT_MEM
dist = s->d_buf[sx];
lc = s->l_buf[sx++];
#else
dist = s->sym_buf[sx++] & 0xff;
dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
lc = s->sym_buf[sx++];
#endif
if (dist == 0) {
send_code(s, lc, ltree); /* send a literal byte */
Tracecv(isgraph(lc), (stderr," '%c' ", lc));
} else {
/* Here, lc is the match length - MIN_MATCH */
code = _length_code[lc];
send_code(s, code + LITERALS + 1, ltree); /* send length code */
extra = extra_lbits[code];
if (extra != 0) {
lc -= base_length[code];
send_bits(s, lc, extra); /* send the extra length bits */
}
dist--; /* dist is now the match distance - 1 */
code = d_code(dist);
Assert (code < D_CODES, "bad d_code");
send_code(s, code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra != 0) {
dist -= (unsigned)base_dist[code];
send_bits(s, dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
/* Check for no overlay of pending_buf on needed symbols */
#ifdef LIT_MEM
Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
#else
Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
#endif
} while (sx < s->sym_next);
send_code(s, END_BLOCK, ltree);
}
/* ===========================================================================
* Check if the data type is TEXT or BINARY, using the following algorithm:
* - TEXT if the two conditions below are satisfied:
* a) There are no non-portable control characters belonging to the
* "block list" (0..6, 14..25, 28..31).
* b) There is at least one printable character belonging to the
* "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
* - BINARY otherwise.
* - The following partially-portable control characters form a
* "gray list" that is ignored in this detection algorithm:
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
* IN assertion: the fields Freq of dyn_ltree are set.
*/
local int detect_data_type(deflate_state *s) {
/* block_mask is the bit mask of block-listed bytes
* set bits 0..6, 14..25, and 28..31
* 0xf3ffc07f = binary 11110011111111111100000001111111
*/
unsigned long block_mask = 0xf3ffc07fUL;
int n;
/* Check for non-textual ("block-listed") bytes. */
for (n = 0; n <= 31; n++, block_mask >>= 1)
if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
return Z_BINARY;
/* Check for textual ("allow-listed") bytes. */
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
|| s->dyn_ltree[13].Freq != 0)
return Z_TEXT;
for (n = 32; n < LITERALS; n++)
if (s->dyn_ltree[n].Freq != 0)
return Z_TEXT;
/* There are no "block-listed" or "allow-listed" bytes:
* this stream either is empty or has tolerated ("gray-listed") bytes only.
*/
return Z_BINARY;
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and write out the encoded block.
*/
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
deflate_state *s;
charf *buf; /* input block, or NULL if too old */
ulg stored_len; /* length of input block */
int last; /* one if this is the last block for a file */
{
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
ulg stored_len, int last) {
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex = 0; /* index of last bit length code of non zero freq */
@ -1011,14 +1090,15 @@ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
int ZLIB_INTERNAL _tr_tally(s, dist, lc)
deflate_state *s;
unsigned dist; /* distance of matched string */
unsigned lc; /* match length - MIN_MATCH or unmatched char (dist==0) */
{
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
#ifdef LIT_MEM
s->d_buf[s->sym_next] = (ush)dist;
s->l_buf[s->sym_next++] = (uch)lc;
#else
s->sym_buf[s->sym_next++] = (uch)dist;
s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
s->sym_buf[s->sym_next++] = (uch)lc;
#endif
if (dist == 0) {
/* lc is the unmatched char */
s->dyn_ltree[lc].Freq++;
@ -1035,147 +1115,3 @@ int ZLIB_INTERNAL _tr_tally(s, dist, lc)
}
return (s->sym_next == s->sym_end);
}
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
local void compress_block(s, ltree, dtree)
deflate_state *s;
const ct_data *ltree; /* literal tree */
const ct_data *dtree; /* distance tree */
{
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
unsigned sx = 0; /* running index in sym_buf */
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */
if (s->sym_next != 0) do {
dist = s->sym_buf[sx++] & 0xff;
dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
lc = s->sym_buf[sx++];
if (dist == 0) {
send_code(s, lc, ltree); /* send a literal byte */
Tracecv(isgraph(lc), (stderr," '%c' ", lc));
} else {
/* Here, lc is the match length - MIN_MATCH */
code = _length_code[lc];
send_code(s, code + LITERALS + 1, ltree); /* send length code */
extra = extra_lbits[code];
if (extra != 0) {
lc -= base_length[code];
send_bits(s, lc, extra); /* send the extra length bits */
}
dist--; /* dist is now the match distance - 1 */
code = d_code(dist);
Assert (code < D_CODES, "bad d_code");
send_code(s, code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra != 0) {
dist -= (unsigned)base_dist[code];
send_bits(s, dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
/* Check that the overlay between pending_buf and sym_buf is ok: */
Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
} while (sx < s->sym_next);
send_code(s, END_BLOCK, ltree);
}
/* ===========================================================================
* Check if the data type is TEXT or BINARY, using the following algorithm:
* - TEXT if the two conditions below are satisfied:
* a) There are no non-portable control characters belonging to the
* "block list" (0..6, 14..25, 28..31).
* b) There is at least one printable character belonging to the
* "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
* - BINARY otherwise.
* - The following partially-portable control characters form a
* "gray list" that is ignored in this detection algorithm:
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
* IN assertion: the fields Freq of dyn_ltree are set.
*/
local int detect_data_type(s)
deflate_state *s;
{
/* block_mask is the bit mask of block-listed bytes
* set bits 0..6, 14..25, and 28..31
* 0xf3ffc07f = binary 11110011111111111100000001111111
*/
unsigned long block_mask = 0xf3ffc07fUL;
int n;
/* Check for non-textual ("block-listed") bytes. */
for (n = 0; n <= 31; n++, block_mask >>= 1)
if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
return Z_BINARY;
/* Check for textual ("allow-listed") bytes. */
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
|| s->dyn_ltree[13].Freq != 0)
return Z_TEXT;
for (n = 32; n < LITERALS; n++)
if (s->dyn_ltree[n].Freq != 0)
return Z_TEXT;
/* There are no "block-listed" or "allow-listed" bytes:
* this stream either is empty or has tolerated ("gray-listed") bytes only.
*/
return Z_BINARY;
}
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
local unsigned bi_reverse(code, len)
unsigned code; /* the value to invert */
int len; /* its bit length */
{
register unsigned res = 0;
do {
res |= code & 1;
code >>= 1, res <<= 1;
} while (--len > 0);
return res >> 1;
}
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
local void bi_flush(s)
deflate_state *s;
{
if (s->bi_valid == 16) {
put_short(s, s->bi_buf);
s->bi_buf = 0;
s->bi_valid = 0;
} else if (s->bi_valid >= 8) {
put_byte(s, (Byte)s->bi_buf);
s->bi_buf >>= 8;
s->bi_valid -= 8;
}
}
/* ===========================================================================
* Flush the bit buffer and align the output on a byte boundary
*/
local void bi_windup(s)
deflate_state *s;
{
if (s->bi_valid > 8) {
put_short(s, s->bi_buf);
} else if (s->bi_valid > 0) {
put_byte(s, (Byte)s->bi_buf);
}
s->bi_buf = 0;
s->bi_valid = 0;
#ifdef ZLIB_DEBUG
s->bits_sent = (s->bits_sent + 7) & ~7;
#endif
}

