You've already forked mariadb-connector-c
mirror of
https://github.com/mariadb-corporation/mariadb-connector-c.git
synced 2025-08-01 06:27:04 +03:00
CONC-756: Update zlib to 1.3.1
This commit is contained in:
9
external/zlib/CMakeLists.txt
vendored
9
external/zlib/CMakeLists.txt
vendored
@ -1,9 +1,11 @@
|
||||
cmake_minimum_required(VERSION 2.4.4)
|
||||
cmake_minimum_required(VERSION 2.4.4...3.15.0)
|
||||
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS ON)
|
||||
|
||||
project(zlib C)
|
||||
|
||||
set(VERSION "1.2.13")
|
||||
set(VERSION "1.3.1")
|
||||
|
||||
option(ZLIB_BUILD_EXAMPLES "Enable Zlib Examples" ON)
|
||||
|
||||
set(INSTALL_BIN_DIR "${CMAKE_INSTALL_PREFIX}/bin" CACHE PATH "Installation directory for executables")
|
||||
set(INSTALL_LIB_DIR "${CMAKE_INSTALL_PREFIX}/lib" CACHE PATH "Installation directory for libraries")
|
||||
@ -147,5 +149,4 @@ if(MINGW)
|
||||
set(ZLIB_DLL_SRCS ${CMAKE_CURRENT_BINARY_DIR}/zlib1rc.obj)
|
||||
endif(MINGW)
|
||||
|
||||
add_library(zlib STATIC ${ZLIB_SRCS} ${ZLIB_PUBLIC_HDRS} ${ZLIB_PRIVATE_HDRS})
|
||||
|
||||
add_library(zlib STATIC ${ZLIB_SRCS} ${ZLIB_DLL_SRCS} ${ZLIB_PUBLIC_HDRS} ${ZLIB_PRIVATE_HDRS})
|
||||
|
54
external/zlib/ChangeLog
vendored
54
external/zlib/ChangeLog
vendored
@ -1,6 +1,46 @@
|
||||
|
||||
ChangeLog file for zlib
|
||||
|
||||
Changes in 1.3.1 (22 Jan 2024)
|
||||
- Reject overflows of zip header fields in minizip
|
||||
- Fix bug in inflateSync() for data held in bit buffer
|
||||
- Add LIT_MEM define to use more memory for a small deflate speedup
|
||||
- Fix decision on the emission of Zip64 end records in minizip
|
||||
- Add bounds checking to ERR_MSG() macro, used by zError()
|
||||
- Neutralize zip file traversal attacks in miniunz
|
||||
- Fix a bug in ZLIB_DEBUG compiles in check_match()
|
||||
- Various portability and appearance improvements
|
||||
|
||||
Changes in 1.3 (18 Aug 2023)
|
||||
- Remove K&R function definitions and zlib2ansi
|
||||
- Fix bug in deflateBound() for level 0 and memLevel 9
|
||||
- Fix bug when gzungetc() is used immediately after gzopen()
|
||||
- Fix bug when using gzflush() with a very small buffer
|
||||
- Fix crash when gzsetparams() attempted for transparent write
|
||||
- Fix test/example.c to work with FORCE_STORED
|
||||
- Rewrite of zran in examples (see zran.c version history)
|
||||
- Fix minizip to allow it to open an empty zip file
|
||||
- Fix reading disk number start on zip64 files in minizip
|
||||
- Fix logic error in minizip argument processing
|
||||
- Add minizip testing to Makefile
|
||||
- Read multiple bytes instead of byte-by-byte in minizip unzip.c
|
||||
- Add memory sanitizer to configure (--memory)
|
||||
- Various portability improvements
|
||||
- Various documentation improvements
|
||||
- Various spelling and typo corrections
|
||||
|
||||
Changes in 1.2.13 (13 Oct 2022)
|
||||
- Fix configure issue that discarded provided CC definition
|
||||
- Correct incorrect inputs provided to the CRC functions
|
||||
- Repair prototypes and exporting of new CRC functions
|
||||
- Fix inflateBack to detect invalid input with distances too far
|
||||
- Have infback() deliver all of the available output up to any error
|
||||
- Fix a bug when getting a gzip header extra field with inflate()
|
||||
- Fix bug in block type selection when Z_FIXED used
|
||||
- Tighten deflateBound bounds
|
||||
- Remove deleted assembler code references
|
||||
- Various portability and appearance improvements
|
||||
|
||||
Changes in 1.2.12 (27 Mar 2022)
|
||||
- Cygwin does not have _wopen(), so do not create gzopen_w() there
|
||||
- Permit a deflateParams() parameter change as soon as possible
|
||||
@ -159,7 +199,7 @@ Changes in 1.2.7.1 (24 Mar 2013)
|
||||
- Fix types in contrib/minizip to match result of get_crc_table()
|
||||
- Simplify contrib/vstudio/vc10 with 'd' suffix
|
||||
- Add TOP support to win32/Makefile.msc
|
||||
- Suport i686 and amd64 assembler builds in CMakeLists.txt
|
||||
- Support i686 and amd64 assembler builds in CMakeLists.txt
|
||||
- Fix typos in the use of _LARGEFILE64_SOURCE in zconf.h
|
||||
- Add vc11 and vc12 build files to contrib/vstudio
|
||||
- Add gzvprintf() as an undocumented function in zlib
|
||||
@ -359,14 +399,14 @@ Changes in 1.2.5.1 (10 Sep 2011)
|
||||
- Use u4 type for crc_table to avoid conversion warnings
|
||||
- Apply casts in zlib.h to avoid conversion warnings
|
||||
- Add OF to prototypes for adler32_combine_ and crc32_combine_ [Miller]
|
||||
- Improve inflateSync() documentation to note indeterminancy
|
||||
- Improve inflateSync() documentation to note indeterminacy
|
||||
- Add deflatePending() function to return the amount of pending output
|
||||
- Correct the spelling of "specification" in FAQ [Randers-Pehrson]
|
||||
- Add a check in configure for stdarg.h, use for gzprintf()
|
||||
- Check that pointers fit in ints when gzprint() compiled old style
|
||||
- Add dummy name before $(SHAREDLIBV) in Makefile [Bar-Lev, Bowler]
|
||||
- Delete line in configure that adds -L. libz.a to LDFLAGS [Weigelt]
|
||||
- Add debug records in assmebler code [Londer]
|
||||
- Add debug records in assembler code [Londer]
|
||||
- Update RFC references to use http://tools.ietf.org/html/... [Li]
|
||||
- Add --archs option, use of libtool to configure for Mac OS X [Borstel]
|
||||
|
||||
@ -1033,7 +1073,7 @@ Changes in 1.2.0.1 (17 March 2003)
|
||||
- Include additional header file on VMS for off_t typedef
|
||||
- Try to use _vsnprintf where it supplants vsprintf [Vollant]
|
||||
- Add some casts in inffast.c
|
||||
- Enchance comments in zlib.h on what happens if gzprintf() tries to
|
||||
- Enhance comments in zlib.h on what happens if gzprintf() tries to
|
||||
write more than 4095 bytes before compression
|
||||
- Remove unused state from inflateBackEnd()
|
||||
- Remove exit(0) from minigzip.c, example.c
|
||||
@ -1211,7 +1251,7 @@ Changes in 1.0.9 (17 Feb 1998)
|
||||
- Avoid gcc 2.8.0 comparison bug a little differently than zlib 1.0.8
|
||||
- in inftrees.c, avoid cc -O bug on HP (Farshid Elahi)
|
||||
- in zconf.h move the ZLIB_DLL stuff earlier to avoid problems with
|
||||
the declaration of FAR (Gilles VOllant)
|
||||
the declaration of FAR (Gilles Vollant)
|
||||
- install libz.so* with mode 755 (executable) instead of 644 (Marc Lehmann)
|
||||
- read_buf buf parameter of type Bytef* instead of charf*
|
||||
- zmemcpy parameters are of type Bytef*, not charf* (Joseph Strout)
|
||||
@ -1433,7 +1473,7 @@ Changes in 0.99 (27 Jan 96)
|
||||
- fix typo in Make_vms.com (f$trnlnm -> f$getsyi)
|
||||
- in fcalloc, normalize pointer if size > 65520 bytes
|
||||
- don't use special fcalloc for 32 bit Borland C++
|
||||
- use STDC instead of __GO32__ to avoid redeclaring exit, calloc, etc...
|
||||
- use STDC instead of __GO32__ to avoid redeclaring exit, calloc, etc.
|
||||
- use Z_BINARY instead of BINARY
|
||||
- document that gzclose after gzdopen will close the file
|
||||
- allow "a" as mode in gzopen
|
||||
@ -1567,7 +1607,7 @@ Changes in 0.4:
|
||||
- renamed deflateOptions as deflateInit2, call one or the other but not both
|
||||
- added the method parameter for deflateInit2
|
||||
- added inflateInit2
|
||||
- simplied considerably deflateInit and inflateInit by not supporting
|
||||
- simplified considerably deflateInit and inflateInit by not supporting
|
||||
user-provided history buffer. This is supported only in deflateInit2
|
||||
and inflateInit2
|
||||
|
||||
|
5
external/zlib/FAQ
vendored
5
external/zlib/FAQ
vendored
@ -4,7 +4,7 @@
|
||||
|
||||
If your question is not there, please check the zlib home page
|
||||
http://zlib.net/ which may have more recent information.
|
||||
The lastest zlib FAQ is at http://zlib.net/zlib_faq.html
|
||||
The latest zlib FAQ is at http://zlib.net/zlib_faq.html
|
||||
|
||||
|
||||
1. Is zlib Y2K-compliant?
|
||||
@ -14,8 +14,7 @@ The lastest zlib FAQ is at http://zlib.net/zlib_faq.html
|
||||
2. Where can I get a Windows DLL version?
|
||||
|
||||
The zlib sources can be compiled without change to produce a DLL. See the
|
||||
file win32/DLL_FAQ.txt in the zlib distribution. Pointers to the
|
||||
precompiled DLL are found in the zlib web site at http://zlib.net/ .
|
||||
file win32/DLL_FAQ.txt in the zlib distribution.
|
||||
|
||||
3. Where can I get a Visual Basic interface to zlib?
|
||||
|
||||
|
13
external/zlib/INDEX
vendored
13
external/zlib/INDEX
vendored
@ -7,6 +7,9 @@ Makefile.in template for Unix Makefile
|
||||
README guess what
|
||||
configure configure script for Unix
|
||||
make_vms.com makefile for VMS
|
||||
test/example.c zlib usages examples for build testing
|
||||
test/minigzip.c minimal gzip-like functionality for build testing
|
||||
test/infcover.c inf*.c code coverage for build coverage testing
|
||||
treebuild.xml XML description of source file dependencies
|
||||
zconf.h.cmakein zconf.h template for cmake
|
||||
zconf.h.in zconf.h template for configure
|
||||
@ -14,9 +17,11 @@ zlib.3 Man page for zlib
|
||||
zlib.3.pdf Man page in PDF format
|
||||
zlib.map Linux symbol information
|
||||
zlib.pc.in Template for pkg-config descriptor
|
||||
zlib.pc.cmakein zlib.pc template for cmake
|
||||
zlib2ansi perl script to convert source files for C++ compilation
|
||||
|
||||
amiga/ makefiles for Amiga SAS C
|
||||
as400/ makefiles for AS/400
|
||||
doc/ documentation for formats and algorithms
|
||||
msdos/ makefiles for MSDOS
|
||||
nintendods/ makefile for Nintendo DS
|
||||
@ -56,10 +61,8 @@ uncompr.c
|
||||
zutil.c
|
||||
zutil.h
|
||||
|
||||
source files for sample programs:
|
||||
example.c
|
||||
minigzip.c
|
||||
See examples/README.examples for more
|
||||
source files for sample programs
|
||||
See examples/README.examples
|
||||
|
||||
unsupported contribution by third parties
|
||||
unsupported contributions by third parties
|
||||
See contrib/README.contrib
|
||||
|
22
external/zlib/LICENSE
vendored
Normal file
22
external/zlib/LICENSE
vendored
Normal file
@ -0,0 +1,22 @@
|
||||
Copyright notice:
|
||||
|
||||
(C) 1995-2022 Jean-loup Gailly and Mark Adler
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Jean-loup Gailly Mark Adler
|
||||
jloup@gzip.org madler@alumni.caltech.edu
|
300
external/zlib/Makefile.in
vendored
300
external/zlib/Makefile.in
vendored
@ -1,5 +1,5 @@
|
||||
# Makefile for zlib
|
||||
# Copyright (C) 1995-2013 Jean-loup Gailly, Mark Adler
|
||||
# Copyright (C) 1995-2024 Jean-loup Gailly, Mark Adler
|
||||
# For conditions of distribution and use, see copyright notice in zlib.h
|
||||
|
||||
# To compile and test, type:
|
||||
@ -7,30 +7,28 @@
|
||||
# Normally configure builds both a static and a shared library.
|
||||
# If you want to build just a static library, use: ./configure --static
|
||||
|
||||
|
||||
# To install /usr/local/lib/libz.* and /usr/local/include/zlib.h, type:
|
||||
# make install
|
||||
# To install in $HOME instead of /usr/local, use:
|
||||
# make install prefix=$HOME
|
||||
|
||||
TGT_ARCH=
|
||||
CC=cc
|
||||
|
||||
CFLAGS=-O
|
||||
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
|
||||
#CFLAGS=-g -DDEBUG
|
||||
#CFLAGS=-g -DZLIB_DEBUG
|
||||
#CFLAGS=-O3 -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
|
||||
# -Wstrict-prototypes -Wmissing-prototypes
|
||||
|
||||
SFLAGS=-O
|
||||
LDFLAGS=
|
||||
TEST_LDFLAGS=-L. libz.a
|
||||
TEST_LIBS=-L. libz.a
|
||||
LDSHARED=$(CC)
|
||||
CPP=$(CC) -E
|
||||
|
||||
STATICLIB=libz.a
|
||||
SHAREDLIB=libz.so
|
||||
SHAREDLIBV=libz.so.1.2.8
|
||||
SHAREDLIBV=libz.so.1.3.1
|
||||
SHAREDLIBM=libz.so.1
|
||||
LIBS=$(STATICLIB) $(SHAREDLIBV)
|
||||
|
||||
@ -51,29 +49,16 @@ includedir = ${prefix}/include
|
||||
mandir = ${prefix}/share/man
|
||||
man3dir = ${mandir}/man3
|
||||
pkgconfigdir = ${libdir}/pkgconfig
|
||||
SRCDIR=
|
||||
ZINC=
|
||||
ZINCOUT=-I.
|
||||
|
||||
OBJZ = adler32.o adler32_simd.o crc32.o deflate.o infback.o inffast.o inflate.o inftrees.o trees.o zutil.o
|
||||
OBJZ = adler32.o crc32.o deflate.o infback.o inffast.o inflate.o inftrees.o trees.o zutil.o
|
||||
OBJG = compress.o uncompr.o gzclose.o gzlib.o gzread.o gzwrite.o
|
||||
|
||||
PIC_OBJZ = adler32.lo adler32_simd.lo crc32.lo deflate.lo infback.lo inffast.lo inflate.lo inftrees.lo trees.lo zutil.lo
|
||||
PIC_OBJG = compress.lo uncompr.lo gzclose.lo gzlib.lo gzread.lo gzwrite.lo
|
||||
|
||||
ifneq ($(findstring -DINFLATE_CHUNK_SIMD_NEON, $(CFLAGS)),)
|
||||
OBJZ += inffast_chunk.o
|
||||
PIC_OBJZ += inffast_chunk.lo
|
||||
endif
|
||||
|
||||
ifneq ($(findstring -DINFLATE_CHUNK_SIMD_SSE2, $(CFLAGS)),)
|
||||
OBJZ += inffast_chunk.o
|
||||
PIC_OBJZ += inffast_chunk.lo
|
||||
endif
|
||||
|
||||
ifneq ($(findstring -DHAS_PCLMUL, $(CFLAGS)),)
|
||||
OBJZ += crc32_simd.o
|
||||
PIC_OBJZ += crc32_simd.lo
|
||||
endif
|
||||
|
||||
OBJC = $(OBJZ) $(OBJG)
|
||||
|
||||
PIC_OBJZ = adler32.lo crc32.lo deflate.lo infback.lo inffast.lo inflate.lo inftrees.lo trees.lo zutil.lo
|
||||
PIC_OBJG = compress.lo uncompr.lo gzclose.lo gzlib.lo gzread.lo gzwrite.lo
|
||||
PIC_OBJC = $(PIC_OBJZ) $(PIC_OBJG)
|
||||
|
||||
# to use the asm code: make OBJA=match.o, PIC_OBJA=match.lo
|
||||
@ -98,12 +83,12 @@ test: all teststatic testshared
|
||||
|
||||
teststatic: static
|
||||
@TMPST=tmpst_$$; \
|
||||
if echo hello world | ./minigzip | ./minigzip -d && ./example $$TMPST ; then \
|
||||
if echo hello world | ${QEMU_RUN} ./minigzip | ${QEMU_RUN} ./minigzip -d && ${QEMU_RUN} ./example $$TMPST ; then \
|
||||
echo ' *** zlib test OK ***'; \
|
||||
else \
|
||||
echo ' *** zlib test FAILED ***'; false; \
|
||||
fi; \
|
||||
rm -f $$TMPST
|
||||
fi
|
||||
@rm -f tmpst_$$
|
||||
|
||||
testshared: shared
|
||||
@LD_LIBRARY_PATH=`pwd`:$(LD_LIBRARY_PATH) ; export LD_LIBRARY_PATH; \
|
||||
@ -111,31 +96,31 @@ testshared: shared
|
||||
DYLD_LIBRARY_PATH=`pwd`:$(DYLD_LIBRARY_PATH) ; export DYLD_LIBRARY_PATH; \
|
||||
SHLIB_PATH=`pwd`:$(SHLIB_PATH) ; export SHLIB_PATH; \
|
||||
TMPSH=tmpsh_$$; \
|
||||
if echo hello world | ./minigzipsh | ./minigzipsh -d && ./examplesh $$TMPSH; then \
|
||||
if echo hello world | ${QEMU_RUN} ./minigzipsh | ${QEMU_RUN} ./minigzipsh -d && ${QEMU_RUN} ./examplesh $$TMPSH; then \
|
||||
echo ' *** zlib shared test OK ***'; \
|
||||
else \
|
||||
echo ' *** zlib shared test FAILED ***'; false; \
|
||||
fi; \
|
||||
rm -f $$TMPSH
|
||||
fi
|
||||
@rm -f tmpsh_$$
|
||||
|
||||
test64: all64
|
||||
@TMP64=tmp64_$$; \
|
||||
if echo hello world | ./minigzip64 | ./minigzip64 -d && ./example64 $$TMP64; then \
|
||||
if echo hello world | ${QEMU_RUN} ./minigzip64 | ${QEMU_RUN} ./minigzip64 -d && ${QEMU_RUN} ./example64 $$TMP64; then \
|
||||
echo ' *** zlib 64-bit test OK ***'; \
|
||||
else \
|
||||
echo ' *** zlib 64-bit test FAILED ***'; false; \
|
||||
fi; \
|
||||
rm -f $$TMP64
|
||||
fi
|
||||
@rm -f tmp64_$$
|
||||
|
||||
infcover.o: test/infcover.c zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) -I. -c -o $@ test/infcover.c
|
||||
infcover.o: $(SRCDIR)test/infcover.c $(SRCDIR)zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) $(ZINCOUT) -c -o $@ $(SRCDIR)test/infcover.c
|
||||
|
||||
infcover: infcover.o libz.a
|
||||
$(CC) $(CFLAGS) -o $@ infcover.o libz.a
|
||||
|
||||
cover: infcover
|
||||
rm -f *.gcda
|
||||
./infcover
|
||||
${QEMU_RUN} ./infcover
|
||||
gcov inf*.c
|
||||
|
||||
libz.a: $(OBJS)
|
||||
@ -154,24 +139,140 @@ match.lo: match.S
|
||||
mv _match.o match.lo
|
||||
rm -f _match.s
|
||||
|
||||
example.o: test/example.c zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) -I. -c -o $@ test/example.c
|
||||
example.o: $(SRCDIR)test/example.c $(SRCDIR)zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) $(ZINCOUT) -c -o $@ $(SRCDIR)test/example.c
|
||||
|
||||
minigzip.o: test/minigzip.c zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) -I. -c -o $@ test/minigzip.c
|
||||
minigzip.o: $(SRCDIR)test/minigzip.c $(SRCDIR)zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) $(ZINCOUT) -c -o $@ $(SRCDIR)test/minigzip.c
|
||||
|
||||
example64.o: test/example.c zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) -I. -D_FILE_OFFSET_BITS=64 -c -o $@ test/example.c
|
||||
example64.o: $(SRCDIR)test/example.c $(SRCDIR)zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) $(ZINCOUT) -D_FILE_OFFSET_BITS=64 -c -o $@ $(SRCDIR)test/example.c
|
||||
|
||||
minigzip64.o: test/minigzip.c zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) -I. -D_FILE_OFFSET_BITS=64 -c -o $@ test/minigzip.c
|
||||
minigzip64.o: $(SRCDIR)test/minigzip.c $(SRCDIR)zlib.h zconf.h
|
||||
$(CC) $(CFLAGS) $(ZINCOUT) -D_FILE_OFFSET_BITS=64 -c -o $@ $(SRCDIR)test/minigzip.c
|
||||
|
||||
.SUFFIXES: .lo
|
||||
|
||||
.c.lo:
|
||||
adler32.o: $(SRCDIR)adler32.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)adler32.c
|
||||
|
||||
crc32.o: $(SRCDIR)crc32.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)crc32.c
|
||||
|
||||
deflate.o: $(SRCDIR)deflate.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)deflate.c
|
||||
|
||||
infback.o: $(SRCDIR)infback.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)infback.c
|
||||
|
||||
inffast.o: $(SRCDIR)inffast.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)inffast.c
|
||||
|
||||
inflate.o: $(SRCDIR)inflate.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)inflate.c
|
||||
|
||||
inftrees.o: $(SRCDIR)inftrees.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)inftrees.c
|
||||
|
||||
trees.o: $(SRCDIR)trees.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)trees.c
|
||||
|
||||
zutil.o: $(SRCDIR)zutil.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)zutil.c
|
||||
|
||||
compress.o: $(SRCDIR)compress.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)compress.c
|
||||
|
||||
uncompr.o: $(SRCDIR)uncompr.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)uncompr.c
|
||||
|
||||
gzclose.o: $(SRCDIR)gzclose.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)gzclose.c
|
||||
|
||||
gzlib.o: $(SRCDIR)gzlib.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)gzlib.c
|
||||
|
||||
gzread.o: $(SRCDIR)gzread.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)gzread.c
|
||||
|
||||
gzwrite.o: $(SRCDIR)gzwrite.c
|
||||
$(CC) $(CFLAGS) $(ZINC) -c -o $@ $(SRCDIR)gzwrite.c
|
||||
|
||||
|
||||
adler32.lo: $(SRCDIR)adler32.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) -DPIC -c -o objs/$*.o $<
|
||||
-@mv objs/$*.o $@
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/adler32.o $(SRCDIR)adler32.c
|
||||
-@mv objs/adler32.o $@
|
||||
|
||||
crc32.lo: $(SRCDIR)crc32.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/crc32.o $(SRCDIR)crc32.c
|
||||
-@mv objs/crc32.o $@
|
||||
|
||||
deflate.lo: $(SRCDIR)deflate.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/deflate.o $(SRCDIR)deflate.c
|
||||
-@mv objs/deflate.o $@
|
||||
|
||||
infback.lo: $(SRCDIR)infback.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/infback.o $(SRCDIR)infback.c
|
||||
-@mv objs/infback.o $@
|
||||
|
||||
inffast.lo: $(SRCDIR)inffast.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/inffast.o $(SRCDIR)inffast.c
|
||||
-@mv objs/inffast.o $@
|
||||
|
||||
inflate.lo: $(SRCDIR)inflate.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/inflate.o $(SRCDIR)inflate.c
|
||||
-@mv objs/inflate.o $@
|
||||
|
||||
inftrees.lo: $(SRCDIR)inftrees.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/inftrees.o $(SRCDIR)inftrees.c
|
||||
-@mv objs/inftrees.o $@
|
||||
|
||||
trees.lo: $(SRCDIR)trees.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/trees.o $(SRCDIR)trees.c
|
||||
-@mv objs/trees.o $@
|
||||
|
||||
zutil.lo: $(SRCDIR)zutil.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/zutil.o $(SRCDIR)zutil.c
|
||||
-@mv objs/zutil.o $@
|
||||
|
||||
compress.lo: $(SRCDIR)compress.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/compress.o $(SRCDIR)compress.c
|
||||
-@mv objs/compress.o $@
|
||||
|
||||
uncompr.lo: $(SRCDIR)uncompr.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/uncompr.o $(SRCDIR)uncompr.c
|
||||
-@mv objs/uncompr.o $@
|
||||
|
||||
gzclose.lo: $(SRCDIR)gzclose.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/gzclose.o $(SRCDIR)gzclose.c
|
||||
-@mv objs/gzclose.o $@
|
||||
|
||||
gzlib.lo: $(SRCDIR)gzlib.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/gzlib.o $(SRCDIR)gzlib.c
|
||||
-@mv objs/gzlib.o $@
|
||||
|
||||
gzread.lo: $(SRCDIR)gzread.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/gzread.o $(SRCDIR)gzread.c
|
||||
-@mv objs/gzread.o $@
|
||||
|
||||
gzwrite.lo: $(SRCDIR)gzwrite.c
|
||||
-@mkdir objs 2>/dev/null || test -d objs
|
||||
$(CC) $(SFLAGS) $(ZINC) -DPIC -c -o objs/gzwrite.o $(SRCDIR)gzwrite.c
|
||||
-@mv objs/gzwrite.o $@
|
||||
|
||||
|
||||
placebo $(SHAREDLIBV): $(PIC_OBJS) libz.a
|
||||
$(LDSHARED) $(SFLAGS) -o $@ $(PIC_OBJS) $(LDSHAREDLIBC) $(LDFLAGS)
|
||||
@ -181,22 +282,22 @@ placebo $(SHAREDLIBV): $(PIC_OBJS) libz.a
|
||||
-@rmdir objs
|
||||
|
||||
example$(EXE): example.o $(STATICLIB)
|
||||
$(CC) $(CFLAGS) -o $@ example.o $(TEST_LDFLAGS)
|
||||
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ example.o $(TEST_LIBS)
|
||||
|
||||
minigzip$(EXE): minigzip.o $(STATICLIB)
|
||||
$(CC) $(CFLAGS) -o $@ minigzip.o $(TEST_LDFLAGS)
|
||||
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ minigzip.o $(TEST_LIBS)
|
||||
|
||||
examplesh$(EXE): example.o $(SHAREDLIBV)
|
||||
$(CC) $(CFLAGS) -o $@ example.o -L. $(SHAREDLIBV)
|
||||
$(CC) $(CFLAGS) -o $@ example.o $(LDFLAGS) -L. $(SHAREDLIBV)
|
||||
|
||||
minigzipsh$(EXE): minigzip.o $(SHAREDLIBV)
|
||||
$(CC) $(CFLAGS) -o $@ minigzip.o -L. $(SHAREDLIBV)
|
||||
$(CC) $(CFLAGS) -o $@ minigzip.o $(LDFLAGS) -L. $(SHAREDLIBV)
|
||||
|
||||
example64$(EXE): example64.o $(STATICLIB)
|
||||
$(CC) $(CFLAGS) -o $@ example64.o $(TEST_LDFLAGS)
|
||||
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ example64.o $(TEST_LIBS)
|
||||
|
||||
minigzip64$(EXE): minigzip64.o $(STATICLIB)
|
||||
$(CC) $(CFLAGS) -o $@ minigzip64.o $(TEST_LDFLAGS)
|
||||
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ minigzip64.o $(TEST_LIBS)
|
||||
|
||||
install-libs: $(LIBS)
|
||||
-@if [ ! -d $(DESTDIR)$(exec_prefix) ]; then mkdir -p $(DESTDIR)$(exec_prefix); fi
|
||||
@ -204,10 +305,12 @@ install-libs: $(LIBS)
|
||||
-@if [ ! -d $(DESTDIR)$(sharedlibdir) ]; then mkdir -p $(DESTDIR)$(sharedlibdir); fi
|
||||
-@if [ ! -d $(DESTDIR)$(man3dir) ]; then mkdir -p $(DESTDIR)$(man3dir); fi
|
||||
-@if [ ! -d $(DESTDIR)$(pkgconfigdir) ]; then mkdir -p $(DESTDIR)$(pkgconfigdir); fi
|
||||
rm -f $(DESTDIR)$(libdir)/$(STATICLIB)
|
||||
cp $(STATICLIB) $(DESTDIR)$(libdir)
|
||||
chmod 644 $(DESTDIR)$(libdir)/$(STATICLIB)
|
||||
-@($(RANLIB) $(DESTDIR)$(libdir)/libz.a || true) >/dev/null 2>&1
|
||||
-@if test -n "$(SHAREDLIBV)"; then \
|
||||
rm -f $(DESTDIR)$(sharedlibdir)/$(SHAREDLIBV); \
|
||||
cp $(SHAREDLIBV) $(DESTDIR)$(sharedlibdir); \
|
||||
echo "cp $(SHAREDLIBV) $(DESTDIR)$(sharedlibdir)"; \
|
||||
chmod 755 $(DESTDIR)$(sharedlibdir)/$(SHAREDLIBV); \
|
||||
@ -217,8 +320,10 @@ install-libs: $(LIBS)
|
||||
ln -s $(SHAREDLIBV) $(DESTDIR)$(sharedlibdir)/$(SHAREDLIBM); \
|
||||
($(LDCONFIG) || true) >/dev/null 2>&1; \
|
||||
fi
|
||||
cp zlib.3 $(DESTDIR)$(man3dir)
|
||||
rm -f $(DESTDIR)$(man3dir)/zlib.3
|
||||
cp $(SRCDIR)zlib.3 $(DESTDIR)$(man3dir)
|
||||
chmod 644 $(DESTDIR)$(man3dir)/zlib.3
|
||||
rm -f $(DESTDIR)$(pkgconfigdir)/zlib.pc
|
||||
cp zlib.pc $(DESTDIR)$(pkgconfigdir)
|
||||
chmod 644 $(DESTDIR)$(pkgconfigdir)/zlib.pc
|
||||
# The ranlib in install is needed on NeXTSTEP which checks file times
|
||||
@ -226,7 +331,8 @@ install-libs: $(LIBS)
|
||||
|
||||
install: install-libs
|
||||
-@if [ ! -d $(DESTDIR)$(includedir) ]; then mkdir -p $(DESTDIR)$(includedir); fi
|
||||
cp zlib.h zconf.h $(DESTDIR)$(includedir)
|
||||
rm -f $(DESTDIR)$(includedir)/zlib.h $(DESTDIR)$(includedir)/zconf.h
|
||||
cp $(SRCDIR)zlib.h zconf.h $(DESTDIR)$(includedir)
|
||||
chmod 644 $(DESTDIR)$(includedir)/zlib.h $(DESTDIR)$(includedir)/zconf.h
|
||||
|
||||
uninstall:
|
||||
@ -240,21 +346,27 @@ uninstall:
|
||||
|
||||
docs: zlib.3.pdf
|
||||
|
||||
zlib.3.pdf: zlib.3
|
||||
groff -mandoc -f H -T ps zlib.3 | ps2pdf - zlib.3.pdf
|
||||
zlib.3.pdf: $(SRCDIR)zlib.3
|
||||
groff -mandoc -f H -T ps $(SRCDIR)zlib.3 | ps2pdf - $@
|
||||
|
||||
zconf.h.cmakein: zconf.h.in
|
||||
zconf.h.cmakein: $(SRCDIR)zconf.h.in
|
||||
-@ TEMPFILE=zconfh_$$; \
|
||||
echo "/#define ZCONF_H/ a\\\\\n#cmakedefine Z_PREFIX\\\\\n#cmakedefine Z_HAVE_UNISTD_H\n" >> $$TEMPFILE &&\
|
||||
sed -f $$TEMPFILE zconf.h.in > zconf.h.cmakein &&\
|
||||
touch -r zconf.h.in zconf.h.cmakein &&\
|
||||
sed -f $$TEMPFILE $(SRCDIR)zconf.h.in > $@ &&\
|
||||
touch -r $(SRCDIR)zconf.h.in $@ &&\
|
||||
rm $$TEMPFILE
|
||||
|
||||
zconf: zconf.h.in
|
||||
cp -p zconf.h.in zconf.h
|
||||
zconf: $(SRCDIR)zconf.h.in
|
||||
cp -p $(SRCDIR)zconf.h.in zconf.h
|
||||
|
||||
minizip-test: static
|
||||
cd contrib/minizip && { CC="$(CC)" CFLAGS="$(CFLAGS)" $(MAKE) test ; cd ../.. ; }
|
||||
|
||||
minizip-clean:
|
||||
cd contrib/minizip && { $(MAKE) clean ; cd ../.. ; }
|
||||
|
||||
mostlyclean: clean
|
||||
clean:
|
||||
clean: minizip-clean
|
||||
rm -f *.o *.lo *~ \
|
||||
example$(EXE) minigzip$(EXE) examplesh$(EXE) minigzipsh$(EXE) \
|
||||
example64$(EXE) minigzip64$(EXE) \
|
||||
@ -266,41 +378,33 @@ clean:
|
||||
rm -f contrib/infback9/*.gcda contrib/infback9/*.gcno contrib/infback9/*.gcov
|
||||
|
||||
maintainer-clean: distclean
|
||||
distclean: clean zconf zconf.h.cmakein docs
|
||||
distclean: clean zconf zconf.h.cmakein
|
||||
rm -f Makefile zlib.pc configure.log
|
||||
-@rm -f .DS_Store
|
||||
-@printf 'all:\n\t-@echo "Please use ./configure first. Thank you."\n' > Makefile
|
||||
-@printf '\ndistclean:\n\tmake -f Makefile.in distclean\n' >> Makefile
|
||||
-@touch -r Makefile.in Makefile
|
||||
@if [ -f Makefile.in ]; then \
|
||||
printf 'all:\n\t-@echo "Please use ./configure first. Thank you."\n' > Makefile ; \
|
||||
printf '\ndistclean:\n\tmake -f Makefile.in distclean\n' >> Makefile ; \
|
||||
touch -r $(SRCDIR)Makefile.in Makefile ; fi
|
||||
|
||||
tags:
|
||||
etags *.[ch]
|
||||
etags $(SRCDIR)*.[ch]
|
||||
|
||||
depend:
|
||||
makedepend -- $(CFLAGS) -- *.[ch]
|
||||
adler32.o zutil.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h
|
||||
gzclose.o gzlib.o gzread.o gzwrite.o: $(SRCDIR)zlib.h zconf.h $(SRCDIR)gzguts.h
|
||||
compress.o example.o minigzip.o uncompr.o: $(SRCDIR)zlib.h zconf.h
|
||||
crc32.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)crc32.h
|
||||
deflate.o: $(SRCDIR)deflate.h $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h
|
||||
infback.o inflate.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h $(SRCDIR)inflate.h $(SRCDIR)inffast.h $(SRCDIR)inffixed.h
|
||||
inffast.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h $(SRCDIR)inflate.h $(SRCDIR)inffast.h
|
||||
inftrees.o: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h
|
||||
trees.o: $(SRCDIR)deflate.h $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)trees.h