View File

@ -24,12 +24,8 @@
Z_DATA_ERROR if the input data was corrupted, including if the input data is
an incomplete zlib stream.
*/
int ZEXPORT uncompress2(dest, destLen, source, sourceLen)
Bytef *dest;
uLongf *destLen;
const Bytef *source;
uLong *sourceLen;
{
int ZEXPORT uncompress2(Bytef *dest, uLongf *destLen, const Bytef *source,
uLong *sourceLen) {
z_stream stream;
int err;
const uInt max = (uInt)-1;
@ -83,11 +79,7 @@ int ZEXPORT uncompress2(dest, destLen, source, sourceLen)
err;
}
int ZEXPORT uncompress(dest, destLen, source, sourceLen)
Bytef *dest;
uLongf *destLen;
const Bytef *source;
uLong sourceLen;
{
int ZEXPORT uncompress(Bytef *dest, uLongf *destLen, const Bytef *source,
uLong sourceLen) {
return uncompress2(dest, destLen, source, &sourceLen);
}

View File

@ -3,7 +3,7 @@
This document describes the design, the rationale, and the usage
of the official DLL build of zlib, named ZLIB1.DLL. If you have
of the common DLL build of zlib, named ZLIB1.DLL. If you have
general questions about zlib, you should see the file "FAQ" found
in the zlib distribution, or at the following location:
http://www.gzip.org/zlib/zlib_faq.html
@ -11,13 +11,9 @@ in the zlib distribution, or at the following location:
1. What is ZLIB1.DLL, and how can I get it?
- ZLIB1.DLL is the official build of zlib as a DLL.
- ZLIB1.DLL is the common build of zlib as a DLL.
(Please remark the character '1' in the name.)
Pointers to a precompiled ZLIB1.DLL can be found in the zlib
web site at:
http://www.zlib.net/
Applications that link to ZLIB1.DLL can rely on the following
specification:
@ -379,18 +375,6 @@ in the zlib distribution, or at the following location:
code. But you can make your own private DLL build, under a
different file name, as suggested in the previous answer.
17. I made my own ZLIB1.DLL build. Can I test it for compliance?
- We prefer that you download the official DLL from the zlib
web site. If you need something peculiar from this DLL, you
can send your suggestion to the zlib mailing list.
However, in case you do rebuild the DLL yourself, you can run
it with the test programs found in the DLL distribution.
Running these test programs is not a guarantee of compliance,
but a failure can imply a detected problem.
**
This document is written and maintained by

View File

@ -3,7 +3,6 @@
#
# Usage:
# make -f win32/Makefile.bor
# make -f win32/Makefile.bor LOCAL_ZLIB=-DASMV OBJA=match.obj OBJPA=+match.obj
# ------------ Borland C++ ------------

View File

@ -11,10 +11,6 @@
#
# make -fwin32/Makefile.gcc; make test testdll -fwin32/Makefile.gcc
#
# To use the asm code, type:
# cp contrib/asm?86/match.S ./match.S
# make LOC=-DASMV OBJA=match.o -fwin32/Makefile.gcc
#
# To install libz.a, zconf.h and zlib.h in the system directories, type:
#
# make install -fwin32/Makefile.gcc
@ -38,8 +34,7 @@ IMPLIB = libz.dll.a
#
SHARED_MODE=0
#LOC = -DASMV
#LOC = -DDEBUG -g
#LOC = -DZLIB_DEBUG -g
PREFIX =
CC = $(PREFIX)gcc

View File

@ -4,10 +4,6 @@
# Usage:
# nmake -f win32/Makefile.msc (standard build)
# nmake -f win32/Makefile.msc LOC=-DFOO (nonstandard build)
# nmake -f win32/Makefile.msc LOC="-DASMV -DASMINF" \
# OBJA="inffas32.obj match686.obj" (use ASM code, x86)
# nmake -f win32/Makefile.msc AS=ml64 LOC="-DASMV -DASMINF -I." \
# OBJA="inffasx64.obj gvmat64.obj inffas8664.obj" (use ASM code, x64)
# The toplevel directory of the source tree.
#
@ -27,13 +23,13 @@ LD = link
AR = lib
RC = rc
CFLAGS = -nologo -MD -W3 -O2 -Oy- -Zi -Fd"zlib" $(LOC)
WFLAGS = -DHAS_PCLMUL -D_CRT_SECURE_NO_DEPRECATE -D_CRT_NONSTDC_NO_DEPRECATE
WFLAGS = -D_CRT_SECURE_NO_DEPRECATE -D_CRT_NONSTDC_NO_DEPRECATE
ASFLAGS = -coff -Zi $(LOC)
LDFLAGS = -nologo -debug -incremental:no -opt:ref
ARFLAGS = -nologo
RCFLAGS = /dWIN32 /r
OBJS = adler32.obj compress.obj crc32_simd.obj crc32.obj deflate.obj gzclose.obj gzlib.obj gzread.obj \
OBJS = adler32.obj compress.obj crc32.obj deflate.obj gzclose.obj gzlib.obj gzread.obj \
gzwrite.obj infback.obj inflate.obj inftrees.obj inffast.obj trees.obj uncompr.obj zutil.obj
OBJA =

View File

@ -1,6 +1,6 @@
ZLIB DATA COMPRESSION LIBRARY
zlib 1.2.8 is a general purpose data compression library. All the code is
zlib 1.3.1 is a general purpose data compression library. All the code is
thread safe. The data format used by the zlib library is described by RFCs
(Request for Comments) 1950 to 1952 in the files
http://www.ietf.org/rfc/rfc1950.txt (zlib format), rfc1951.txt (deflate format)
@ -16,13 +16,13 @@ is http://zlib.net/ . Before reporting a problem, please check this site to
verify that you have the latest version of zlib; otherwise get the latest
version and check whether the problem still exists or not.
PLEASE read DLL_FAQ.txt, and the the zlib FAQ http://zlib.net/zlib_faq.html
before asking for help.
PLEASE read DLL_FAQ.txt, and the zlib FAQ http://zlib.net/zlib_faq.html before
asking for help.
Manifest:
The package zlib-1.2.8-win32-x86.zip will contain the following files:
The package zlib-1.3.1-win32-x86.zip will contain the following files:
README-WIN32.txt This document
ChangeLog Changes since previous zlib packages
@ -72,7 +72,7 @@ are too numerous to cite here.
Copyright notice:
(C) 1995-2012 Jean-loup Gailly and Mark Adler
(C) 1995-2017 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages

View File

@ -1,3 +1,3 @@
To build zlib using the Microsoft Visual C++ environment,
use the appropriate project from the projects/ directory.
use the appropriate project from the contrib/vstudio/ directory.