|
||||
|
||||
# DO NOT DELETE THIS LINE -- make depend depends on it.
|
||||
|
||||
adler32.o zutil.o: zutil.h zlib.h zconf.h
|
||||
adler32_simd.o: zlib.h
|
||||
gzclose.o gzlib.o gzread.o gzwrite.o: zlib.h zconf.h gzguts.h
|
||||
compress.o example.o minigzip.o uncompr.o: zlib.h zconf.h
|
||||
crc32.o: zutil.h zlib.h zconf.h crc32.h
|
||||
deflate.o: deflate.h zutil.h zlib.h zconf.h
|
||||
infback.o inflate.o: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast.h inffixed.h inffast_chunk.h chunkcopy.h
|
||||
inffast.o: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast.h
|
||||
inffast_chunk.o: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast_chunk.h chunkcopy.h
|
||||
inftrees.o: zutil.h zlib.h zconf.h inftrees.h
|
||||
trees.o: deflate.h zutil.h zlib.h zconf.h trees.h
|
||||
|
||||
adler32.lo zutil.lo: zutil.h zlib.h zconf.h
|
||||
adler32_simd.o: zlib.h
|
||||
gzclose.lo gzlib.lo gzread.lo gzwrite.lo: zlib.h zconf.h gzguts.h
|
||||
compress.lo example.lo minigzip.lo uncompr.lo: zlib.h zconf.h
|
||||
crc32.lo: zutil.h zlib.h zconf.h crc32.h
|
||||
deflate.lo: deflate.h zutil.h zlib.h zconf.h
|
||||
infback.lo inflate.lo: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast.h inffixed.h inffast_chunk.h chunkcopy.h
|
||||
inffast.lo: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast.h
|
||||
inffast_chunk.lo: zutil.h zlib.h zconf.h inftrees.h inflate.h inffast_chunk.h chunkcopy.h
|
||||
inftrees.lo: zutil.h zlib.h zconf.h inftrees.h
|
||||
trees.lo: deflate.h zutil.h zlib.h zconf.h trees.h
|
||||
adler32.lo zutil.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h
|
||||
gzclose.lo gzlib.lo gzread.lo gzwrite.lo: $(SRCDIR)zlib.h zconf.h $(SRCDIR)gzguts.h
|
||||
compress.lo example.lo minigzip.lo uncompr.lo: $(SRCDIR)zlib.h zconf.h
|
||||
crc32.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)crc32.h
|
||||
deflate.lo: $(SRCDIR)deflate.h $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h
|
||||
infback.lo inflate.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h $(SRCDIR)inflate.h $(SRCDIR)inffast.h $(SRCDIR)inffixed.h
|
||||
inffast.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h $(SRCDIR)inflate.h $(SRCDIR)inffast.h
|
||||
inftrees.lo: $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)inftrees.h
|
||||
trees.lo: $(SRCDIR)deflate.h $(SRCDIR)zutil.h $(SRCDIR)zlib.h zconf.h $(SRCDIR)trees.h
|
||||
|
24
external/zlib/README
vendored
24
external/zlib/README
vendored
@ -1,6 +1,6 @@
|
||||
ZLIB DATA COMPRESSION LIBRARY
|
||||
|
||||
zlib 1.2.11 is a general purpose data compression library. All the code is
|
||||
zlib 1.3.1 is a general purpose data compression library. All the code is
|
||||
thread safe. The data format used by the zlib library is described by RFCs
|
||||
(Request for Comments) 1950 to 1952 in the files
|
||||
http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and
|
||||
@ -29,18 +29,17 @@ PLEASE read the zlib FAQ http://zlib.net/zlib_faq.html before asking for help.
|
||||
|
||||
Mark Nelson <markn@ieee.org> wrote an article about zlib for the Jan. 1997
|
||||
issue of Dr. Dobb's Journal; a copy of the article is available at
|
||||
http://marknelson.us/1997/01/01/zlib-engine/ .
|
||||
https://marknelson.us/posts/1997/01/01/zlib-engine.html .
|
||||
|
||||
The changes made in version 1.2.11 are documented in the file ChangeLog.
|
||||
The changes made in version 1.3.1 are documented in the file ChangeLog.
|
||||
|
||||
Unsupported third party contributions are provided in directory contrib/ .
|
||||
|
||||
zlib is available in Java using the java.util.zip package, documented at
|
||||
http://java.sun.com/developer/technicalArticles/Programming/compression/ .
|
||||
zlib is available in Java using the java.util.zip package. Follow the API
|
||||
Documentation link at: https://docs.oracle.com/search/?q=java.util.zip .
|
||||
|
||||
A Perl interface to zlib written by Paul Marquess <pmqs@cpan.org> is available
|
||||
at CPAN (Comprehensive Perl Archive Network) sites, including
|
||||
http://search.cpan.org/~pmqs/IO-Compress-Zlib/ .
|
||||
A Perl interface to zlib and bzip2 written by Paul Marquess <pmqs@cpan.org>
|
||||
can be found at https://github.com/pmqs/IO-Compress .
|
||||
|
||||
A Python interface to zlib written by A.M. Kuchling <amk@amk.ca> is
|
||||
available in Python 1.5 and later versions, see
|
||||
@ -64,7 +63,7 @@ Notes for some targets:
|
||||
- zlib doesn't work with gcc 2.6.3 on a DEC 3000/300LX under OSF/1 2.1 it works
|
||||
when compiled with cc.
|
||||
|
||||
- On Digital Unix 4.0D (formely OSF/1) on AlphaServer, the cc option -std1 is
|
||||
- On Digital Unix 4.0D (formerly OSF/1) on AlphaServer, the cc option -std1 is
|
||||
necessary to get gzprintf working correctly. This is done by configure.
|
||||
|
||||
- zlib doesn't work on HP-UX 9.05 with some versions of /bin/cc. It works with
|
||||
@ -84,7 +83,7 @@ Acknowledgments:
|
||||
|
||||
Copyright notice:
|
||||
|
||||
(C) 1995-2017 Jean-loup Gailly and Mark Adler
|
||||
(C) 1995-2024 Jean-loup Gailly and Mark Adler
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
@ -108,7 +107,10 @@ Copyright notice:
|
||||
If you use the zlib library in a product, we would appreciate *not* receiving
|
||||
lengthy legal documents to sign. The sources are provided for free but without
|
||||
warranty of any kind. The library has been entirely written by Jean-loup
|
||||
Gailly and Mark Adler; it does not include third-party code.
|
||||
Gailly and Mark Adler; it does not include third-party code. We make all
|
||||
contributions to and distributions of this project solely in our personal
|
||||
capacity, and are not conveying any rights to any intellectual property of
|
||||
any third parties.
|
||||
|
||||
If you redistribute modified sources, we would appreciate that you include in
|
||||
the file ChangeLog history information documenting your changes. Please read
|
||||
|
32
external/zlib/adler32.c
vendored
32
external/zlib/adler32.c
vendored
@ -7,8 +7,6 @@
|
||||
|
||||
#include "zutil.h"
|
||||
|
||||
local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
|
||||
|
||||
#define BASE 65521U /* largest prime smaller than 65536 */
|
||||
#define NMAX 5552
|
||||
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
|
||||
@ -60,11 +58,7 @@ local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
|
||||
#endif
|
||||
|
||||
/* ========================================================================= */
|
||||
uLong ZEXPORT adler32_z(adler, buf, len)
|
||||
uLong adler;
|
||||
const Bytef *buf;
|
||||
z_size_t len;
|
||||
{
|
||||
uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
|
||||
unsigned long sum2;
|
||||
unsigned n;
|
||||
|
||||
@ -131,20 +125,12 @@ uLong ZEXPORT adler32_z(adler, buf, len)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
uLong ZEXPORT adler32(adler, buf, len)
|
||||
uLong adler;
|
||||
const Bytef *buf;
|
||||
uInt len;
|
||||
{
|
||||
uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
|
||||
return adler32_z(adler, buf, len);
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
local uLong adler32_combine_(adler1, adler2, len2)
|
||||
uLong adler1;
|
||||
uLong adler2;
|
||||
z_off64_t len2;
|
||||
{
|
||||
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) {
|
||||
unsigned long sum1;
|
||||
unsigned long sum2;
|
||||
unsigned rem;
|
||||
@ -169,18 +155,10 @@ local uLong adler32_combine_(adler1, adler2, len2)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
|
||||
uLong adler1;
|
||||
uLong adler2;
|
||||
z_off_t len2;
|
||||
{
|
||||
uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) {
|
||||
return adler32_combine_(adler1, adler2, len2);
|
||||
}
|
||||
|
||||
uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
|
||||
uLong adler1;
|
||||
uLong adler2;
|
||||
z_off64_t len2;
|
||||
{
|
||||
uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) {
|
||||
return adler32_combine_(adler1, adler2, len2);
|
||||
}
|
||||
|
21
external/zlib/compress.c
vendored
21
external/zlib/compress.c
vendored
@ -19,13 +19,8 @@
|
||||
memory, Z_BUF_ERROR if there was not enough room in the output buffer,
|
||||
Z_STREAM_ERROR if the level parameter is invalid.
|
||||
*/
|
||||
int ZEXPORT compress2(dest, destLen, source, sourceLen, level)
|
||||
Bytef *dest;
|
||||
uLongf *destLen;
|
||||
const Bytef *source;
|
||||
uLong sourceLen;
|
||||
int level;
|
||||
{
|
||||
int ZEXPORT compress2(Bytef *dest, uLongf *destLen, const Bytef *source,
|
||||
uLong sourceLen, int level) {
|
||||
z_stream stream;
|
||||
int err;
|
||||
const uInt max = (uInt)-1;
|
||||
@ -65,12 +60,8 @@ int ZEXPORT compress2(dest, destLen, source, sourceLen, level)
|
||||
|
||||
/* ===========================================================================
|
||||
*/
|
||||
int ZEXPORT compress(dest, destLen, source, sourceLen)
|
||||
Bytef *dest;
|
||||
uLongf *destLen;
|
||||
const Bytef *source;
|
||||
uLong sourceLen;
|
||||
{
|
||||
int ZEXPORT compress(Bytef *dest, uLongf *destLen, const Bytef *source,
|
||||
uLong sourceLen) {
|
||||
return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION);
|
||||
}
|
||||
|
||||
@ -78,9 +69,7 @@ int ZEXPORT compress(dest, destLen, source, sourceLen)
|
||||
If the default memLevel or windowBits for deflateInit() is changed, then
|
||||
this function needs to be updated.
|
||||
*/
|
||||
uLong ZEXPORT compressBound(sourceLen)
|
||||
uLong sourceLen;
|
||||
{
|
||||
uLong ZEXPORT compressBound(uLong sourceLen) {
|
||||
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
|
||||
(sourceLen >> 25) + 13;
|
||||
}
|
||||
|
356
external/zlib/configure
vendored
356
external/zlib/configure
vendored
@ -18,20 +18,34 @@ echo -------------------- >> configure.log
|
||||
echo $0 $* >> configure.log
|
||||
date >> configure.log
|
||||
|
||||
# get source directory
|
||||
SRCDIR=`dirname $0`
|
||||
if test $SRCDIR = "."; then
|
||||
ZINC=""
|
||||
ZINCOUT="-I."
|
||||
SRCDIR=""
|
||||
else
|
||||
ZINC='-I. -include zconf.h'
|
||||
ZINCOUT='-I. -I$(SRCDIR)'
|
||||
SRCDIR="$SRCDIR/"
|
||||
fi
|
||||
|
||||
# set command prefix for cross-compilation
|
||||
if [ -n "${CHOST}" ]; then
|
||||
uname="`echo "${CHOST}" | sed -e 's/^[^-]*-\([^-]*\)$/\1/' -e 's/^[^-]*-[^-]*-\([^-]*\)$/\1/' -e 's/^[^-]*-[^-]*-\([^-]*\)-.*$/\1/'`"
|
||||
uname=${CHOST}
|
||||
mname=${CHOST}
|
||||
CROSS_PREFIX="${CHOST}-"
|
||||
else
|
||||
mname=`(uname -a || echo unknown) 2>/dev/null`
|
||||
fi
|
||||
|
||||
# destination name for static library
|
||||
STATICLIB=libz.a
|
||||
|
||||
# extract zlib version numbers from zlib.h
|
||||
VER=`sed -n -e '/VERSION "/s/.*"\(.*\)".*/\1/p' < zlib.h`
|
||||
VER3=`sed -n -e '/VERSION "/s/.*"\([0-9]*\\.[0-9]*\\.[0-9]*\).*/\1/p' < zlib.h`
|
||||
VER2=`sed -n -e '/VERSION "/s/.*"\([0-9]*\\.[0-9]*\)\\..*/\1/p' < zlib.h`
|
||||
VER1=`sed -n -e '/VERSION "/s/.*"\([0-9]*\)\\..*/\1/p' < zlib.h`
|
||||
VER=`sed -n -e '/VERSION "/s/.*"\(.*\)".*/\1/p' < ${SRCDIR}zlib.h`
|
||||
VER3=`echo ${VER}|sed -n -e 's/\([0-9]\{1,\}\(\\.[0-9]\{1,\}\)\{1,2\}\).*/\1/p'`
|
||||
VER1=`echo ${VER}|sed -n -e 's/\([0-9]\{1,\}\)\\..*/\1/p'`
|
||||
|
||||
# establish commands for library building
|
||||
if "${CROSS_PREFIX}ar" --version >/dev/null 2>/dev/null || test $? -lt 126; then
|
||||
@ -58,8 +72,7 @@ fi
|
||||
# set defaults before processing command line options
|
||||
LDCONFIG=${LDCONFIG-"ldconfig"}
|
||||
LDSHAREDLIBC="${LDSHAREDLIBC--lc}"
|
||||
ARCHS= # target specific flags
|
||||
TGT_ARCH=$(uname -m) # the name of target architecture
|
||||
ARCHS=
|
||||
prefix=${prefix-/usr/local}
|
||||
exec_prefix=${exec_prefix-'${prefix}'}
|
||||
libdir=${libdir-'${exec_prefix}/lib'}
|
||||
@ -74,6 +87,10 @@ zprefix=0
|
||||
zconst=0
|
||||
build64=0
|
||||
gcc=0
|
||||
warn=0
|
||||
debug=0
|
||||
address=0
|
||||
memory=0
|
||||
old_cc="$CC"
|
||||
old_cflags="$CFLAGS"
|
||||
OBJC='$(OBJZ) $(OBJG)'
|
||||
@ -85,7 +102,7 @@ leave()
|
||||
if test "$*" != "0"; then
|
||||
echo "** $0 aborting." | tee -a configure.log
|
||||
fi
|
||||
rm -f $test.[co] $test $test$shared_ext $test.gcno ./--version
|
||||
rm -rf $test.[co] $test $test$shared_ext $test.gcno $test.dSYM ./--version
|
||||
echo -------------------- >> configure.log
|
||||
echo >> configure.log
|
||||
echo >> configure.log
|
||||
@ -119,10 +136,14 @@ case "$1" in
|
||||
-z* | --zprefix) zprefix=1; shift ;;
|
||||
-6* | --64) build64=1; shift ;;
|
||||
-a*=* | --archs=*) ARCHS=`echo $1 | sed 's/.*=//'`; shift ;;
|
||||
-T*=* | --target=*) TGT_ARCH=`echo $1 | sed 's/.*=//'`; shift ;;
|
||||
--sysconfdir=*) echo "ignored option: --sysconfdir" | tee -a configure.log; shift ;;
|
||||
--localstatedir=*) echo "ignored option: --localstatedir" | tee -a configure.log; shift ;;
|
||||
-c* | --const) zconst=1; shift ;;
|
||||
-w* | --warn) warn=1; shift ;;
|
||||
-d* | --debug) debug=1; shift ;;
|
||||
--sanitize) address=1; shift ;;
|
||||
--address) address=1; shift ;;
|
||||
--memory) memory=1; shift ;;
|
||||
*)
|
||||
echo "unknown option: $1" | tee -a configure.log
|
||||
echo "$0 --help for help" | tee -a configure.log
|
||||
@ -151,81 +172,109 @@ extern int getchar();
|
||||
int hello() {return getchar();}
|
||||
EOF
|
||||
|
||||
test -z "$CC" && echo Checking for ${CROSS_PREFIX}gcc... | tee -a configure.log
|
||||
cc=${CC-${CROSS_PREFIX}gcc}
|
||||
cflags=${CFLAGS-"-O3"}
|
||||
# to force the asm version use: CFLAGS="-O3 -DASMV" ./configure
|
||||
if test -z "$CC"; then
|
||||
echo Checking for ${CROSS_PREFIX}gcc... | tee -a configure.log
|
||||
if ${CROSS_PREFIX}gcc -v >/dev/null 2>&1; then
|
||||
cc=${CROSS_PREFIX}gcc
|
||||
else
|
||||
cc=${CROSS_PREFIX}cc
|
||||
fi
|
||||
else
|
||||
cc=${CC}
|
||||
fi
|
||||
|
||||
case "$cc" in
|
||||
*gcc*) gcc=1 ;;
|
||||
*clang*) gcc=1 ;;
|
||||
esac
|
||||
case `$cc -v 2>&1` in
|
||||
*gcc*) gcc=1 ;;
|
||||
*clang*) gcc=1 ;;
|
||||
esac
|
||||
|
||||
show $cc -c $test.c
|
||||
if test "$gcc" -eq 1 && ($cc -c $test.c) >> configure.log 2>&1; then
|
||||
echo ... using gcc >> configure.log
|
||||
CC="$cc"
|
||||
CFLAGS="${CFLAGS--O3} ${ARCHS}"
|
||||
CFLAGS="${CFLAGS--O3}"
|
||||
SFLAGS="${CFLAGS--O3} -fPIC"
|
||||
LDFLAGS="${LDFLAGS} ${ARCHS}"
|
||||
if test "$ARCHS"; then
|
||||
CFLAGS="${CFLAGS} ${ARCHS}"
|
||||
LDFLAGS="${LDFLAGS} ${ARCHS}"
|
||||
fi
|
||||
if test $build64 -eq 1; then
|
||||
CFLAGS="${CFLAGS} -m64"
|
||||
SFLAGS="${SFLAGS} -m64"
|
||||
fi
|
||||
if test "${ZLIBGCCWARN}" = "YES"; then
|
||||
if test "$warn" -eq 1; then
|
||||
if test "$zconst" -eq 1; then
|
||||
CFLAGS="${CFLAGS} -Wall -Wextra -Wcast-qual -pedantic -DZLIB_CONST"
|
||||
CFLAGS="${CFLAGS} -Wall -Wextra -Wcast-qual -DZLIB_CONST"
|
||||
else
|
||||
CFLAGS="${CFLAGS} -Wall -Wextra -pedantic"
|
||||
CFLAGS="${CFLAGS} -Wall -Wextra"
|
||||
fi
|
||||
fi
|
||||
if test $address -eq 1; then
|
||||
CFLAGS="${CFLAGS} -g -fsanitize=address -fno-omit-frame-pointer"
|
||||
fi
|
||||
if test $memory -eq 1; then
|
||||
CFLAGS="${CFLAGS} -g -fsanitize=memory -fno-omit-frame-pointer"
|
||||
fi
|
||||
if test $debug -eq 1; then
|
||||
CFLAGS="${CFLAGS} -DZLIB_DEBUG"
|
||||
SFLAGS="${SFLAGS} -DZLIB_DEBUG"
|
||||
fi
|
||||
if test -z "$uname"; then
|
||||
uname=`(uname -s || echo unknown) 2>/dev/null`
|
||||
fi
|
||||
case "$uname" in
|
||||
Linux* | linux* | GNU | GNU/* | solaris*)
|
||||
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,zlib.map"} ;;
|
||||
Linux* | linux* | *-linux* | GNU | GNU/* | solaris*)
|
||||
case "$mname" in
|
||||
*sparc*)
|
||||
LDFLAGS="${LDFLAGS} -Wl,--no-warn-rwx-segments" ;;
|
||||
esac
|
||||
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,${SRCDIR}zlib.map"} ;;
|
||||
*BSD | *bsd* | DragonFly)
|
||||
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,zlib.map"}
|
||||
LDSHARED=${LDSHARED-"$cc -shared -Wl,-soname,libz.so.1,--version-script,${SRCDIR}zlib.map"}
|
||||
LDCONFIG="ldconfig -m" ;;
|
||||
CYGWIN* | Cygwin* | cygwin* | OS/2*)
|
||||
CYGWIN* | Cygwin* | cygwin* | *-cygwin* | OS/2*)
|
||||
EXE='.exe' ;;
|
||||
MINGW* | mingw*)
|
||||
# temporary bypass
|
||||
MINGW* | mingw* | *-mingw*)
|
||||
rm -f $test.[co] $test $test$shared_ext
|
||||
echo "Please use win32/Makefile.gcc instead." | tee -a configure.log
|
||||
leave 1
|
||||
echo "If this doesn't work for you, try win32/Makefile.gcc." | tee -a configure.log
|
||||
LDSHARED=${LDSHARED-"$cc -shared"}
|
||||
LDSHAREDLIBC=""
|
||||
EXE='.exe' ;;
|
||||
QNX*) # This is for QNX6. I suppose that the QNX rule below is for QNX2,QNX4
|
||||
# (alain.bonnefoy@icbt.com)
|
||||
LDSHARED=${LDSHARED-"$cc -shared -Wl,-hlibz.so.1"} ;;
|
||||
QNX*) # This is for QNX6. I suppose that the QNX rule below is for QNX2,QNX4
|
||||
# (alain.bonnefoy@icbt.com)
|
||||
LDSHARED=${LDSHARED-"$cc -shared -Wl,-hlibz.so.1"} ;;
|
||||
HP-UX*)
|
||||
LDSHARED=${LDSHARED-"$cc -shared $SFLAGS"}
|
||||
case `(uname -m || echo unknown) 2>/dev/null` in
|
||||
ia64)
|
||||
shared_ext='.so'
|
||||
SHAREDLIB='libz.so' ;;
|
||||
*)
|
||||
shared_ext='.sl'
|
||||
SHAREDLIB='libz.sl' ;;
|
||||
esac ;;
|
||||
Darwin* | darwin*)
|
||||
shared_ext='.dylib'
|
||||
SHAREDLIB=libz$shared_ext
|
||||
SHAREDLIBV=libz.$VER$shared_ext
|
||||
SHAREDLIBM=libz.$VER1$shared_ext
|
||||
LDSHARED=${LDSHARED-"$cc -dynamiclib -install_name $libdir/$SHAREDLIBM -compatibility_version $VER1 -current_version $VER3"}
|
||||
if libtool -V 2>&1 | grep Apple > /dev/null; then
|
||||
AR="libtool"
|
||||
else
|
||||
AR="/usr/bin/libtool"
|
||||
fi
|
||||
ARFLAGS="-o" ;;
|
||||
*) LDSHARED=${LDSHARED-"$cc -shared"} ;;
|
||||
LDSHARED=${LDSHARED-"$cc -shared $SFLAGS"}
|
||||
case `(uname -m || echo unknown) 2>/dev/null` in
|
||||
ia64)
|
||||
shared_ext='.so'
|
||||
SHAREDLIB='libz.so' ;;
|
||||
*)
|
||||
shared_ext='.sl'
|
||||
SHAREDLIB='libz.sl' ;;
|
||||
esac ;;
|
||||
AIX*)
|
||||
LDFLAGS="${LDFLAGS} -Wl,-brtl" ;;
|
||||
Darwin* | darwin* | *-darwin*)
|
||||
shared_ext='.dylib'
|
||||
SHAREDLIB=libz$shared_ext
|
||||
SHAREDLIBV=libz.$VER$shared_ext
|
||||
SHAREDLIBM=libz.$VER1$shared_ext
|
||||
LDSHARED=${LDSHARED-"$cc -dynamiclib -install_name $libdir/$SHAREDLIBM -compatibility_version $VER1 -current_version $VER3"}
|
||||
if "${CROSS_PREFIX}libtool" -V 2>&1 | grep Apple > /dev/null; then
|
||||
AR="${CROSS_PREFIX}libtool"
|
||||
elif libtool -V 2>&1 | grep Apple > /dev/null; then
|
||||
AR="libtool"
|
||||
else
|
||||
AR="/usr/bin/libtool"
|
||||
fi
|
||||
ARFLAGS="-o" ;;
|
||||
*)
|
||||
LDSHARED=${LDSHARED-"$cc -shared"} ;;
|
||||
esac
|
||||
else
|
||||
# find system name and corresponding cc options
|
||||
@ -289,6 +338,9 @@ else
|
||||
esac
|
||||
fi
|
||||
fi
|
||||
if test -n "$ZINC"; then
|
||||
ZINC='-I- -I. -I$(SRCDIR)'
|
||||
fi
|
||||
;;
|
||||
SunOS\ 4*) SFLAGS=${CFLAGS-"-O2 -PIC"}
|
||||
CFLAGS=${CFLAGS-"-O2"}
|
||||
@ -339,16 +391,19 @@ if ($CC -c $CFLAGS $test.c) 2>/dev/null; then
|
||||
}
|
||||
echo - using any output from compiler to indicate an error >> configure.log
|
||||
else
|
||||
try()
|
||||
{
|
||||
show $*
|
||||
( $* ) >> configure.log 2>&1
|
||||
ret=$?
|
||||
if test $ret -ne 0; then
|
||||
echo "(exit code "$ret")" >> configure.log
|
||||
fi
|
||||
return $ret
|
||||
}
|
||||
try()
|
||||
{
|
||||
show $*
|
||||
got=`( $* ) 2>&1`
|
||||
ret=$?
|
||||
if test "$got" != ""; then
|
||||
printf "%s\n" "$got" >> configure.log
|
||||
fi
|
||||
if test $ret -ne 0; then
|
||||
echo "(exit code "$ret")" >> configure.log
|
||||
fi
|
||||
return $ret
|
||||
}
|
||||
fi
|
||||
|
||||
tryboth()
|
||||
@ -356,8 +411,11 @@ tryboth()
|
||||
show $*
|
||||
got=`( $* ) 2>&1`
|
||||
ret=$?
|
||||
printf %s "$got" >> configure.log
|
||||
if test "$got" != ""; then
|
||||
printf "%s\n" "$got" >> configure.log
|
||||
fi
|
||||
if test $ret -ne 0; then
|
||||
echo "(exit code "$ret")" >> configure.log
|
||||
return $ret
|
||||
fi
|
||||
test "$got" = ""
|
||||
@ -384,7 +442,7 @@ EOF
|
||||
if test $shared -eq 1; then
|
||||
echo Checking for shared library support... | tee -a configure.log
|
||||
# we must test in two steps (cc then ld), required at least on SunOS 4.x
|
||||
if try $CC -w -c $SFLAGS $test.c &&
|
||||
if try $CC -c $SFLAGS $test.c &&
|
||||
try $LDSHARED $SFLAGS -o $test$shared_ext $test.o; then
|
||||
echo Building shared library $SHAREDLIBV with $CC. | tee -a configure.log
|
||||
elif test -z "$old_cc" -a -z "$old_cflags"; then
|
||||
@ -408,19 +466,54 @@ else
|
||||
TEST="all teststatic testshared"
|
||||
fi
|
||||
|
||||
# check for underscores in external names for use by assembler code
|
||||
CPP=${CPP-"$CC -E"}
|
||||
case $CFLAGS in
|
||||
*ASMV*)
|
||||
echo >> configure.log
|
||||
show "$NM $test.o | grep _hello"
|
||||
if test "`$NM $test.o | grep _hello | tee -a configure.log`" = ""; then
|
||||
CPP="$CPP -DNO_UNDERLINE"
|
||||
echo Checking for underline in external names... No. | tee -a configure.log
|
||||
else
|
||||
echo Checking for underline in external names... Yes. | tee -a configure.log
|
||||
fi ;;
|
||||
esac
|
||||
echo >> configure.log
|
||||
|
||||
# check for size_t
|
||||
cat > $test.c <<EOF
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
size_t dummy = 0;
|
||||
EOF
|
||||
if try $CC -c $CFLAGS $test.c; then
|
||||
echo "Checking for size_t... Yes." | tee -a configure.log
|
||||
else
|
||||
echo "Checking for size_t... No." | tee -a configure.log
|
||||
# find a size_t integer type
|
||||
# check for long long
|
||||
cat > $test.c << EOF
|
||||
long long dummy = 0;
|
||||
EOF
|
||||
if try $CC -c $CFLAGS $test.c; then
|
||||
echo "Checking for long long... Yes." | tee -a configure.log
|
||||
cat > $test.c <<EOF
|
||||
#include <stdio.h>
|
||||
int main(void) {
|
||||
if (sizeof(void *) <= sizeof(int)) puts("int");
|
||||
else if (sizeof(void *) <= sizeof(long)) puts("long");
|
||||
else puts("z_longlong");
|
||||
return 0;
|
||||
}
|
||||
EOF
|
||||
else
|
||||
echo "Checking for long long... No." | tee -a configure.log
|
||||
cat > $test.c <<EOF
|
||||
#include <stdio.h>
|
||||
int main(void) {
|
||||
if (sizeof(void *) <= sizeof(int)) puts("int");
|
||||
else puts("long");
|
||||
return 0;
|
||||
}
|
||||
EOF
|
||||
fi
|
||||
if try $CC $CFLAGS -o $test $test.c; then
|
||||
sizet=`./$test`
|
||||
echo "Checking for a pointer-size integer type..." $sizet"." | tee -a configure.log
|
||||
CFLAGS="${CFLAGS} -DNO_SIZE_T=${sizet}"
|
||||
SFLAGS="${SFLAGS} -DNO_SIZE_T=${sizet}"
|
||||
else
|
||||
echo "Checking for a pointer-size integer type... not found." | tee -a configure.log