View File

@ -8,6 +8,7 @@ EXPORTS
inflateEnd
; advanced functions
deflateSetDictionary
deflateGetDictionary
deflateCopy
deflateReset
deflateParams
@ -33,12 +34,15 @@ EXPORTS
compress2
compressBound
uncompress
uncompress2
gzopen
gzdopen
gzbuffer
gzsetparams
gzread
gzfread
gzwrite
gzfwrite
gzprintf
gzvprintf
gzputs
@ -65,11 +69,16 @@ EXPORTS
gzoffset64
adler32_combine64
crc32_combine64
crc32_combine_gen64
; checksum functions
adler32
adler32_z
crc32
crc32_z
adler32_combine
crc32_combine
crc32_combine_gen
crc32_combine_op
; various hacks, don't look :)
deflateInit_
deflateInit2_
@ -81,6 +90,8 @@ EXPORTS
inflateSyncPoint
get_crc_table
inflateUndermine
inflateValidate
inflateCodesUsed
inflateResetKeep
deflateResetKeep
gzopen_w

View File

@ -26,7 +26,7 @@ BEGIN
VALUE "FileDescription", "zlib data compression library\0"
VALUE "FileVersion", ZLIB_VERSION "\0"
VALUE "InternalName", "zlib1.dll\0"
VALUE "LegalCopyright", "(C) 1995-2013 Jean-loup Gailly & Mark Adler\0"
VALUE "LegalCopyright", "(C) 1995-2022 Jean-loup Gailly & Mark Adler\0"
VALUE "OriginalFilename", "zlib1.dll\0"
VALUE "ProductName", "zlib\0"
VALUE "ProductVersion", ZLIB_VERSION "\0"

View File

@ -1,5 +1,5 @@
/* zconf.h -- configuration of the zlib compression library
* Copyright (C) 1995-2016 Jean-loup Gailly, Mark Adler
* Copyright (C) 1995-2024 Jean-loup Gailly, Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -243,7 +243,11 @@
#endif
#ifdef Z_SOLO
typedef unsigned long z_size_t;
# ifdef _WIN64
typedef unsigned long long z_size_t;
# else
typedef unsigned long z_size_t;
# endif
#else
# define z_longlong long long
# if defined(NO_SIZE_T)
@ -298,14 +302,6 @@
# endif
#endif
#ifndef Z_ARG /* function prototypes for stdarg */
# if defined(STDC) || defined(Z_HAVE_STDARG_H)
# define Z_ARG(args) args
# else
# define Z_ARG(args) ()
# endif
#endif
/* The following definitions for FAR are needed only for MSDOS mixed
* model programming (small or medium model with some far allocations).
* This was tested only with MSC; for other MSDOS compilers you may have
@ -522,7 +518,7 @@ typedef uLong FAR uLongf;
#if !defined(_WIN32) && defined(Z_LARGE64)
# define z_off64_t off64_t
#else
# if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO)
# if defined(_WIN32) && !defined(__GNUC__)
# define z_off64_t __int64
# else
# define z_off64_t z_off_t

70
external/zlib/zlib.3 vendored
View File

@ -1,4 +1,4 @@
.TH ZLIB 3 "28 Apr 2013"
.TH ZLIB 3 "22 Jan 2024"
.SH NAME
zlib \- compression/decompression library
.SH SYNOPSIS
@ -48,32 +48,10 @@ Changes to this version are documented in the file
that accompanies the source.
.LP
.I zlib
is available in Java using the java.util.zip package:
.IP
http://java.sun.com/developer/technicalArticles/Programming/compression/
is built in to many languages and operating systems, including but not limited to
Java, Python, .NET, PHP, Perl, Ruby, Swift, and Go.
.LP
A Perl interface to
.IR zlib ,
written by Paul Marquess (pmqs@cpan.org),
is available at CPAN (Comprehensive Perl Archive Network) sites,
including:
.IP
http://search.cpan.org/~pmqs/IO-Compress-Zlib/
.LP
A Python interface to
.IR zlib ,
written by A.M. Kuchling (amk@magnet.com),
is available in Python 1.5 and later versions:
.IP
http://docs.python.org/library/zlib.html
.LP
.I zlib
is built into
.IR tcl:
.IP
http://wiki.tcl.tk/4610
.LP
An experimental package to read and write files in .zip format,
An experimental package to read and write files in the .zip format,
written on top of
.I zlib
by Gilles Vollant (info@winimage.com),
@ -92,7 +70,9 @@ web site can be found at:
.IP
http://zlib.net/
.LP
The data format used by the zlib library is described by RFC
The data format used by the
.I zlib
library is described by RFC
(Request for Comments) 1950 to 1952 in the files:
.IP
http://tools.ietf.org/html/rfc1950 (for the zlib header and trailer format)
@ -124,17 +104,35 @@ http://zlib.net/zlib_faq.html
before asking for help.
Send questions and/or comments to zlib@gzip.org,
or (for the Windows DLL version) to Gilles Vollant (info@winimage.com).
.SH AUTHORS
Version 1.2.8
Copyright (C) 1995-2013 Jean-loup Gailly (jloup@gzip.org)
and Mark Adler (madler@alumni.caltech.edu).
.SH AUTHORS AND LICENSE
Version 1.3.1
.LP
This software is provided "as-is,"
without any express or implied warranty.
In no event will the authors be held liable for any damages
Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
.LP
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
See the distribution directory with respect to requirements
governing redistribution.
.LP
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
.LP
.nr step 1 1
.IP \n[step]. 3
The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
.IP \n+[step].
Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
.IP \n+[step].
This notice may not be removed or altered from any source distribution.
.LP
Jean-loup Gailly Mark Adler
.br
jloup@gzip.org madler@alumni.caltech.edu
.LP
The deflate format used by
.I zlib
was defined by Phil Katz.

Binary file not shown.