|
||||
fi
|
||||
fi
|
||||
|
||||
echo >> configure.log
|
||||
|
||||
@ -472,7 +565,7 @@ else
|
||||
fi
|
||||
|
||||
# copy clean zconf.h for subsequent edits
|
||||
cp -p zconf.h.in zconf.h
|
||||
cp -p ${SRCDIR}zconf.h.in zconf.h
|
||||
|
||||
echo >> configure.log
|
||||
|
||||
@ -742,103 +835,6 @@ EOF
|
||||
fi
|
||||
fi
|
||||
|
||||
# Check for AMD64 hardware support.
|
||||
if [ x$TGT_ARCH = "xx86_64" -o x$TGT_ARCH = "xamd64" ] ; then
|
||||
|
||||
cat > $test.c << EOF
|
||||
#include <emmintrin.h>
|
||||
void foo(void) {
|
||||
__m64 a, b;
|
||||
_mm_add_si64(a, b);
|
||||
}
|
||||
EOF
|
||||
if try $CC -msse2 $CFLAGS $test.c -c $test; then
|
||||
CFLAGS="-DINFLATE_CHUNK_SIMD_SSE2 -msse2 -DINFLATE_CHUNK_READ_64LE $CFLAGS"
|
||||
SFLAGS="-DINFLATE_CHUNK_SIMD_SSE2 -msse2 -DINFLATE_CHUNK_READ_64LE $SFLAGS"
|
||||
echo "Checking for SSE2 support ... Yes" | tee -a configure.log
|
||||
else
|
||||
echo "Checking for SSE2 support ... No" | tee -a configure.log
|
||||
leave 1
|
||||
fi
|
||||
|
||||
# Check for SSSE3 support
|
||||
cat > $test.c << EOF
|
||||
#include <tmmintrin.h>
|
||||
void foo(void) {
|
||||
__m128i a;
|
||||
_mm_abs_epi8(a);
|
||||
}
|
||||
EOF
|
||||
if try $CC -mssse3 $CFLAGS $test.c -c $test; then
|
||||
CFLAGS="-DADLER32_SIMD_SSSE3 -mssse3 $CFLAGS"
|
||||
SFLAGS="-DADLER32_SIMD_SSSE3 -mssse3 $SFLAGS"
|
||||
echo "Checking for SSSE3 support ... Yes" | tee -a configure.log
|
||||
else
|
||||
echo "Checking for SSSE3 support ... No" | tee -a configure.log
|
||||
leave 1
|
||||
fi
|
||||
|
||||
# Check for SSE4.2 and CRC support
|
||||
cat > $test.c << EOF
|
||||
#include <immintrin.h>
|
||||
void foo(void) {
|
||||
_mm_crc32_u32(0, 0);
|
||||
}
|
||||
EOF
|
||||
|
||||
if try $CC -msse4.2 $CFLAGS $test.c -c $test; then
|
||||
CFLAGS="-DHAS_SSE42 -msse4.2 $CFLAGS"
|
||||
SFLAGS="-DHAS_SSE42 -msse4.2 $SFLAGS"
|
||||
echo "Checking for CRC and SSE4.2 support ... Yes" | tee -a configure.log
|
||||
else
|
||||
echo "Checking for CRC and SSE4.2 support ... No" | tee -a configure.log
|
||||
echo "CRC and SSE4.2 support is required" | tee -a configure.log
|
||||
leave 1
|
||||
fi
|
||||
#Project copied from zlib-ng:
|
||||
# Check for PCLMUL support
|
||||
cat > $test.c << EOF
|
||||
#include <immintrin.h>
|
||||
int main(void) {
|
||||
__m128i a = _mm_setzero_si128();
|
||||
__m128i b = _mm_setzero_si128();
|
||||
__m128i c = _mm_clmulepi64_si128(a, b, 0x10);
|
||||
(void)c;
|
||||
return 0;
|
||||
}
|
||||
EOF
|
||||
if try $CC -c -mpclmul $CFLAGS $test.c ; then
|
||||
CFLAGS="-DHAS_PCLMUL -mpclmul $CFLAGS"
|
||||
SFLAGS="-DHAS_PCLMUL -mpclmul $SFLAGS"
|
||||
echo "Checking for PCLMUL support ... Yes" | tee -a configure.log
|
||||
else
|
||||
echo "Checking for PCLMUL support ... No" | tee -a configure.log
|
||||
fi
|
||||
|
||||
elif [ x$TGT_ARCH = "xaarch64" ] ; then
|
||||
|
||||
# Check for NEON and CRC support
|
||||
cat > $test.c << EOF
|
||||
#include <arm_neon.h>
|
||||
#include <arm_acle.h>
|
||||
void foo(void) {
|
||||
__crc32cw(0, 0);
|
||||
vqsubq_u16(vmovq_n_u16(1), vmovq_n_u16(2));
|
||||
}
|
||||
EOF
|
||||
|
||||
if try $CC -march=armv8-a+crc $CFLAGS $test.c -c $test; then
|
||||
CFLAGS="-march=armv8-a+crc -DADLER32_SIMD_NEON -DINFLATE_CHUNK_SIMD_NEON -DINFLATE_CHUNK_READ_64LE $CFLAGS"
|
||||
SFLAGS="-march=armv8-a+crc -DADLER32_SIMD_NEON -DINFLATE_CHUNK_SIMD_NEON -DINFLATE_CHUNK_READ_64LE $SFLAGS"
|
||||
echo "Checking for CRC and NEON support ... Yes" | tee -a configure.log
|
||||
else
|
||||
echo "Checking for CRC and NEON support ... No" | tee -a configure.log
|
||||
echo "CRC and NEON support is required" | tee -a configure.log
|
||||
leave 1
|
||||
fi
|
||||
|
||||
fi # end of "Check amd64 hardware support"
|
||||
|
||||
# show the results in the log
|
||||
echo >> configure.log
|
||||
echo ALL = $ALL >> configure.log
|
||||
@ -862,7 +858,7 @@ echo SHAREDLIBV = $SHAREDLIBV >> configure.log
|
||||
echo STATICLIB = $STATICLIB >> configure.log
|
||||
echo TEST = $TEST >> configure.log
|
||||
echo VER = $VER >> configure.log
|
||||
echo Z_U4 = $Z_U4 >> configure.log
|
||||
echo SRCDIR = $SRCDIR >> configure.log
|
||||
echo exec_prefix = $exec_prefix >> configure.log
|
||||
echo includedir = $includedir >> configure.log
|
||||
echo libdir = $libdir >> configure.log
|
||||
@ -871,9 +867,8 @@ echo prefix = $prefix >> configure.log
|
||||
echo sharedlibdir = $sharedlibdir >> configure.log
|
||||
echo uname = $uname >> configure.log
|
||||
|
||||
# udpate Makefile with the configure results
|
||||
sed < Makefile.in "
|
||||
/^TGT_ARCH *=/s#=.*#=$TGT_ARCH#
|
||||
# update Makefile with the configure results
|
||||
sed < ${SRCDIR}Makefile.in "
|
||||
/^CC *=/s#=.*#=$CC#
|
||||
/^CFLAGS *=/s#=.*#=$CFLAGS#
|
||||
/^SFLAGS *=/s#=.*#=$SFLAGS#
|
||||
@ -890,6 +885,9 @@ sed < Makefile.in "
|
||||
/^LDCONFIG *=/s#=.*#=$LDCONFIG#
|
||||
/^LDSHAREDLIBC *=/s#=.*#=$LDSHAREDLIBC#
|
||||
/^EXE *=/s#=.*#=$EXE#
|
||||
/^SRCDIR *=/s#=.*#=$SRCDIR#
|
||||
/^ZINC *=/s#=.*#=$ZINC#
|
||||
/^ZINCOUT *=/s#=.*#=$ZINCOUT#
|
||||
/^prefix *=/s#=.*#=$prefix#
|
||||
/^exec_prefix *=/s#=.*#=$exec_prefix#
|
||||
/^libdir *=/s#=.*#=$libdir#
|
||||
@ -903,7 +901,7 @@ sed < Makefile.in "
|
||||
" > Makefile
|
||||
|
||||
# create zlib.pc with the configure results
|
||||
sed < zlib.pc.in "
|
||||
sed < ${SRCDIR}zlib.pc.in "
|
||||
/^CC *=/s#=.*#=$CC#
|
||||
/^CFLAGS *=/s#=.*#=$CFLAGS#
|
||||
/^CPP *=/s#=.*#=$CPP#
|
||||
|
248
external/zlib/crc32.c
vendored
248
external/zlib/crc32.c
vendored
@ -103,19 +103,6 @@
|
||||
# define ARMCRC32
|
||||
#endif
|
||||
|
||||
/* Local functions. */
|
||||
local z_crc_t multmodp OF((z_crc_t a, z_crc_t b));
|
||||
local z_crc_t x2nmodp OF((z_off64_t n, unsigned k));
|
||||
|
||||
#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
|
||||
local z_word_t byte_swap OF((z_word_t word));
|
||||
#endif
|
||||
|
||||
#if defined(W) && !defined(ARMCRC32)
|
||||
local z_crc_t crc_word OF((z_word_t data));
|
||||
local z_word_t crc_word_big OF((z_word_t data));
|
||||
#endif
|
||||
|
||||
#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
|
||||
/*
|
||||
Swap the bytes in a z_word_t to convert between little and big endian. Any
|
||||
@ -123,9 +110,7 @@ local z_crc_t x2nmodp OF((z_off64_t n, unsigned k));
|
||||
instruction, if one is available. This assumes that word_t is either 32 bits
|
||||
or 64 bits.
|
||||
*/
|
||||
local z_word_t byte_swap(word)
|
||||
z_word_t word;
|
||||
{
|
||||
local z_word_t byte_swap(z_word_t word) {
|
||||
# if W == 8
|
||||
return
|
||||
(word & 0xff00000000000000) >> 56 |
|
||||
@ -146,24 +131,77 @@ local z_word_t byte_swap(word)
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef DYNAMIC_CRC_TABLE
|
||||
/* =========================================================================
|
||||
* Table of powers of x for combining CRC-32s, filled in by make_crc_table()
|
||||
* below.
|
||||
*/
|
||||
local z_crc_t FAR x2n_table[32];
|
||||
#else
|
||||
/* =========================================================================
|
||||
* Tables for byte-wise and braided CRC-32 calculations, and a table of powers
|
||||
* of x for combining CRC-32s, all made by make_crc_table().
|
||||
*/
|
||||
# include "crc32.h"
|
||||
#endif
|
||||
|
||||
/* CRC polynomial. */
|
||||
#define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */
|
||||
|
||||
#ifdef DYNAMIC_CRC_TABLE
|
||||
/*
|
||||
Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
|
||||
reflected. For speed, this requires that a not be zero.
|
||||
*/
|
||||
local z_crc_t multmodp(z_crc_t a, z_crc_t b) {
|
||||
z_crc_t m, p;
|
||||
|
||||
m = (z_crc_t)1 << 31;
|
||||
p = 0;
|
||||
for (;;) {
|
||||
if (a & m) {
|
||||
p ^= b;
|
||||
if ((a & (m - 1)) == 0)
|
||||
break;
|
||||
}
|
||||
m >>= 1;
|
||||
b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
|
||||
initialized.
|
||||
*/
|
||||
local z_crc_t x2nmodp(z_off64_t n, unsigned k) {
|
||||
z_crc_t p;
|
||||
|
||||
p = (z_crc_t)1 << 31; /* x^0 == 1 */
|
||||
while (n) {
|
||||
if (n & 1)
|
||||
p = multmodp(x2n_table[k & 31], p);
|
||||
n >>= 1;
|
||||
k++;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
#ifdef DYNAMIC_CRC_TABLE
|
||||
/* =========================================================================
|
||||
* Build the tables for byte-wise and braided CRC-32 calculations, and a table
|
||||
* of powers of x for combining CRC-32s.
|
||||
*/
|
||||
local z_crc_t FAR crc_table[256];
|
||||
local z_crc_t FAR x2n_table[32];
|
||||
local void make_crc_table OF((void));
|
||||
#ifdef W
|
||||
local z_word_t FAR crc_big_table[256];
|
||||
local z_crc_t FAR crc_braid_table[W][256];
|
||||
local z_word_t FAR crc_braid_big_table[W][256];
|
||||
local void braid OF((z_crc_t [][256], z_word_t [][256], int, int));
|
||||
local void braid(z_crc_t [][256], z_word_t [][256], int, int);
|
||||
#endif
|
||||
#ifdef MAKECRCH
|
||||
local void write_table OF((FILE *, const z_crc_t FAR *, int));
|
||||
local void write_table32hi OF((FILE *, const z_word_t FAR *, int));
|
||||
local void write_table64 OF((FILE *, const z_word_t FAR *, int));
|
||||
local void write_table(FILE *, const z_crc_t FAR *, int);
|
||||
local void write_table32hi(FILE *, const z_word_t FAR *, int);
|
||||
local void write_table64(FILE *, const z_word_t FAR *, int);
|
||||
#endif /* MAKECRCH */
|
||||
|
||||
/*
|
||||
@ -176,7 +214,6 @@ local void make_crc_table OF((void));
|
||||
|
||||
/* Definition of once functionality. */
|
||||
typedef struct once_s once_t;
|
||||
local void once OF((once_t *, void (*)(void)));
|
||||
|
||||
/* Check for the availability of atomics. */
|
||||
#if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
|
||||
@ -196,10 +233,7 @@ struct once_s {
|
||||
invoke once() at the same time. The state must be a once_t initialized with
|
||||
ONCE_INIT.
|
||||
*/
|
||||
local void once(state, init)
|
||||
once_t *state;
|
||||
void (*init)(void);
|
||||
{
|
||||
local void once(once_t *state, void (*init)(void)) {
|
||||
if (!atomic_load(&state->done)) {
|
||||
if (atomic_flag_test_and_set(&state->begun))
|
||||
while (!atomic_load(&state->done))
|
||||
@ -222,10 +256,7 @@ struct once_s {
|
||||
|
||||
/* Test and set. Alas, not atomic, but tries to minimize the period of
|
||||
vulnerability. */
|
||||
local int test_and_set OF((int volatile *));
|
||||
local int test_and_set(flag)
|
||||
int volatile *flag;
|
||||
{
|
||||
local int test_and_set(int volatile *flag) {
|
||||
int was;
|
||||
|
||||
was = *flag;
|
||||
@ -234,10 +265,7 @@ local int test_and_set(flag)
|
||||
}
|
||||
|
||||
/* Run the provided init() function once. This is not thread-safe. */
|
||||
local void once(state, init)
|
||||
once_t *state;
|
||||
void (*init)(void);
|
||||
{
|
||||
local void once(once_t *state, void (*init)(void)) {
|
||||
if (!state->done) {
|
||||
if (test_and_set(&state->begun))
|
||||
while (!state->done)
|
||||
@ -279,8 +307,7 @@ local once_t made = ONCE_INIT;
|
||||
combinations of CRC register values and incoming bytes.
|
||||
*/
|
||||
|
||||
local void make_crc_table()
|
||||
{
|
||||
local void make_crc_table(void) {
|
||||
unsigned i, j, n;
|
||||
z_crc_t p;
|
||||
|
||||
@ -447,11 +474,7 @@ local void make_crc_table()
|
||||
Write the 32-bit values in table[0..k-1] to out, five per line in
|
||||
hexadecimal separated by commas.
|
||||
*/
|
||||
local void write_table(out, table, k)
|
||||
FILE *out;
|
||||
const z_crc_t FAR *table;
|
||||
int k;
|
||||
{
|
||||
local void write_table(FILE *out, const z_crc_t FAR *table, int k) {
|
||||
int n;
|
||||
|
||||
for (n = 0; n < k; n++)
|
||||
@ -464,11 +487,7 @@ local void write_table(out, table, k)
|
||||
Write the high 32-bits of each value in table[0..k-1] to out, five per line
|
||||
in hexadecimal separated by commas.
|
||||
*/
|
||||
local void write_table32hi(out, table, k)
|
||||
FILE *out;
|
||||
const z_word_t FAR *table;
|
||||
int k;
|
||||
{
|
||||
local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) {
|
||||
int n;
|
||||
|
||||
for (n = 0; n < k; n++)
|
||||
@ -484,11 +503,7 @@ int k;
|
||||
bits. If not, then the type cast and format string can be adjusted
|
||||
accordingly.
|
||||
*/
|
||||
local void write_table64(out, table, k)
|
||||
FILE *out;
|
||||
const z_word_t FAR *table;
|
||||
int k;
|
||||
{
|
||||
local void write_table64(FILE *out, const z_word_t FAR *table, int k) {
|
||||
int n;
|
||||
|
||||
for (n = 0; n < k; n++)
|
||||
@ -498,8 +513,7 @@ local void write_table64(out, table, k)
|
||||
}
|
||||
|
||||
/* Actually do the deed. */
|
||||
int main()
|
||||
{
|
||||
int main(void) {
|
||||
make_crc_table();
|
||||
return 0;
|
||||
}
|
||||
@ -511,12 +525,7 @@ int main()
|
||||
Generate the little and big-endian braid tables for the given n and z_word_t
|
||||
size w. Each array must have room for w blocks of 256 elements.
|
||||
*/
|
||||
local void braid(ltl, big, n, w)
|
||||
z_crc_t ltl[][256];
|
||||
z_word_t big[][256];
|
||||
int n;
|
||||
int w;
|
||||
{
|
||||
local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) {
|
||||
int k;
|
||||
z_crc_t i, p, q;
|
||||
for (k = 0; k < w; k++) {
|
||||
@ -531,69 +540,13 @@ local void braid(ltl, big, n, w)
|
||||
}
|
||||
#endif
|
||||
|
||||
#else /* !DYNAMIC_CRC_TABLE */
|
||||
/* ========================================================================
|
||||
* Tables for byte-wise and braided CRC-32 calculations, and a table of powers
|
||||
* of x for combining CRC-32s, all made by make_crc_table().
|
||||
*/
|
||||
#include "crc32.h"
|
||||
#endif /* DYNAMIC_CRC_TABLE */
|
||||
|
||||
/* ========================================================================
|
||||
* Routines used for CRC calculation. Some are also required for the table
|
||||
* generation above.
|
||||
*/
|
||||
|
||||
/*
|
||||
Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
|
||||
reflected. For speed, this requires that a not be zero.
|
||||
*/
|
||||
local z_crc_t multmodp(a, b)
|
||||
z_crc_t a;
|
||||
z_crc_t b;
|
||||
{
|
||||
z_crc_t m, p;
|
||||
|
||||
m = (z_crc_t)1 << 31;
|
||||
p = 0;
|
||||
for (;;) {
|
||||
if (a & m) {
|
||||
p ^= b;
|
||||
if ((a & (m - 1)) == 0)
|
||||
break;
|
||||
}
|
||||
m >>= 1;
|
||||
b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
|
||||
initialized.
|
||||
*/
|
||||
local z_crc_t x2nmodp(n, k)
|
||||
z_off64_t n;
|
||||
unsigned k;
|
||||
{
|
||||
z_crc_t p;
|
||||
|
||||
p = (z_crc_t)1 << 31; /* x^0 == 1 */
|
||||
while (n) {
|
||||
if (n & 1)
|
||||
p = multmodp(x2n_table[k & 31], p);
|
||||
n >>= 1;
|
||||
k++;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/* =========================================================================
|
||||
* This function can be used by asm versions of crc32(), and to force the
|
||||
* generation of the CRC tables in a threaded application.
|
||||
*/
|
||||
const z_crc_t FAR * ZEXPORT get_crc_table()
|
||||
{
|
||||
const z_crc_t FAR * ZEXPORT get_crc_table(void) {
|
||||
#ifdef DYNAMIC_CRC_TABLE
|
||||
once(&made, make_crc_table);
|
||||
#endif /* DYNAMIC_CRC_TABLE */
|
||||
@ -619,11 +572,8 @@ const z_crc_t FAR * ZEXPORT get_crc_table()
|
||||
#define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */
|
||||
#define Z_BATCH_MIN 800 /* fewest words in a final batch */
|
||||
|
||||
unsigned long ZEXPORT crc32_z(crc, buf, len)
|
||||
unsigned long crc;
|
||||
const unsigned char FAR *buf;
|
||||
z_size_t len;
|
||||
{
|
||||
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
|
||||
z_size_t len) {
|
||||
z_crc_t val;
|
||||
z_word_t crc1, crc2;
|
||||
const z_word_t *word;
|
||||
@ -723,18 +673,14 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
|
||||
least-significant byte of the word as the first byte of data, without any pre
|
||||
or post conditioning. This is used to combine the CRCs of each braid.
|
||||
*/
|
||||
local z_crc_t crc_word(data)
|
||||
z_word_t data;
|
||||
{
|
||||
local z_crc_t crc_word(z_word_t data) {
|
||||
int k;
|
||||
for (k = 0; k < W; k++)
|
||||
data = (data >> 8) ^ crc_table[data & 0xff];
|
||||
return (z_crc_t)data;
|
||||
}
|
||||
|
||||
local z_word_t crc_word_big(data)
|
||||
z_word_t data;
|
||||
{
|
||||
local z_word_t crc_word_big(z_word_t data) {
|
||||
int k;
|
||||
for (k = 0; k < W; k++)
|
||||
data = (data << 8) ^
|
||||
@ -745,11 +691,8 @@ local z_word_t crc_word_big(data)
|
||||
#endif
|
||||
|
||||
/* ========================================================================= */
|
||||
unsigned long ZEXPORT crc32_z(crc, buf, len)
|
||||
unsigned long crc;
|
||||
const unsigned char FAR *buf;
|
||||
z_size_t len;
|
||||
{
|
||||
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
|
||||
z_size_t len) {
|
||||
/* Return initial CRC, if requested. */
|
||||
if (buf == Z_NULL) return 0;
|
||||
|
||||
@ -781,8 +724,8 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
|
||||
words = (z_word_t const *)buf;
|
||||
|
||||
/* Do endian check at execution time instead of compile time, since ARM
|
||||
processors can change the endianess at execution time. If the
|
||||
compiler knows what the endianess will be, it can optimize out the
|
||||
processors can change the endianness at execution time. If the
|
||||
compiler knows what the endianness will be, it can optimize out the
|
||||
check and the unused branch. */
|
||||
endian = 1;
|
||||
if (*(unsigned char *)&endian) {
|
||||
@ -1069,20 +1012,13 @@ unsigned long ZEXPORT crc32_z(crc, buf, len)
|
||||
#endif
|
||||
|
||||
/* ========================================================================= */
|
||||
unsigned long ZEXPORT crc32(crc, buf, len)
|
||||
unsigned long crc;
|
||||
const unsigned char FAR *buf;
|
||||
uInt len;
|
||||
{
|
||||
unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf,
|
||||
uInt len) {
|
||||
return crc32_z(crc, buf, len);
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
|
||||
uLong crc1;
|
||||
uLong crc2;
|
||||
z_off64_t len2;
|
||||
{
|
||||
uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) {
|
||||
#ifdef DYNAMIC_CRC_TABLE
|
||||
once(&made, make_crc_table);
|
||||
#endif /* DYNAMIC_CRC_TABLE */
|
||||
@ -1090,18 +1026,12 @@ uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
|
||||
uLong crc1;
|
||||
uLong crc2;
|
||||
z_off_t len2;
|
||||
{
|
||||
uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) {
|
||||
return crc32_combine64(crc1, crc2, (z_off64_t)len2);
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
uLong ZEXPORT crc32_combine_gen64(len2)
|
||||
z_off64_t len2;
|
||||
{
|
||||
uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) {
|
||||
#ifdef DYNAMIC_CRC_TABLE
|
||||
once(&made, make_crc_table);
|
||||
#endif /* DYNAMIC_CRC_TABLE */
|
||||
@ -1109,17 +1039,11 @@ uLong ZEXPORT crc32_combine_gen64(len2)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
uLong ZEXPORT crc32_combine_gen(len2)
|
||||
z_off_t len2;
|
||||
{
|
||||
uLong ZEXPORT crc32_combine_gen(z_off_t len2) {
|
||||
return crc32_combine_gen64((z_off64_t)len2);
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
uLong ZEXPORT crc32_combine_op(crc1, crc2, op)
|
||||
uLong crc1;
|
||||
uLong crc2;
|
||||
uLong op;
|
||||
{
|
||||
uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) {
|
||||
return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
|
||||
}
|
||||
|
612
external/zlib/deflate.c
vendored
612
external/zlib/deflate.c
vendored
@ -1,5 +1,5 @@
|
||||
/* deflate.c -- compress data using the deflation algorithm
|
||||
* Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
|
||||
* Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
|
||||
@ -52,7 +52,7 @@
|
||||
#include "deflate.h"
|
||||
|
||||
const char deflate_copyright[] =
|
||||
" deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
|
||||
" deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
|
||||
/*
|
||||
If you use the zlib library in a product, an acknowledgment is welcome
|
||||
in the documentation of your product. If for some reason you cannot
|
||||
@ -60,9 +60,6 @@ const char deflate_copyright[] =
|
||||
copyright string in the executable of your product.
|
||||
*/
|
||||
|
||||
/* ===========================================================================
|
||||
* Function prototypes.
|
||||
*/
|
||||
typedef enum {
|
||||
need_more, /* block not completed, need more input or more output */
|
||||
block_done, /* block flush performed */
|
||||
@ -70,29 +67,16 @@ typedef enum {
|
||||
finish_done /* finish done, accept no more input or output */
|
||||
} block_state;
|
||||
|
||||
typedef block_state (*compress_func) OF((deflate_state *s, int flush));
|
||||
typedef block_state (*compress_func)(deflate_state *s, int flush);
|
||||
/* Compression function. Returns the block state after the call. */
|
||||
|
||||
local int deflateStateCheck OF((z_streamp strm));
|
||||
local void slide_hash OF((deflate_state *s));
|
||||
local void fill_window OF((deflate_state *s));
|
||||
local block_state deflate_stored OF((deflate_state *s, int flush));
|
||||
local block_state deflate_fast OF((deflate_state *s, int flush));
|
||||
local block_state deflate_stored(deflate_state *s, int flush);
|
||||
local block_state deflate_fast(deflate_state *s, int flush);
|
||||
#ifndef FASTEST
|
||||
local block_state deflate_slow OF((deflate_state *s, int flush));
|
||||
#endif
|
||||
local block_state deflate_rle OF((deflate_state *s, int flush));
|
||||
local block_state deflate_huff OF((deflate_state *s, int flush));
|
||||
local void lm_init OF((deflate_state *s));
|
||||
local void putShortMSB OF((deflate_state *s, uInt b));
|
||||
local void flush_pending OF((z_streamp strm));
|
||||
local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
|
||||
local uInt longest_match OF((deflate_state *s, IPos cur_match));
|
||||
|
||||
#ifdef ZLIB_DEBUG
|
||||
local void check_match OF((deflate_state *s, IPos start, IPos match,
|
||||
int length));
|
||||
local block_state deflate_slow(deflate_state *s, int flush);
|
||||
#endif
|
||||
local block_state deflate_rle(deflate_state *s, int flush);
|
||||
local block_state deflate_huff(deflate_state *s, int flush);
|
||||
|
||||
/* ===========================================================================
|
||||
* Local data
|
||||
@ -195,9 +179,12 @@ local const config configuration_table[10] = {
|
||||
* bit values at the expense of memory usage). We slide even when level == 0 to
|
||||
* keep the hash table consistent if we switch back to level > 0 later.
|
||||
*/
|
||||
local void slide_hash(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
#if defined(__has_feature)
|
||||
# if __has_feature(memory_sanitizer)
|
||||
__attribute__((no_sanitize("memory")))
|
||||
# endif
|
||||
#endif
|
||||
local void slide_hash(deflate_state *s) {
|
||||
unsigned n, m;
|
||||
Posf *p;
|
||||
uInt wsize = s->w_size;
|
||||
@ -221,30 +208,177 @@ local void slide_hash(s)
|
||||
#endif
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Read a new buffer from the current input stream, update the adler32
|
||||
* and total number of bytes read. All deflate() input goes through
|
||||
* this function so some applications may wish to modify it to avoid
|
||||
* allocating a large strm->next_in buffer and copying from it.
|
||||
* (See also flush_pending()).
|
||||
*/
|
||||
local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
|
||||
unsigned len = strm->avail_in;
|
||||
|
||||
if (len > size) len = size;
|
||||
if (len == 0) return 0;
|
||||
|
||||
strm->avail_in -= len;
|
||||
|
||||
zmemcpy(buf, strm->next_in, len);
|
||||
if (strm->state->wrap == 1) {
|
||||
strm->adler = adler32(strm->adler, buf, len);
|
||||
}
|
||||
#ifdef GZIP
|
||||
else if (strm->state->wrap == 2) {
|
||||
strm->adler = crc32(strm->adler, buf, len);
|
||||
}
|
||||
#endif
|
||||
strm->next_in += len;
|
||||
strm->total_in += len;
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Fill the window when the lookahead becomes insufficient.
|
||||
* Updates strstart and lookahead.
|
||||
*
|
||||
* IN assertion: lookahead < MIN_LOOKAHEAD
|
||||
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
|
||||
* At least one byte has been read, or avail_in == 0; reads are
|
||||
* performed for at least two bytes (required for the zip translate_eol
|
||||
* option -- not supported here).
|
||||
*/
|
||||
local void fill_window(deflate_state *s) {
|
||||
unsigned n;
|
||||
unsigned more; /* Amount of free space at the end of the window. */
|
||||
uInt wsize = s->w_size;
|
||||
|
||||
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
|
||||
|
||||
do {
|
||||
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
|
||||
|
||||
/* Deal with !@#$% 64K limit: */
|
||||
if (sizeof(int) <= 2) {
|
||||
if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
|
||||
more = wsize;
|
||||
|
||||
} else if (more == (unsigned)(-1)) {
|
||||
/* Very unlikely, but possible on 16 bit machine if
|
||||
* strstart == 0 && lookahead == 1 (input done a byte at time)
|
||||
*/
|
||||
more--;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the window is almost full and there is insufficient lookahead,
|
||||
* move the upper half to the lower one to make room in the upper half.
|
||||
*/
|
||||
if (s->strstart >= wsize + MAX_DIST(s)) {
|
||||
|
||||
zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
|
||||
s->match_start -= wsize;
|
||||
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
|
||||
s->block_start -= (long) wsize;
|
||||
if (s->insert > s->strstart)
|
||||
s->insert = s->strstart;
|
||||
slide_hash(s);
|
||||
more += wsize;
|
||||
}
|
||||
if (s->strm->avail_in == 0) break;
|
||||
|
||||
/* If there was no sliding:
|
||||
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
|
||||
* more == window_size - lookahead - strstart
|
||||
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
|
||||
* => more >= window_size - 2*WSIZE + 2
|
||||
* In the BIG_MEM or MMAP case (not yet supported),
|
||||
* window_size == input_size + MIN_LOOKAHEAD &&
|
||||
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
|
||||
* Otherwise, window_size == 2*WSIZE so more >= 2.
|
||||
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
|
||||
*/
|
||||
Assert(more >= 2, "more < 2");
|
||||
|
||||
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
|
||||
s->lookahead += n;
|
||||
|
||||
/* Initialize the hash value now that we have some input: */
|
||||
if (s->lookahead + s->insert >= MIN_MATCH) {
|
||||
uInt str = s->strstart - s->insert;
|
||||
s->ins_h = s->window[str];
|
||||
UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
|
||||
#if MIN_MATCH != 3
|
||||
Call UPDATE_HASH() MIN_MATCH-3 more times
|
||||
#endif
|
||||
while (s->insert) {
|
||||
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
|
||||
#ifndef FASTEST
|
||||
s->prev[str & s->w_mask] = s->head[s->ins_h];
|
||||
#endif
|
||||
s->head[s->ins_h] = (Pos)str;
|
||||
str++;
|
||||
s->insert--;
|
||||
if (s->lookahead + s->insert < MIN_MATCH)
|
||||
break;
|
||||
}
|
||||
}
|
||||
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
|
||||
* but this is not important since only literal bytes will be emitted.
|
||||
*/
|
||||
|
||||
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
|
||||
|
||||
/* If the WIN_INIT bytes after the end of the current data have never been
|
||||
* written, then zero those bytes in order to avoid memory check reports of
|
||||
* the use of uninitialized (or uninitialised as Julian writes) bytes by
|
||||
* the longest match routines. Update the high water mark for the next
|
||||
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
|
||||
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
|
||||
*/
|
||||
if (s->high_water < s->window_size) {
|
||||
ulg curr = s->strstart + (ulg)(s->lookahead);
|
||||
ulg init;
|
||||
|
||||
if (s->high_water < curr) {
|
||||
/* Previous high water mark below current data -- zero WIN_INIT
|
||||
* bytes or up to end of window, whichever is less.
|
||||
*/
|
||||
init = s->window_size - curr;
|
||||
if (init > WIN_INIT)
|
||||
init = WIN_INIT;
|
||||
zmemzero(s->window + curr, (unsigned)init);
|
||||
s->high_water = curr + init;
|
||||
}
|
||||
else if (s->high_water < (ulg)curr + WIN_INIT) {
|
||||
/* High water mark at or above current data, but below current data
|
||||
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
|
||||
* to end of window, whichever is less.
|
||||
*/
|
||||
init = (ulg)curr + WIN_INIT - s->high_water;
|
||||
if (init > s->window_size - s->high_water)
|
||||
init = s->window_size - s->high_water;
|
||||
zmemzero(s->window + s->high_water, (unsigned)init);
|
||||
s->high_water += init;
|
||||
}
|
||||
}
|
||||
|
||||
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
|
||||
"not enough room for search");
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateInit_(strm, level, version, stream_size)
|
||||
z_streamp strm;
|
||||
int level;
|
||||
const char *version;
|
||||
int stream_size;
|
||||
{
|
||||
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
|
||||
int stream_size) {
|
||||
return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
|
||||
Z_DEFAULT_STRATEGY, version, stream_size);
|
||||
/* To do: ignore strm->next_in if we use it as window */
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
|
||||
version, stream_size)
|
||||
z_streamp strm;
|
||||
int level;
|
||||
int method;
|
||||
int windowBits;
|
||||
int memLevel;
|
||||
int strategy;
|
||||
const char *version;
|
||||
int stream_size;
|
||||
{
|
||||
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
|
||||
int windowBits, int memLevel, int strategy,
|
||||
const char *version, int stream_size) {
|
||||
deflate_state *s;
|
||||
int wrap = 1;
|
||||
static const char my_version[] = ZLIB_VERSION;
|
||||
@ -359,7 +493,7 @@ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
|
||||
* symbols from which it is being constructed.