391
external/zlib/zlib.h vendored
View File

@ -1,7 +1,7 @@
/* zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.13, October 13th, 2022
version 1.3.1, January 22nd, 2024
Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
@ -37,11 +37,11 @@
extern "C" {
#endif
#define ZLIB_VERSION "1.2.13"
#define ZLIB_VERNUM 0x12d0
#define ZLIB_VERSION "1.3.1"
#define ZLIB_VERNUM 0x1310
#define ZLIB_VER_MAJOR 1
#define ZLIB_VER_MINOR 2
#define ZLIB_VER_REVISION 13
#define ZLIB_VER_MINOR 3
#define ZLIB_VER_REVISION 1
#define ZLIB_VER_SUBREVISION 0
/*
@ -78,8 +78,8 @@ extern "C" {
even in the case of corrupted input.
*/
typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
typedef void (*free_func) OF((voidpf opaque, voidpf address));
typedef voidpf (*alloc_func)(voidpf opaque, uInt items, uInt size);
typedef void (*free_func)(voidpf opaque, voidpf address);
struct internal_state;
@ -217,7 +217,7 @@ typedef gz_header FAR *gz_headerp;
/* basic functions */
ZEXTERN const char * ZEXPORT zlibVersion OF((void));
ZEXTERN const char * ZEXPORT zlibVersion(void);
/* The application can compare zlibVersion and ZLIB_VERSION for consistency.
If the first character differs, the library code actually used is not
compatible with the zlib.h header file used by the application. This check
@ -225,12 +225,12 @@ ZEXTERN const char * ZEXPORT zlibVersion OF((void));
*/
/*
ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
ZEXTERN int ZEXPORT deflateInit(z_streamp strm, int level);
Initializes the internal stream state for compression. The fields
zalloc, zfree and opaque must be initialized before by the caller. If
zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
allocation functions.
allocation functions. total_in, total_out, adler, and msg are initialized.
The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
1 gives best speed, 9 gives best compression, 0 gives no compression at all
@ -247,7 +247,7 @@ ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
*/
ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
ZEXTERN int ZEXPORT deflate(z_streamp strm, int flush);
/*
deflate compresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. It may introduce
@ -320,8 +320,8 @@ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
with the same value of the flush parameter and more output space (updated
avail_out), until the flush is complete (deflate returns with non-zero
avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
avail_out is greater than six to avoid repeated flush markers due to
avail_out == 0 on return.
avail_out is greater than six when the flush marker begins, in order to avoid
repeated flush markers upon calling deflate() again when avail_out == 0.
If the parameter flush is set to Z_FINISH, pending input is processed,
pending output is flushed and deflate returns with Z_STREAM_END if there was
@ -360,7 +360,7 @@ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
*/
ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
ZEXTERN int ZEXPORT deflateEnd(z_streamp strm);
/*
All dynamically allocated data structures for this stream are freed.
This function discards any unprocessed input and does not flush any pending
@ -375,7 +375,7 @@ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
/*
ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
ZEXTERN int ZEXPORT inflateInit(z_streamp strm);
Initializes the internal stream state for decompression. The fields
next_in, avail_in, zalloc, zfree and opaque must be initialized before by
@ -383,7 +383,8 @@ ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
read or consumed. The allocation of a sliding window will be deferred to
the first call of inflate (if the decompression does not complete on the
first call). If zalloc and zfree are set to Z_NULL, inflateInit updates
them to use default allocation functions.
them to use default allocation functions. total_in, total_out, adler, and
msg are initialized.
inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
@ -397,7 +398,7 @@ ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
*/
ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
ZEXTERN int ZEXPORT inflate(z_streamp strm, int flush);
/*
inflate decompresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. It may introduce
@ -517,7 +518,7 @@ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
*/
ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
ZEXTERN int ZEXPORT inflateEnd(z_streamp strm);
/*
All dynamically allocated data structures for this stream are freed.
This function discards any unprocessed input and does not flush any pending
@ -535,12 +536,12 @@ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
*/
/*
ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
int level,
int method,
int windowBits,
int memLevel,
int strategy));
ZEXTERN int ZEXPORT deflateInit2(z_streamp strm,
int level,
int method,
int windowBits,
int memLevel,
int strategy);
This is another version of deflateInit with more compression options. The
fields zalloc, zfree and opaque must be initialized before by the caller.
@ -607,9 +608,9 @@ ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
compression: this will be done by deflate().
*/
ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
const Bytef *dictionary,
uInt dictLength));
ZEXTERN int ZEXPORT deflateSetDictionary(z_streamp strm,
const Bytef *dictionary,
uInt dictLength);
/*
Initializes the compression dictionary from the given byte sequence
without producing any compressed output. When using the zlib format, this
@ -651,9 +652,9 @@ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
not perform any compression: this will be done by deflate().
*/
ZEXTERN int ZEXPORT deflateGetDictionary OF((z_streamp strm,
Bytef *dictionary,
uInt *dictLength));
ZEXTERN int ZEXPORT deflateGetDictionary(z_streamp strm,
Bytef *dictionary,
uInt *dictLength);
/*
Returns the sliding dictionary being maintained by deflate. dictLength is
set to the number of bytes in the dictionary, and that many bytes are copied
@ -673,8 +674,8 @@ ZEXTERN int ZEXPORT deflateGetDictionary OF((z_streamp strm,
stream state is inconsistent.
*/
ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
z_streamp source));
ZEXTERN int ZEXPORT deflateCopy(z_streamp dest,
z_streamp source);
/*
Sets the destination stream as a complete copy of the source stream.
@ -691,20 +692,20 @@ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
destination.
*/
ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
ZEXTERN int ZEXPORT deflateReset(z_streamp strm);
/*
This function is equivalent to deflateEnd followed by deflateInit, but
does not free and reallocate the internal compression state. The stream
will leave the compression level and any other attributes that may have been
set unchanged.
set unchanged. total_in, total_out, adler, and msg are initialized.
deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being Z_NULL).
*/
ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
int level,
int strategy));
ZEXTERN int ZEXPORT deflateParams(z_streamp strm,
int level,
int strategy);
/*
Dynamically update the compression level and compression strategy. The
interpretation of level and strategy is as in deflateInit2(). This can be
@ -729,7 +730,7 @@ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
Then no more input data should be provided before the deflateParams() call.
If this is done, the old level and strategy will be applied to the data
compressed before deflateParams(), and the new level and strategy will be
applied to the the data compressed after deflateParams().
applied to the data compressed after deflateParams().
deflateParams returns Z_OK on success, Z_STREAM_ERROR if the source stream
state was inconsistent or if a parameter was invalid, or Z_BUF_ERROR if
@ -740,11 +741,11 @@ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
retried with more output space.
*/
ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
int good_length,
int max_lazy,
int nice_length,
int max_chain));
ZEXTERN int ZEXPORT deflateTune(z_streamp strm,
int good_length,
int max_lazy,
int nice_length,
int max_chain);
/*
Fine tune deflate's internal compression parameters. This should only be
used by someone who understands the algorithm used by zlib's deflate for
@ -757,8 +758,8 @@ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
*/
ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
uLong sourceLen));
ZEXTERN uLong ZEXPORT deflateBound(z_streamp strm,
uLong sourceLen);
/*
deflateBound() returns an upper bound on the compressed size after
deflation of sourceLen bytes. It must be called after deflateInit() or
@ -772,9 +773,9 @@ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
than Z_FINISH or Z_NO_FLUSH are used.
*/
ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm,
unsigned *pending,
int *bits));
ZEXTERN int ZEXPORT deflatePending(z_streamp strm,
unsigned *pending,
int *bits);
/*
deflatePending() returns the number of bytes and bits of output that have
been generated, but not yet provided in the available output. The bytes not