|
||||
*/
|
||||
|
||||
s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
|
||||
s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
|
||||
s->pending_buf_size = (ulg)s->lit_bufsize * 4;
|
||||
|
||||
if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
|
||||
@ -369,8 +503,14 @@ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
|
||||
deflateEnd (strm);
|
||||
return Z_MEM_ERROR;
|
||||
}
|
||||
#ifdef LIT_MEM
|
||||
s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
|
||||
s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
|
||||
s->sym_end = s->lit_bufsize - 1;
|
||||
#else
|
||||
s->sym_buf = s->pending_buf + s->lit_bufsize;
|
||||
s->sym_end = (s->lit_bufsize - 1) * 3;
|
||||
#endif
|
||||
/* We avoid equality with lit_bufsize*3 because of wraparound at 64K
|
||||
* on 16 bit machines and because stored blocks are restricted to
|
||||
* 64K-1 bytes.
|
||||
@ -386,9 +526,7 @@ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
|
||||
/* =========================================================================
|
||||
* Check for a valid deflate stream state. Return 0 if ok, 1 if not.
|
||||
*/
|
||||
local int deflateStateCheck(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
local int deflateStateCheck(z_streamp strm) {
|
||||
deflate_state *s;
|
||||
if (strm == Z_NULL ||
|
||||
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
|
||||
@ -409,11 +547,8 @@ local int deflateStateCheck(strm)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
|
||||
z_streamp strm;
|
||||
const Bytef *dictionary;
|
||||
uInt dictLength;
|
||||
{
|
||||
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
|
||||
uInt dictLength) {
|
||||
deflate_state *s;
|
||||
uInt str, n;
|
||||
int wrap;
|
||||
@ -478,11 +613,8 @@ int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
|
||||
z_streamp strm;
|
||||
Bytef *dictionary;
|
||||
uInt *dictLength;
|
||||
{
|
||||
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
|
||||
uInt *dictLength) {
|
||||
deflate_state *s;
|
||||
uInt len;
|
||||
|
||||
@ -500,9 +632,7 @@ int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateResetKeep(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT deflateResetKeep(z_streamp strm) {
|
||||
deflate_state *s;
|
||||
|
||||
if (deflateStateCheck(strm)) {
|
||||
@ -537,10 +667,32 @@ int ZEXPORT deflateResetKeep(strm)
|
||||
return Z_OK;
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Initialize the "longest match" routines for a new zlib stream
|
||||
*/
|
||||
local void lm_init(deflate_state *s) {
|
||||
s->window_size = (ulg)2L*s->w_size;
|
||||
|
||||
CLEAR_HASH(s);
|
||||
|
||||
/* Set the default configuration parameters:
|
||||
*/
|
||||
s->max_lazy_match = configuration_table[s->level].max_lazy;
|
||||
s->good_match = configuration_table[s->level].good_length;
|
||||
s->nice_match = configuration_table[s->level].nice_length;
|
||||
s->max_chain_length = configuration_table[s->level].max_chain;
|
||||
|
||||
s->strstart = 0;
|
||||
s->block_start = 0L;
|
||||
s->lookahead = 0;
|
||||
s->insert = 0;
|
||||
s->match_length = s->prev_length = MIN_MATCH-1;
|
||||
s->match_available = 0;
|
||||
s->ins_h = 0;
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateReset(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT deflateReset(z_streamp strm) {
|
||||
int ret;
|
||||
|
||||
ret = deflateResetKeep(strm);
|
||||
@ -550,10 +702,7 @@ int ZEXPORT deflateReset(strm)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateSetHeader(strm, head)
|
||||
z_streamp strm;
|
||||
gz_headerp head;
|
||||
{
|
||||
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
|
||||
if (deflateStateCheck(strm) || strm->state->wrap != 2)
|
||||
return Z_STREAM_ERROR;
|
||||
strm->state->gzhead = head;
|
||||
@ -561,11 +710,7 @@ int ZEXPORT deflateSetHeader(strm, head)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflatePending(strm, pending, bits)
|
||||
unsigned *pending;
|
||||
int *bits;
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
|
||||
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
if (pending != Z_NULL)
|
||||
*pending = strm->state->pending;
|
||||
@ -575,19 +720,21 @@ int ZEXPORT deflatePending(strm, pending, bits)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflatePrime(strm, bits, value)
|
||||
z_streamp strm;
|
||||
int bits;
|
||||
int value;
|
||||
{
|
||||
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
|
||||
deflate_state *s;
|
||||
int put;
|
||||
|
||||
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
s = strm->state;
|
||||
#ifdef LIT_MEM
|
||||
if (bits < 0 || bits > 16 ||
|
||||
(uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
|
||||
return Z_BUF_ERROR;
|
||||
#else
|
||||
if (bits < 0 || bits > 16 ||
|
||||
s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
|
||||
return Z_BUF_ERROR;
|
||||
#endif
|
||||
do {
|
||||
put = Buf_size - s->bi_valid;
|
||||
if (put > bits)
|
||||
@ -602,11 +749,7 @@ int ZEXPORT deflatePrime(strm, bits, value)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateParams(strm, level, strategy)
|
||||
z_streamp strm;
|
||||
int level;
|
||||
int strategy;
|
||||
{
|
||||
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
|
||||
deflate_state *s;
|
||||
compress_func func;
|
||||
|
||||
@ -651,13 +794,8 @@ int ZEXPORT deflateParams(strm, level, strategy)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
|
||||
z_streamp strm;
|
||||
int good_length;
|
||||
int max_lazy;
|
||||
int nice_length;
|
||||
int max_chain;
|
||||
{
|
||||
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
|
||||
int nice_length, int max_chain) {
|
||||
deflate_state *s;
|
||||
|
||||
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
@ -693,10 +831,7 @@ int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
|
||||
*
|
||||
* Shifts are used to approximate divisions, for speed.
|
||||
*/
|
||||
uLong ZEXPORT deflateBound(strm, sourceLen)
|
||||
z_streamp strm;
|
||||
uLong sourceLen;
|
||||
{
|
||||
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
|
||||
deflate_state *s;
|
||||
uLong fixedlen, storelen, wraplen;
|
||||
|
||||
@ -752,7 +887,8 @@ uLong ZEXPORT deflateBound(strm, sourceLen)
|
||||
|
||||
/* if not default parameters, return one of the conservative bounds */
|
||||
if (s->w_bits != 15 || s->hash_bits != 8 + 7)
|
||||
return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
|
||||
return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
|
||||
wraplen;
|
||||
|
||||
/* default settings: return tight bound for that case -- ~0.03% overhead
|
||||
plus a small constant */
|
||||
@ -765,10 +901,7 @@ uLong ZEXPORT deflateBound(strm, sourceLen)
|
||||
* IN assertion: the stream state is correct and there is enough room in
|
||||
* pending_buf.
|
||||
*/
|
||||
local void putShortMSB(s, b)
|
||||
deflate_state *s;
|
||||
uInt b;
|
||||
{
|
||||
local void putShortMSB(deflate_state *s, uInt b) {
|
||||
put_byte(s, (Byte)(b >> 8));
|
||||
put_byte(s, (Byte)(b & 0xff));
|
||||
}
|
||||
@ -779,9 +912,7 @@ local void putShortMSB(s, b)
|
||||
* applications may wish to modify it to avoid allocating a large
|
||||
* strm->next_out buffer and copying into it. (See also read_buf()).
|
||||
*/
|
||||
local void flush_pending(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
local void flush_pending(z_streamp strm) {
|
||||
unsigned len;
|
||||
deflate_state *s = strm->state;
|
||||
|
||||
@ -812,10 +943,7 @@ local void flush_pending(strm)
|
||||
} while (0)
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflate(strm, flush)
|
||||
z_streamp strm;
|
||||
int flush;
|
||||
{
|
||||
int ZEXPORT deflate(z_streamp strm, int flush) {
|
||||
int old_flush; /* value of flush param for previous deflate call */
|
||||
deflate_state *s;
|
||||
|
||||
@ -1127,9 +1255,7 @@ int ZEXPORT deflate(strm, flush)
|
||||
}
|
||||
|
||||
/* ========================================================================= */
|
||||
int ZEXPORT deflateEnd(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT deflateEnd(z_streamp strm) {
|
||||
int status;
|
||||
|
||||
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
@ -1153,11 +1279,10 @@ int ZEXPORT deflateEnd(strm)
|
||||
* To simplify the source, this is not supported for 16-bit MSDOS (which
|
||||
* doesn't have enough memory anyway to duplicate compression states).
|
||||
*/
|
||||
int ZEXPORT deflateCopy(dest, source)
|
||||
z_streamp dest;
|
||||
z_streamp source;
|
||||
{
|
||||
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
|
||||
#ifdef MAXSEG_64K
|
||||
(void)dest;
|
||||
(void)source;
|
||||
return Z_STREAM_ERROR;
|
||||
#else
|
||||
deflate_state *ds;
|
||||
@ -1181,7 +1306,7 @@ int ZEXPORT deflateCopy(dest, source)
|
||||
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
|
||||
ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
|
||||
ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
|
||||
ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
|
||||
ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
|
||||
|
||||
if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
|
||||
ds->pending_buf == Z_NULL) {
|
||||
@ -1192,10 +1317,15 @@ int ZEXPORT deflateCopy(dest, source)
|
||||
zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
|
||||
zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
|
||||
zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
|
||||
zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
|
||||
zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
|
||||
|
||||
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
|
||||
#ifdef LIT_MEM
|
||||
ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
|
||||
ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
|
||||
#else
|
||||
ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
|
||||
#endif
|
||||
|
||||
ds->l_desc.dyn_tree = ds->dyn_ltree;
|
||||
ds->d_desc.dyn_tree = ds->dyn_dtree;
|
||||
@ -1205,66 +1335,6 @@ int ZEXPORT deflateCopy(dest, source)
|
||||
#endif /* MAXSEG_64K */
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Read a new buffer from the current input stream, update the adler32
|
||||
* and total number of bytes read. All deflate() input goes through
|
||||
* this function so some applications may wish to modify it to avoid
|
||||
* allocating a large strm->next_in buffer and copying from it.
|
||||
* (See also flush_pending()).
|
||||
*/
|
||||
local unsigned read_buf(strm, buf, size)
|
||||
z_streamp strm;
|
||||
Bytef *buf;
|
||||
unsigned size;
|
||||
{
|
||||
unsigned len = strm->avail_in;
|
||||
|
||||
if (len > size) len = size;
|
||||
if (len == 0) return 0;
|
||||
|
||||
strm->avail_in -= len;
|
||||
|
||||
zmemcpy(buf, strm->next_in, len);
|
||||
if (strm->state->wrap == 1) {
|
||||
strm->adler = adler32(strm->adler, buf, len);
|
||||
}
|
||||
#ifdef GZIP
|
||||
else if (strm->state->wrap == 2) {
|
||||
strm->adler = crc32(strm->adler, buf, len);
|
||||
}
|
||||
#endif
|
||||
strm->next_in += len;
|
||||
strm->total_in += len;
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Initialize the "longest match" routines for a new zlib stream
|
||||
*/
|
||||
local void lm_init(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
s->window_size = (ulg)2L*s->w_size;
|
||||
|
||||
CLEAR_HASH(s);
|
||||
|
||||
/* Set the default configuration parameters:
|
||||
*/
|
||||
s->max_lazy_match = configuration_table[s->level].max_lazy;
|
||||
s->good_match = configuration_table[s->level].good_length;
|
||||
s->nice_match = configuration_table[s->level].nice_length;
|
||||
s->max_chain_length = configuration_table[s->level].max_chain;
|
||||
|
||||
s->strstart = 0;
|
||||
s->block_start = 0L;
|
||||
s->lookahead = 0;
|
||||
s->insert = 0;
|
||||
s->match_length = s->prev_length = MIN_MATCH-1;
|
||||
s->match_available = 0;
|
||||
s->ins_h = 0;
|
||||
}
|
||||
|
||||
#ifndef FASTEST
|
||||
/* ===========================================================================
|
||||
* Set match_start to the longest match starting at the given string and
|
||||
@ -1275,10 +1345,7 @@ local void lm_init(s)
|
||||
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
|
||||
* OUT assertion: the match length is not greater than s->lookahead.
|
||||
*/
|
||||
local uInt longest_match(s, cur_match)
|
||||
deflate_state *s;
|
||||
IPos cur_match; /* current match */
|
||||
{
|
||||
local uInt longest_match(deflate_state *s, IPos cur_match) {
|
||||
unsigned chain_length = s->max_chain_length;/* max hash chain length */
|
||||
register Bytef *scan = s->window + s->strstart; /* current string */
|
||||
register Bytef *match; /* matched string */
|
||||
@ -1426,10 +1493,7 @@ local uInt longest_match(s, cur_match)
|
||||
/* ---------------------------------------------------------------------------
|
||||
* Optimized version for FASTEST only
|
||||
*/
|
||||
local uInt longest_match(s, cur_match)
|
||||
deflate_state *s;
|
||||
IPos cur_match; /* current match */
|
||||
{
|
||||
local uInt longest_match(deflate_state *s, IPos cur_match) {
|
||||
register Bytef *scan = s->window + s->strstart; /* current string */
|
||||
register Bytef *match; /* matched string */
|
||||
register int len; /* length of current match */
|
||||
@ -1490,19 +1554,23 @@ local uInt longest_match(s, cur_match)
|
||||
/* ===========================================================================
|
||||
* Check that the match at match_start is indeed a match.
|
||||
*/
|
||||
local void check_match(s, start, match, length)
|
||||
deflate_state *s;
|
||||
IPos start, match;
|
||||
int length;
|
||||
{
|
||||
local void check_match(deflate_state *s, IPos start, IPos match, int length) {
|
||||
/* check that the match is indeed a match */
|
||||
if (zmemcmp(s->window + match,
|
||||
s->window + start, length) != EQUAL) {
|
||||
fprintf(stderr, " start %u, match %u, length %d\n",
|
||||
start, match, length);
|
||||
Bytef *back = s->window + (int)match, *here = s->window + start;
|
||||
IPos len = length;
|
||||
if (match == (IPos)-1) {
|
||||
/* match starts one byte before the current window -- just compare the
|
||||
subsequent length-1 bytes */
|
||||
back++;
|
||||
here++;
|
||||
len--;
|
||||
}
|
||||
if (zmemcmp(back, here, len) != EQUAL) {
|
||||
fprintf(stderr, " start %u, match %d, length %d\n",
|
||||
start, (int)match, length);
|
||||
do {
|
||||
fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
|
||||
} while (--length != 0);
|
||||
fprintf(stderr, "(%02x %02x)", *back++, *here++);
|
||||
} while (--len != 0);
|
||||
z_error("invalid match");
|
||||
}
|
||||
if (z_verbose > 1) {
|
||||
@ -1514,137 +1582,6 @@ local void check_match(s, start, match, length)
|
||||
# define check_match(s, start, match, length)
|
||||
#endif /* ZLIB_DEBUG */
|
||||
|
||||
/* ===========================================================================
|
||||
* Fill the window when the lookahead becomes insufficient.
|
||||
* Updates strstart and lookahead.
|
||||
*
|
||||
* IN assertion: lookahead < MIN_LOOKAHEAD
|
||||
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
|
||||
* At least one byte has been read, or avail_in == 0; reads are
|
||||
* performed for at least two bytes (required for the zip translate_eol
|
||||
* option -- not supported here).
|
||||
*/
|
||||
local void fill_window(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
unsigned n;
|
||||
unsigned more; /* Amount of free space at the end of the window. */
|
||||
uInt wsize = s->w_size;
|
||||
|
||||
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
|
||||
|
||||
do {
|
||||
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
|
||||
|
||||
/* Deal with !@#$% 64K limit: */
|
||||
if (sizeof(int) <= 2) {
|
||||
if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
|
||||
more = wsize;
|
||||
|
||||
} else if (more == (unsigned)(-1)) {
|
||||
/* Very unlikely, but possible on 16 bit machine if
|
||||
* strstart == 0 && lookahead == 1 (input done a byte at time)
|
||||
*/
|
||||
more--;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the window is almost full and there is insufficient lookahead,
|
||||
* move the upper half to the lower one to make room in the upper half.