@ -787,9 +788,9 @@ ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm,
stream state was inconsistent.
*/
ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
int bits,
int value));
ZEXTERN int ZEXPORT deflatePrime(z_streamp strm,
int bits,
int value);
/*
deflatePrime() inserts bits in the deflate output stream. The intent
is that this function is used to start off the deflate output with the bits
@ -804,8 +805,8 @@ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
source stream state was inconsistent.
*/
ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
gz_headerp head));
ZEXTERN int ZEXPORT deflateSetHeader(z_streamp strm,
gz_headerp head);
/*
deflateSetHeader() provides gzip header information for when a gzip
stream is requested by deflateInit2(). deflateSetHeader() may be called
@ -821,16 +822,17 @@ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
gzip file" and give up.
If deflateSetHeader is not used, the default gzip header has text false,
the time set to zero, and os set to 255, with no extra, name, or comment
fields. The gzip header is returned to the default state by deflateReset().
the time set to zero, and os set to the current operating system, with no
extra, name, or comment fields. The gzip header is returned to the default
state by deflateReset().
deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
*/
/*
ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
int windowBits));
ZEXTERN int ZEXPORT inflateInit2(z_streamp strm,
int windowBits);
This is another version of inflateInit with an extra parameter. The
fields next_in, avail_in, zalloc, zfree and opaque must be initialized
@ -883,9 +885,9 @@ ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
deferred until inflate() is called.
*/
ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
const Bytef *dictionary,
uInt dictLength));
ZEXTERN int ZEXPORT inflateSetDictionary(z_streamp strm,
const Bytef *dictionary,
uInt dictLength);
/*
Initializes the decompression dictionary from the given uncompressed byte
sequence. This function must be called immediately after a call of inflate,
@ -906,9 +908,9 @@ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
inflate().
*/
ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm,
Bytef *dictionary,
uInt *dictLength));
ZEXTERN int ZEXPORT inflateGetDictionary(z_streamp strm,
Bytef *dictionary,
uInt *dictLength);
/*
Returns the sliding dictionary being maintained by inflate. dictLength is
set to the number of bytes in the dictionary, and that many bytes are copied
@ -921,7 +923,7 @@ ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm,
stream state is inconsistent.
*/
ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
ZEXTERN int ZEXPORT inflateSync(z_streamp strm);
/*
Skips invalid compressed data until a possible full flush point (see above
for the description of deflate with Z_FULL_FLUSH) can be found, or until all
@ -934,14 +936,14 @@ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
inflateSync returns Z_OK if a possible full flush point has been found,
Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point
has been found, or Z_STREAM_ERROR if the stream structure was inconsistent.
In the success case, the application may save the current current value of
total_in which indicates where valid compressed data was found. In the
error case, the application may repeatedly call inflateSync, providing more
input each time, until success or end of the input data.
In the success case, the application may save the current value of total_in
which indicates where valid compressed data was found. In the error case,
the application may repeatedly call inflateSync, providing more input each
time, until success or end of the input data.
*/
ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
z_streamp source));
ZEXTERN int ZEXPORT inflateCopy(z_streamp dest,
z_streamp source);
/*
Sets the destination stream as a complete copy of the source stream.
@ -956,18 +958,19 @@ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
destination.
*/
ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
ZEXTERN int ZEXPORT inflateReset(z_streamp strm);
/*
This function is equivalent to inflateEnd followed by inflateInit,
but does not free and reallocate the internal decompression state. The
stream will keep attributes that may have been set by inflateInit2.
total_in, total_out, adler, and msg are initialized.
inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being Z_NULL).
*/
ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm,
int windowBits));
ZEXTERN int ZEXPORT inflateReset2(z_streamp strm,
int windowBits);
/*
This function is the same as inflateReset, but it also permits changing
the wrap and window size requests. The windowBits parameter is interpreted
@ -980,9 +983,9 @@ ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm,
the windowBits parameter is invalid.
*/
ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
int bits,
int value));
ZEXTERN int ZEXPORT inflatePrime(z_streamp strm,
int bits,
int value);
/*
This function inserts bits in the inflate input stream. The intent is
that this function is used to start inflating at a bit position in the
@ -1001,7 +1004,7 @@ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
stream state was inconsistent.
*/
ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm));
ZEXTERN long ZEXPORT inflateMark(z_streamp strm);
/*
This function returns two values, one in the lower 16 bits of the return
value, and the other in the remaining upper bits, obtained by shifting the
@ -1029,8 +1032,8 @@ ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm));
source stream state was inconsistent.
*/
ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
gz_headerp head));
ZEXTERN int ZEXPORT inflateGetHeader(z_streamp strm,
gz_headerp head);
/*
inflateGetHeader() requests that gzip header information be stored in the
provided gz_header structure. inflateGetHeader() may be called after
@ -1070,8 +1073,8 @@ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
*/
/*
ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
unsigned char FAR *window));
ZEXTERN int ZEXPORT inflateBackInit(z_streamp strm, int windowBits,
unsigned char FAR *window);
Initialize the internal stream state for decompression using inflateBack()
calls. The fields zalloc, zfree and opaque in strm must be initialized
@ -1091,13 +1094,13 @@ ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
the version of the header file.
*/
typedef unsigned (*in_func) OF((void FAR *,
z_const unsigned char FAR * FAR *));
typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));
typedef unsigned (*in_func)(void FAR *,
z_const unsigned char FAR * FAR *);
typedef int (*out_func)(void FAR *, unsigned char FAR *, unsigned);
ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
in_func in, void FAR *in_desc,
out_func out, void FAR *out_desc));
ZEXTERN int ZEXPORT inflateBack(z_streamp strm,
in_func in, void FAR *in_desc,
out_func out, void FAR *out_desc);
/*
inflateBack() does a raw inflate with a single call using a call-back
interface for input and output. This is potentially more efficient than
@ -1165,7 +1168,7 @@ ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
cannot return Z_OK.
*/
ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
ZEXTERN int ZEXPORT inflateBackEnd(z_streamp strm);
/*
All memory allocated by inflateBackInit() is freed.
@ -1173,7 +1176,7 @@ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
state was inconsistent.
*/
ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
ZEXTERN uLong ZEXPORT zlibCompileFlags(void);
/* Return flags indicating compile-time options.
Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
@ -1226,8 +1229,8 @@ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
you need special options.
*/
ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen));
ZEXTERN int ZEXPORT compress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen);
/*
Compresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total size
@ -1241,9 +1244,9 @@ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
buffer.
*/
ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int level));
ZEXTERN int ZEXPORT compress2(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int level);
/*
Compresses the source buffer into the destination buffer. The level
parameter has the same meaning as in deflateInit. sourceLen is the byte
@ -1257,15 +1260,15 @@ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen,
Z_STREAM_ERROR if the level parameter is invalid.
*/
ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen));
ZEXTERN uLong ZEXPORT compressBound(uLong sourceLen);
/*
compressBound() returns an upper bound on the compressed size after
compress() or compress2() on sourceLen bytes. It would be used before a
compress() or compress2() call to allocate the destination buffer.
*/
ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen));
ZEXTERN int ZEXPORT uncompress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen);
/*
Decompresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total size
@ -1282,8 +1285,8 @@ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
buffer with the uncompressed data up to that point.
*/
ZEXTERN int ZEXPORT uncompress2 OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen));
ZEXTERN int ZEXPORT uncompress2(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen);
/*
Same as uncompress, except that sourceLen is a pointer, where the
length of the source is *sourceLen. On return, *sourceLen is the number of
@ -1302,7 +1305,7 @@ ZEXTERN int ZEXPORT uncompress2 OF((Bytef *dest, uLongf *destLen,
typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */
/*
ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
ZEXTERN gzFile ZEXPORT gzopen(const char *path, const char *mode);
Open the gzip (.gz) file at path for reading and decompressing, or
compressing and writing. The mode parameter is as in fopen ("rb" or "wb")
@ -1339,7 +1342,7 @@ ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
file could not be opened.
*/
ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
ZEXTERN gzFile ZEXPORT gzdopen(int fd, const char *mode);
/*
Associate a gzFile with the file descriptor fd. File descriptors are
obtained from calls like open, dup, creat, pipe or fileno (if the file has
@ -1362,7 +1365,7 @@ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
will not detect if fd is invalid (unless fd is -1).
*/
ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
ZEXTERN int ZEXPORT gzbuffer(gzFile file, unsigned size);
/*
Set the internal buffer size used by this library's functions for file to
size. The default buffer size is 8192 bytes. This function must be called
@ -1378,7 +1381,7 @@ ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
too late.
*/
ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
ZEXTERN int ZEXPORT gzsetparams(gzFile file, int level, int strategy);
/*
Dynamically update the compression level and strategy for file. See the
description of deflateInit2 for the meaning of these parameters. Previously
@ -1389,7 +1392,7 @@ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
or Z_MEM_ERROR if there is a memory allocation error.
*/
ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
ZEXTERN int ZEXPORT gzread(gzFile file, voidp buf, unsigned len);
/*
Read and decompress up to len uncompressed bytes from file into buf. If
the input file is not in gzip format, gzread copies the given number of
@ -1419,8 +1422,8 @@ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
Z_STREAM_ERROR.
*/
ZEXTERN z_size_t ZEXPORT gzfread OF((voidp buf, z_size_t size, z_size_t nitems,
gzFile file));
ZEXTERN z_size_t ZEXPORT gzfread(voidp buf, z_size_t size, z_size_t nitems,
gzFile file);
/*
Read and decompress up to nitems items of size size from file into buf,
otherwise operating as gzread() does. This duplicates the interface of
@ -1445,14 +1448,14 @@ ZEXTERN z_size_t ZEXPORT gzfread OF((voidp buf, z_size_t size, z_size_t nitems,
file, resetting and retrying on end-of-file, when size is not 1.
*/
ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len));
ZEXTERN int ZEXPORT gzwrite(gzFile file, voidpc buf, unsigned len);
/*
Compress and write the len uncompressed bytes at buf to file. gzwrite
returns the number of uncompressed bytes written or 0 in case of error.
*/
ZEXTERN z_size_t ZEXPORT gzfwrite OF((voidpc buf, z_size_t size,
z_size_t nitems, gzFile file));
ZEXTERN z_size_t ZEXPORT gzfwrite(voidpc buf, z_size_t size,
z_size_t nitems, gzFile file);
/*
Compress and write nitems items of size size from buf to file, duplicating
the interface of stdio's fwrite(), with size_t request and return types. If
@ -1465,7 +1468,7 @@ ZEXTERN z_size_t ZEXPORT gzfwrite OF((voidpc buf, z_size_t size,
is returned, and the error state is set to Z_STREAM_ERROR.
*/
ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...));
ZEXTERN int ZEXPORTVA gzprintf(gzFile file, const char *format, ...);
/*
Convert, format, compress, and write the arguments (...) to file under
control of the string format, as in fprintf. gzprintf returns the number of
@ -1480,7 +1483,7 @@ ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...));
This can be determined using zlibCompileFlags().
*/
ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
ZEXTERN int ZEXPORT gzputs(gzFile file, const char *s);
/*
Compress and write the given null-terminated string s to file, excluding
the terminating null character.
@ -1488,7 +1491,7 @@ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
gzputs returns the number of characters written, or -1 in case of error.
*/
ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
ZEXTERN char * ZEXPORT gzgets(gzFile file, char *buf, int len);
/*
Read and decompress bytes from file into buf, until len-1 characters are
read, or until a newline character is read and transferred to buf, or an
@ -1502,13 +1505,13 @@ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
buf are indeterminate.
*/
ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
ZEXTERN int ZEXPORT gzputc(gzFile file, int c);
/*
Compress and write c, converted to an unsigned char, into file. gzputc
returns the value that was written, or -1 in case of error.
*/
ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
ZEXTERN int ZEXPORT gzgetc(gzFile file);
/*
Read and decompress one byte from file. gzgetc returns this byte or -1
in case of end of file or error. This is implemented as a macro for speed.
@ -1517,7 +1520,7 @@ ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
points to has been clobbered or not.
*/
ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
ZEXTERN int ZEXPORT gzungetc(int c, gzFile file);
/*
Push c back onto the stream for file to be read as the first character on
the next read. At least one character of push-back is always allowed.
@ -1529,7 +1532,7 @@ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
gzseek() or gzrewind().
*/
ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
ZEXTERN int ZEXPORT gzflush(gzFile file, int flush);
/*
Flush all pending output to file. The parameter flush is as in the
deflate() function. The return value is the zlib error number (see function
@ -1545,8 +1548,8 @@ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
*/
/*
ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
z_off_t offset, int whence));
ZEXTERN z_off_t ZEXPORT gzseek(gzFile file,
z_off_t offset, int whence);
Set the starting position to offset relative to whence for the next gzread
or gzwrite on file. The offset represents a number of bytes in the
@ -1564,7 +1567,7 @@ ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
would be before the current position.
*/
ZEXTERN int ZEXPORT gzrewind OF((gzFile file));
ZEXTERN int ZEXPORT gzrewind(gzFile file);
/*
Rewind file. This function is supported only for reading.
@ -1572,7 +1575,7 @@ ZEXTERN int ZEXPORT gzrewind OF((gzFile file));
*/
/*
ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file));
ZEXTERN z_off_t ZEXPORT gztell(gzFile file);
Return the starting position for the next gzread or gzwrite on file.
This position represents a number of bytes in the uncompressed data stream,
@ -1583,7 +1586,7 @@ ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file));
*/
/*
ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file));
ZEXTERN z_off_t ZEXPORT gzoffset(gzFile file);
Return the current compressed (actual) read or write offset of file. This
offset includes the count of bytes that precede the gzip stream, for example
@ -1592,7 +1595,7 @@ ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file));
be used for a progress indicator. On error, gzoffset() returns -1.
*/
ZEXTERN int ZEXPORT gzeof OF((gzFile file));
ZEXTERN int ZEXPORT gzeof(gzFile file);
/*
Return true (1) if the end-of-file indicator for file has been set while
reading, false (0) otherwise. Note that the end-of-file indicator is set
@ -1607,7 +1610,7 @@ ZEXTERN int ZEXPORT gzeof OF((gzFile file));
has grown since the previous end of file was detected.
*/
ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
ZEXTERN int ZEXPORT gzdirect(gzFile file);
/*
Return true (1) if file is being copied directly while reading, or false
(0) if file is a gzip stream being decompressed.
@ -1628,7 +1631,7 @@ ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
gzip file reading and decompression, which may not be desired.)
*/
ZEXTERN int ZEXPORT gzclose OF((gzFile file));
ZEXTERN int ZEXPORT gzclose(gzFile file);
/*
Flush all pending output for file, if necessary, close file and
deallocate the (de)compression state. Note that once file is closed, you
@ -1641,8 +1644,8 @@ ZEXTERN int ZEXPORT gzclose OF((gzFile file));
last read ended in the middle of a gzip stream, or Z_OK on success.
*/
ZEXTERN int ZEXPORT gzclose_r OF((gzFile file));
ZEXTERN int ZEXPORT gzclose_w OF((gzFile file));
ZEXTERN int ZEXPORT gzclose_r(gzFile file);
ZEXTERN int ZEXPORT gzclose_w(gzFile file);
/*
Same as gzclose(), but gzclose_r() is only for use when reading, and
gzclose_w() is only for use when writing or appending. The advantage to
@ -1653,7 +1656,7 @@ ZEXTERN int ZEXPORT gzclose_w OF((gzFile file));
zlib library.
*/
ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
ZEXTERN const char * ZEXPORT gzerror(gzFile file, int *errnum);
/*
Return the error message for the last error which occurred on file.
errnum is set to zlib error number. If an error occurred in the file system
@ -1669,7 +1672,7 @@ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
functions above that do not distinguish those cases in their return values.
*/
ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
ZEXTERN void ZEXPORT gzclearerr(gzFile file);
/*
Clear the error and end-of-file flags for file. This is analogous to the
clearerr() function in stdio. This is useful for continuing to read a gzip
@ -1686,7 +1689,7 @@ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
library.
*/
ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
ZEXTERN uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len);
/*
Update a running Adler-32 checksum with the bytes buf[0..len-1] and
return the updated checksum. An Adler-32 value is in the range of a 32-bit
@ -1706,15 +1709,15 @@ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
if (adler != original_adler) error();
*/
ZEXTERN uLong ZEXPORT adler32_z OF((uLong adler, const Bytef *buf,
z_size_t len));
ZEXTERN uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf,
z_size_t len);
/*
Same as adler32(), but with a size_t length.
*/
/*
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
z_off_t len2));
ZEXTERN uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2,
z_off_t len2);
Combine two Adler-32 checksums into one. For two sequences of bytes, seq1
and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
@ -1724,7 +1727,7 @@ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
negative, the result has no meaning or utility.
*/
ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
ZEXTERN uLong ZEXPORT crc32(uLong crc, const Bytef *buf, uInt len);
/*
Update a running CRC-32 with the bytes buf[0..len-1] and return the
updated CRC-32. A CRC-32 value is in the range of a 32-bit unsigned integer.
@ -1742,30 +1745,30 @@ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
if (crc != original_crc) error();
*/
ZEXTERN uLong ZEXPORT crc32_z OF((uLong crc, const Bytef *buf,
z_size_t len));
ZEXTERN uLong ZEXPORT crc32_z(uLong crc, const Bytef *buf,
z_size_t len);
/*
Same as crc32(), but with a size_t length.
*/
/*
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2));
ZEXTERN uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2);
Combine two CRC-32 check values into one. For two sequences of bytes,
seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32
check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
len2.
len2. len2 must be non-negative.
*/
/*
ZEXTERN uLong ZEXPORT crc32_combine_gen OF((z_off_t len2));
ZEXTERN uLong ZEXPORT crc32_combine_gen(z_off_t len2);
Return the operator corresponding to length len2, to be used with
crc32_combine_op().
crc32_combine_op(). len2 must be non-negative.
*/
ZEXTERN uLong ZEXPORT crc32_combine_op OF((uLong crc1, uLong crc2, uLong op));
ZEXTERN uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op);
/*
Give the same result as crc32_combine(), using op in place of len2. op is
is generated from len2 by crc32_combine_gen(). This will be faster than
@ -1778,20 +1781,20 @@ ZEXTERN uLong ZEXPORT crc32_combine_op OF((uLong crc1, uLong crc2, uLong op));
/* deflateInit and inflateInit are macros to allow checking the zlib version
* and the compiler's view of z_stream:
*/
ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level,
const char *version, int stream_size));
ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm,
const char *version, int stream_size));
ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method,
int windowBits, int memLevel,
int strategy, const char *version,
int stream_size));
ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits,
const char *version, int stream_size));
ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits,
unsigned char FAR *window,
const char *version,
int stream_size));
ZEXTERN int ZEXPORT deflateInit_(z_streamp strm, int level,
const char *version, int stream_size);
ZEXTERN int ZEXPORT inflateInit_(z_streamp strm,
const char *version, int stream_size);
ZEXTERN int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
int windowBits, int memLevel,
int strategy, const char *version,
int stream_size);
ZEXTERN int ZEXPORT inflateInit2_(z_streamp strm, int windowBits,
const char *version, int stream_size);
ZEXTERN int ZEXPORT inflateBackInit_(z_streamp strm, int windowBits,
unsigned char FAR *window,
const char *version,
int stream_size);
#ifdef Z_PREFIX_SET
# define z_deflateInit(strm, level) \
deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
@ -1836,7 +1839,7 @@ struct gzFile_s {
unsigned char *next;
z_off64_t pos;
};
ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */
ZEXTERN int ZEXPORT gzgetc_(gzFile file); /* backward compatibility */
#ifdef Z_PREFIX_SET
# undef z_gzgetc
# define z_gzgetc(g) \
@ -1853,13 +1856,13 @@ ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */
* without large file support, _LFS64_LARGEFILE must also be true
*/
#ifdef Z_LARGE64
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t));
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t));
ZEXTERN uLong ZEXPORT crc32_combine_gen64 OF((z_off64_t));
ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
ZEXTERN z_off64_t ZEXPORT gzseek64(gzFile, z_off64_t, int);
ZEXTERN z_off64_t ZEXPORT gztell64(gzFile);
ZEXTERN z_off64_t ZEXPORT gzoffset64(gzFile);
ZEXTERN uLong ZEXPORT adler32_combine64(uLong, uLong, z_off64_t);
ZEXTERN uLong ZEXPORT crc32_combine64(uLong, uLong, z_off64_t);
ZEXTERN uLong ZEXPORT crc32_combine_gen64(z_off64_t);
#endif
#if !defined(ZLIB_INTERNAL) && defined(Z_WANT64)
@ -1881,50 +1884,50 @@ ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */
# define crc32_combine_gen crc32_combine_gen64
# endif
# ifndef Z_LARGE64
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int));
ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile));
ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile));
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine_gen64 OF((z_off_t));
ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
ZEXTERN z_off_t ZEXPORT gzseek64(gzFile, z_off_t, int);
ZEXTERN z_off_t ZEXPORT gztell64(gzFile);
ZEXTERN z_off_t ZEXPORT gzoffset64(gzFile);
ZEXTERN uLong ZEXPORT adler32_combine64(uLong, uLong, z_off_t);
ZEXTERN uLong ZEXPORT crc32_combine64(uLong, uLong, z_off_t);
ZEXTERN uLong ZEXPORT crc32_combine_gen64(z_off_t);
# endif
#else
ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *));
ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int));
ZEXTERN z_off_t ZEXPORT gztell OF((gzFile));
ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile));
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine_gen OF((z_off_t));
ZEXTERN gzFile ZEXPORT gzopen(const char *, const char *);
ZEXTERN z_off_t ZEXPORT gzseek(gzFile, z_off_t, int);
ZEXTERN z_off_t ZEXPORT gztell(gzFile);
ZEXTERN z_off_t ZEXPORT gzoffset(gzFile);
ZEXTERN uLong ZEXPORT adler32_combine(uLong, uLong, z_off_t);
ZEXTERN uLong ZEXPORT crc32_combine(uLong, uLong, z_off_t);
ZEXTERN uLong ZEXPORT crc32_combine_gen(z_off_t);
#endif
#else /* Z_SOLO */
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine_gen OF((z_off_t));
ZEXTERN uLong ZEXPORT adler32_combine(uLong, uLong, z_off_t);
ZEXTERN uLong ZEXPORT crc32_combine(uLong, uLong, z_off_t);
ZEXTERN uLong ZEXPORT crc32_combine_gen(z_off_t);
#endif /* !Z_SOLO */
/* undocumented functions */
ZEXTERN const char * ZEXPORT zError OF((int));
ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp));
ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void));
ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int));
ZEXTERN int ZEXPORT inflateValidate OF((z_streamp, int));
ZEXTERN unsigned long ZEXPORT inflateCodesUsed OF((z_streamp));
ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp));
ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp));
ZEXTERN const char * ZEXPORT zError(int);
ZEXTERN int ZEXPORT inflateSyncPoint(z_streamp);
ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table(void);
ZEXTERN int ZEXPORT inflateUndermine(z_streamp, int);
ZEXTERN int ZEXPORT inflateValidate(z_streamp, int);
ZEXTERN unsigned long ZEXPORT inflateCodesUsed(z_streamp);
ZEXTERN int ZEXPORT inflateResetKeep(z_streamp);
ZEXTERN int ZEXPORT deflateResetKeep(z_streamp);
#if defined(_WIN32) && !defined(Z_SOLO)
ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path,
const char *mode));
ZEXTERN gzFile ZEXPORT gzopen_w(const wchar_t *path,
const char *mode);
#endif
#if defined(STDC) || defined(Z_HAVE_STDARG_H)
# ifndef Z_SOLO
ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file,
const char *format,
va_list va));
ZEXTERN int ZEXPORTVA gzvprintf(gzFile file,
const char *format,
va_list va);
# endif
#endif

View File

@ -1,12 +1,12 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=@CMAKE_INSTALL_PREFIX@/bin
libdir=@CMAKE_INSTALL_PREFIX@/lib
sharedlibdir=@CMAKE_INSTALL_PREFIX@/lib
includedir=@CMAKE_INSTALL_PREFIX@/include
exec_prefix=@CMAKE_INSTALL_PREFIX@
libdir=@INSTALL_LIB_DIR@
sharedlibdir=@INSTALL_LIB_DIR@
includedir=@INSTALL_INC_DIR@
Name: zlib
Description: zlib compression library
Version: @ZLIB_VERSION@
Version: @VERSION@
Requires:
Libs: -L${libdir} -L${sharedlibdir} -lz

60
external/zlib/zutil.c vendored
View File

@ -24,13 +24,11 @@ z_const char * const z_errmsg[10] = {
};
const char * ZEXPORT zlibVersion()
{
const char * ZEXPORT zlibVersion(void) {
return ZLIB_VERSION;
}
uLong ZEXPORT zlibCompileFlags()
{
uLong ZEXPORT zlibCompileFlags(void) {
uLong flags;
flags = 0;
@ -121,9 +119,7 @@ uLong ZEXPORT zlibCompileFlags()
# endif
int ZLIB_INTERNAL z_verbose = verbose;
void ZLIB_INTERNAL z_error(m)
char *m;
{
void ZLIB_INTERNAL z_error(char *m) {
fprintf(stderr, "%s\n", m);
exit(1);
}
@ -132,9 +128,7 @@ void ZLIB_INTERNAL z_error(m)
/* exported to allow conversion of error code to string for compress() and
* uncompress()
*/
const char * ZEXPORT zError(err)
int err;
{
const char * ZEXPORT zError(int err) {
return ERR_MSG(err);
}
@ -148,22 +142,14 @@ const char * ZEXPORT zError(err)
#ifndef HAVE_MEMCPY
void ZLIB_INTERNAL zmemcpy(dest, source, len)
Bytef* dest;
const Bytef* source;
uInt len;
{
void ZLIB_INTERNAL zmemcpy(Bytef* dest, const Bytef* source, uInt len) {
if (len == 0) return;
do {
*dest++ = *source++; /* ??? to be unrolled */
} while (--len != 0);
}
int ZLIB_INTERNAL zmemcmp(s1, s2, len)
const Bytef* s1;
const Bytef* s2;
uInt len;
{
int ZLIB_INTERNAL zmemcmp(const Bytef* s1, const Bytef* s2, uInt len) {
uInt j;
for (j = 0; j < len; j++) {
@ -172,10 +158,7 @@ int ZLIB_INTERNAL zmemcmp(s1, s2, len)
return 0;
}
void ZLIB_INTERNAL zmemzero(dest, len)
Bytef* dest;
uInt len;
{
void ZLIB_INTERNAL zmemzero(Bytef* dest, uInt len) {
if (len == 0) return;
do {
*dest++ = 0; /* ??? to be unrolled */
@ -216,8 +199,7 @@ local ptr_table table[MAX_PTR];
* a protected system like OS/2. Use Microsoft C instead.
*/
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size)
{
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size) {
voidpf buf;
ulg bsize = (ulg)items*size;
@ -242,8 +224,7 @@ voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size)
return buf;
}
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr)
{
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr) {
int n;
(void)opaque;
@ -279,14 +260,12 @@ void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr)
# define _hfree hfree
#endif
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, uInt items, uInt size)
{
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, uInt items, uInt size) {
(void)opaque;
return _halloc((long)items, size);
}
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr)
{
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr) {
(void)opaque;
_hfree(ptr);
}
@ -299,25 +278,18 @@ void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr)
#ifndef MY_ZCALLOC /* Any system without a special alloc function */
#ifndef STDC
extern voidp malloc OF((uInt size));
extern voidp calloc OF((uInt items, uInt size));
extern void free OF((voidpf ptr));
extern voidp malloc(uInt size);
extern voidp calloc(uInt items, uInt size);
extern void free(voidpf ptr);
#endif
voidpf ZLIB_INTERNAL zcalloc(opaque, items, size)
voidpf opaque;
unsigned items;
unsigned size;
{
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size) {
(void)opaque;
return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) :
(voidpf)calloc(items, size);
}
void ZLIB_INTERNAL zcfree(opaque, ptr)
voidpf opaque;
voidpf ptr;
{
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr) {
(void)opaque;
free(ptr);
}

47
external/zlib/zutil.h vendored
View File

@ -1,5 +1,5 @@
/* zutil.h -- internal interface and configuration of the compression library
* Copyright (C) 1995-2022 Jean-loup Gailly, Mark Adler
* Copyright (C) 1995-2024 Jean-loup Gailly, Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
@ -56,7 +56,7 @@ typedef unsigned long ulg;
extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
/* (size given to avoid silly warnings with Visual C++) */
#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
#define ERR_MSG(err) z_errmsg[(err) < -6 || (err) > 2 ? 9 : 2 - (err)]
#define ERR_RETURN(strm,err) \
return (strm->msg = ERR_MSG(err), (err))
@ -137,17 +137,8 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
# endif
#endif
#if defined(MACOS) || defined(TARGET_OS_MAC)
#if defined(MACOS)
# define OS_CODE 7
# ifndef Z_SOLO
# if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
# include <unix.h> /* for fdopen */
# else
# ifndef fdopen
# define fdopen(fd,mode) NULL /* No fdopen() */
# endif
# endif
# endif
#endif
#ifdef __acorn
@ -170,18 +161,6 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
# define OS_CODE 19
#endif
#if defined(_BEOS_) || defined(RISCOS)
# define fdopen(fd,mode) NULL /* No fdopen() */
#endif
#if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX
# if defined(_WIN32_WCE)
# define fdopen(fd,mode) NULL /* No fdopen() */
# else
# define fdopen(fd,type) _fdopen(fd,type)
# endif
#endif
#if defined(__BORLANDC__) && !defined(MSDOS)
#pragma warn -8004
#pragma warn -8008
@ -191,9 +170,9 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
/* provide prototypes for these when building zlib without LFS */
#if !defined(_WIN32) && \
(!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0)
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
ZEXTERN uLong ZEXPORT crc32_combine_gen64 OF((z_off_t));
ZEXTERN uLong ZEXPORT adler32_combine64(uLong, uLong, z_off_t);
ZEXTERN uLong ZEXPORT crc32_combine64(uLong, uLong, z_off_t);
ZEXTERN uLong ZEXPORT crc32_combine_gen64(z_off_t);
#endif
/* common defaults */
@ -232,16 +211,16 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
# define zmemzero(dest, len) memset(dest, 0, len)
# endif
#else
void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len));
int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len));
void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len));
void ZLIB_INTERNAL zmemcpy(Bytef* dest, const Bytef* source, uInt len);
int ZLIB_INTERNAL zmemcmp(const Bytef* s1, const Bytef* s2, uInt len);
void ZLIB_INTERNAL zmemzero(Bytef* dest, uInt len);
#endif
/* Diagnostic functions */
#ifdef ZLIB_DEBUG
# include <stdio.h>
extern int ZLIB_INTERNAL z_verbose;
extern void ZLIB_INTERNAL z_error OF((char *m));
extern void ZLIB_INTERNAL z_error(char *m);
# define Assert(cond,msg) {if(!(cond)) z_error(msg);}
# define Trace(x) {if (z_verbose>=0) fprintf x ;}
# define Tracev(x) {if (z_verbose>0) fprintf x ;}
@ -258,9 +237,9 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
#endif
#ifndef Z_SOLO
voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items,
unsigned size));
void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr));
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items,
unsigned size);
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr);
#endif
#define ZALLOC(strm, items, size) \

View File

@ -172,6 +172,8 @@ void *ma_multi_malloc(myf myFlags, ...)
size_t tot_length,length;
va_start(args,myFlags);
/* keep gcc15 happy */
(void)myFlags;
tot_length=0;
while ((ptr=va_arg(args, char **)))
{