|
||||
*/
|
||||
if (s->strstart >= wsize + MAX_DIST(s)) {
|
||||
|
||||
zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
|
||||
s->match_start -= wsize;
|
||||
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
|
||||
s->block_start -= (long) wsize;
|
||||
if (s->insert > s->strstart)
|
||||
s->insert = s->strstart;
|
||||
slide_hash(s);
|
||||
more += wsize;
|
||||
}
|
||||
if (s->strm->avail_in == 0) break;
|
||||
|
||||
/* If there was no sliding:
|
||||
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
|
||||
* more == window_size - lookahead - strstart
|
||||
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
|
||||
* => more >= window_size - 2*WSIZE + 2
|
||||
* In the BIG_MEM or MMAP case (not yet supported),
|
||||
* window_size == input_size + MIN_LOOKAHEAD &&
|
||||
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
|
||||
* Otherwise, window_size == 2*WSIZE so more >= 2.
|
||||
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
|
||||
*/
|
||||
Assert(more >= 2, "more < 2");
|
||||
|
||||
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
|
||||
s->lookahead += n;
|
||||
|
||||
/* Initialize the hash value now that we have some input: */
|
||||
if (s->lookahead + s->insert >= MIN_MATCH) {
|
||||
uInt str = s->strstart - s->insert;
|
||||
s->ins_h = s->window[str];
|
||||
UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
|
||||
#if MIN_MATCH != 3
|
||||
Call UPDATE_HASH() MIN_MATCH-3 more times
|
||||
#endif
|
||||
while (s->insert) {
|
||||
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
|
||||
#ifndef FASTEST
|
||||
s->prev[str & s->w_mask] = s->head[s->ins_h];
|
||||
#endif
|
||||
s->head[s->ins_h] = (Pos)str;
|
||||
str++;
|
||||
s->insert--;
|
||||
if (s->lookahead + s->insert < MIN_MATCH)
|
||||
break;
|
||||
}
|
||||
}
|
||||
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
|
||||
* but this is not important since only literal bytes will be emitted.
|
||||
*/
|
||||
|
||||
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
|
||||
|
||||
/* If the WIN_INIT bytes after the end of the current data have never been
|
||||
* written, then zero those bytes in order to avoid memory check reports of
|
||||
* the use of uninitialized (or uninitialised as Julian writes) bytes by
|
||||
* the longest match routines. Update the high water mark for the next
|
||||
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
|
||||
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
|
||||
*/
|
||||
if (s->high_water < s->window_size) {
|
||||
ulg curr = s->strstart + (ulg)(s->lookahead);
|
||||
ulg init;
|
||||
|
||||
if (s->high_water < curr) {
|
||||
/* Previous high water mark below current data -- zero WIN_INIT
|
||||
* bytes or up to end of window, whichever is less.
|
||||
*/
|
||||
init = s->window_size - curr;
|
||||
if (init > WIN_INIT)
|
||||
init = WIN_INIT;
|
||||
zmemzero(s->window + curr, (unsigned)init);
|
||||
s->high_water = curr + init;
|
||||
}
|
||||
else if (s->high_water < (ulg)curr + WIN_INIT) {
|
||||
/* High water mark at or above current data, but below current data
|
||||
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
|
||||
* to end of window, whichever is less.
|
||||
*/
|
||||
init = (ulg)curr + WIN_INIT - s->high_water;
|
||||
if (init > s->window_size - s->high_water)
|
||||
init = s->window_size - s->high_water;
|
||||
zmemzero(s->window + s->high_water, (unsigned)init);
|
||||
s->high_water += init;
|
||||
}
|
||||
}
|
||||
|
||||
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
|
||||
"not enough room for search");
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Flush the current block, with given end-of-file flag.
|
||||
* IN assertion: strstart is set to the end of the current match.
|
||||
@ -1687,10 +1624,7 @@ local void fill_window(s)
|
||||
* copied. It is most efficient with large input and output buffers, which
|
||||
* maximizes the opportunities to have a single copy from next_in to next_out.
|
||||
*/
|
||||
local block_state deflate_stored(s, flush)
|
||||
deflate_state *s;
|
||||
int flush;
|
||||
{
|
||||
local block_state deflate_stored(deflate_state *s, int flush) {
|
||||
/* Smallest worthy block size when not flushing or finishing. By default
|
||||
* this is 32K. This can be as small as 507 bytes for memLevel == 1. For
|
||||
* large input and output buffers, the stored block size will be larger.
|
||||
@ -1874,10 +1808,7 @@ local block_state deflate_stored(s, flush)
|
||||
* new strings in the dictionary only for unmatched strings or for short
|
||||
* matches. It is used only for the fast compression options.
|
||||
*/
|
||||
local block_state deflate_fast(s, flush)
|
||||
deflate_state *s;
|
||||
int flush;
|
||||
{
|
||||
local block_state deflate_fast(deflate_state *s, int flush) {
|
||||
IPos hash_head; /* head of the hash chain */
|
||||
int bflush; /* set if current block must be flushed */
|
||||
|
||||
@ -1976,10 +1907,7 @@ local block_state deflate_fast(s, flush)
|
||||
* evaluation for matches: a match is finally adopted only if there is
|
||||
* no better match at the next window position.
|
||||
*/
|
||||
local block_state deflate_slow(s, flush)
|
||||
deflate_state *s;
|
||||
int flush;
|
||||
{
|
||||
local block_state deflate_slow(deflate_state *s, int flush) {
|
||||
IPos hash_head; /* head of hash chain */
|
||||
int bflush; /* set if current block must be flushed */
|
||||
|
||||
@ -2107,10 +2035,7 @@ local block_state deflate_slow(s, flush)
|
||||
* one. Do not maintain a hash table. (It will be regenerated if this run of
|
||||
* deflate switches away from Z_RLE.)
|
||||
*/
|
||||
local block_state deflate_rle(s, flush)
|
||||
deflate_state *s;
|
||||
int flush;
|
||||
{
|
||||
local block_state deflate_rle(deflate_state *s, int flush) {
|
||||
int bflush; /* set if current block must be flushed */
|
||||
uInt prev; /* byte at distance one to match */
|
||||
Bytef *scan, *strend; /* scan goes up to strend for length of run */
|
||||
@ -2181,10 +2106,7 @@ local block_state deflate_rle(s, flush)
|
||||
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
|
||||
* (It will be regenerated if this run of deflate switches away from Huffman.)
|
||||
*/
|
||||
local block_state deflate_huff(s, flush)
|
||||
deflate_state *s;
|
||||
int flush;
|
||||
{
|
||||
local block_state deflate_huff(deflate_state *s, int flush) {
|
||||
int bflush; /* set if current block must be flushed */
|
||||
|
||||
for (;;) {
|
||||
|
51
external/zlib/deflate.h
vendored
51
external/zlib/deflate.h
vendored
@ -1,5 +1,5 @@
|
||||
/* deflate.h -- internal compression state
|
||||
* Copyright (C) 1995-2018 Jean-loup Gailly
|
||||
* Copyright (C) 1995-2024 Jean-loup Gailly
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
|
||||
@ -23,6 +23,10 @@
|
||||
# define GZIP
|
||||
#endif
|
||||
|
||||
/* define LIT_MEM to slightly increase the speed of deflate (order 1% to 2%) at
|
||||
the cost of a larger memory footprint */
|
||||
/* #define LIT_MEM */
|
||||
|
||||
/* ===========================================================================
|
||||
* Internal compression state.
|
||||
*/
|
||||
@ -217,7 +221,14 @@ typedef struct internal_state {
|
||||
/* Depth of each subtree used as tie breaker for trees of equal frequency
|
||||
*/
|
||||
|
||||
#ifdef LIT_MEM
|
||||
# define LIT_BUFS 5
|
||||
ushf *d_buf; /* buffer for distances */
|
||||
uchf *l_buf; /* buffer for literals/lengths */
|
||||
#else
|
||||
# define LIT_BUFS 4
|
||||
uchf *sym_buf; /* buffer for distances and literals/lengths */
|
||||
#endif
|
||||
|
||||
uInt lit_bufsize;
|
||||
/* Size of match buffer for literals/lengths. There are 4 reasons for
|
||||
@ -239,7 +250,7 @@ typedef struct internal_state {
|
||||
* - I can't count above 4
|
||||
*/
|
||||
|
||||
uInt sym_next; /* running index in sym_buf */
|
||||
uInt sym_next; /* running index in symbol buffer */
|
||||
uInt sym_end; /* symbol table full when sym_next reaches this */
|
||||
|
||||
ulg opt_len; /* bit length of current block with optimal trees */
|
||||
@ -291,14 +302,14 @@ typedef struct internal_state {
|
||||
memory checker errors from longest match routines */
|
||||
|
||||
/* in trees.c */
|
||||
void ZLIB_INTERNAL _tr_init OF((deflate_state *s));
|
||||
int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
|
||||
void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf,
|
||||
ulg stored_len, int last));
|
||||
void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s));
|
||||
void ZLIB_INTERNAL _tr_align OF((deflate_state *s));
|
||||
void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf,
|
||||
ulg stored_len, int last));
|
||||
void ZLIB_INTERNAL _tr_init(deflate_state *s);
|
||||
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc);
|
||||
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
|
||||
ulg stored_len, int last);
|
||||
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s);
|
||||
void ZLIB_INTERNAL _tr_align(deflate_state *s);
|
||||
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
|
||||
ulg stored_len, int last);
|
||||
|
||||
#define d_code(dist) \
|
||||
((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
|
||||
@ -318,6 +329,25 @@ void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf,
|
||||
extern const uch ZLIB_INTERNAL _dist_code[];
|
||||
#endif
|
||||
|
||||
#ifdef LIT_MEM
|
||||
# define _tr_tally_lit(s, c, flush) \
|
||||
{ uch cc = (c); \
|
||||
s->d_buf[s->sym_next] = 0; \
|
||||
s->l_buf[s->sym_next++] = cc; \
|
||||
s->dyn_ltree[cc].Freq++; \
|
||||
flush = (s->sym_next == s->sym_end); \
|
||||
}
|
||||
# define _tr_tally_dist(s, distance, length, flush) \
|
||||
{ uch len = (uch)(length); \
|
||||
ush dist = (ush)(distance); \
|
||||
s->d_buf[s->sym_next] = dist; \
|
||||
s->l_buf[s->sym_next++] = len; \
|
||||
dist--; \
|
||||
s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
|
||||
s->dyn_dtree[d_code(dist)].Freq++; \
|
||||
flush = (s->sym_next == s->sym_end); \
|
||||
}
|
||||
#else
|
||||
# define _tr_tally_lit(s, c, flush) \
|
||||
{ uch cc = (c); \
|
||||
s->sym_buf[s->sym_next++] = 0; \
|
||||
@ -337,6 +367,7 @@ void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf,
|
||||
s->dyn_dtree[d_code(dist)].Freq++; \
|
||||
flush = (s->sym_next == s->sym_end); \
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
# define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
|
||||
# define _tr_tally_dist(s, distance, length, flush) \
|
||||
|
209
external/zlib/doc/algorithm.txt
vendored
209
external/zlib/doc/algorithm.txt
vendored
@ -1,209 +0,0 @@
|
||||
1. Compression algorithm (deflate)
|
||||
|
||||
The deflation algorithm used by gzip (also zip and zlib) is a variation of
|
||||
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
|
||||
the input data. The second occurrence of a string is replaced by a
|
||||
pointer to the previous string, in the form of a pair (distance,
|
||||
length). Distances are limited to 32K bytes, and lengths are limited
|
||||
to 258 bytes. When a string does not occur anywhere in the previous
|
||||
32K bytes, it is emitted as a sequence of literal bytes. (In this
|
||||
description, `string' must be taken as an arbitrary sequence of bytes,
|
||||
and is not restricted to printable characters.)
|
||||
|
||||
Literals or match lengths are compressed with one Huffman tree, and
|
||||
match distances are compressed with another tree. The trees are stored
|
||||
in a compact form at the start of each block. The blocks can have any
|
||||
size (except that the compressed data for one block must fit in
|
||||
available memory). A block is terminated when deflate() determines that
|
||||
it would be useful to start another block with fresh trees. (This is
|
||||
somewhat similar to the behavior of LZW-based _compress_.)
|
||||
|
||||
Duplicated strings are found using a hash table. All input strings of
|
||||
length 3 are inserted in the hash table. A hash index is computed for
|
||||
the next 3 bytes. If the hash chain for this index is not empty, all
|
||||
strings in the chain are compared with the current input string, and
|
||||
the longest match is selected.
|
||||
|
||||
The hash chains are searched starting with the most recent strings, to
|
||||
favor small distances and thus take advantage of the Huffman encoding.
|
||||
The hash chains are singly linked. There are no deletions from the
|
||||
hash chains, the algorithm simply discards matches that are too old.
|
||||
|
||||
To avoid a worst-case situation, very long hash chains are arbitrarily
|
||||
truncated at a certain length, determined by a runtime option (level
|
||||
parameter of deflateInit). So deflate() does not always find the longest
|
||||
possible match but generally finds a match which is long enough.
|
||||
|
||||
deflate() also defers the selection of matches with a lazy evaluation
|
||||
mechanism. After a match of length N has been found, deflate() searches for
|
||||
a longer match at the next input byte. If a longer match is found, the
|
||||
previous match is truncated to a length of one (thus producing a single
|
||||
literal byte) and the process of lazy evaluation begins again. Otherwise,
|
||||
the original match is kept, and the next match search is attempted only N
|
||||
steps later.
|
||||
|
||||
The lazy match evaluation is also subject to a runtime parameter. If
|
||||
the current match is long enough, deflate() reduces the search for a longer
|
||||
match, thus speeding up the whole process. If compression ratio is more
|
||||
important than speed, deflate() attempts a complete second search even if
|
||||
the first match is already long enough.
|
||||
|
||||
The lazy match evaluation is not performed for the fastest compression
|
||||
modes (level parameter 1 to 3). For these fast modes, new strings
|
||||
are inserted in the hash table only when no match was found, or
|
||||
when the match is not too long. This degrades the compression ratio
|
||||
but saves time since there are both fewer insertions and fewer searches.
|
||||
|
||||
|
||||
2. Decompression algorithm (inflate)
|
||||
|
||||
2.1 Introduction
|
||||
|
||||
The key question is how to represent a Huffman code (or any prefix code) so
|
||||
that you can decode fast. The most important characteristic is that shorter
|
||||
codes are much more common than longer codes, so pay attention to decoding the
|
||||
short codes fast, and let the long codes take longer to decode.
|
||||
|
||||
inflate() sets up a first level table that covers some number of bits of
|
||||
input less than the length of longest code. It gets that many bits from the
|
||||
stream, and looks it up in the table. The table will tell if the next
|
||||
code is that many bits or less and how many, and if it is, it will tell
|
||||
the value, else it will point to the next level table for which inflate()
|
||||
grabs more bits and tries to decode a longer code.
|
||||
|
||||
How many bits to make the first lookup is a tradeoff between the time it
|
||||
takes to decode and the time it takes to build the table. If building the
|
||||
table took no time (and if you had infinite memory), then there would only
|
||||
be a first level table to cover all the way to the longest code. However,
|
||||
building the table ends up taking a lot longer for more bits since short
|
||||
codes are replicated many times in such a table. What inflate() does is
|
||||
simply to make the number of bits in the first table a variable, and then
|
||||
to set that variable for the maximum speed.
|
||||
|
||||
For inflate, which has 286 possible codes for the literal/length tree, the size
|
||||
of the first table is nine bits. Also the distance trees have 30 possible
|
||||
values, and the size of the first table is six bits. Note that for each of
|
||||
those cases, the table ended up one bit longer than the ``average'' code
|
||||
length, i.e. the code length of an approximately flat code which would be a
|
||||
little more than eight bits for 286 symbols and a little less than five bits
|
||||
for 30 symbols.
|
||||
|
||||
|
||||
2.2 More details on the inflate table lookup
|
||||
|
||||
Ok, you want to know what this cleverly obfuscated inflate tree actually
|
||||
looks like. You are correct that it's not a Huffman tree. It is simply a
|
||||
lookup table for the first, let's say, nine bits of a Huffman symbol. The
|
||||
symbol could be as short as one bit or as long as 15 bits. If a particular
|
||||
symbol is shorter than nine bits, then that symbol's translation is duplicated
|
||||
in all those entries that start with that symbol's bits. For example, if the
|
||||
symbol is four bits, then it's duplicated 32 times in a nine-bit table. If a
|
||||
symbol is nine bits long, it appears in the table once.
|
||||
|
||||
If the symbol is longer than nine bits, then that entry in the table points
|
||||
to another similar table for the remaining bits. Again, there are duplicated
|
||||
entries as needed. The idea is that most of the time the symbol will be short
|
||||
and there will only be one table look up. (That's whole idea behind data
|
||||
compression in the first place.) For the less frequent long symbols, there
|
||||
will be two lookups. If you had a compression method with really long
|
||||
symbols, you could have as many levels of lookups as is efficient. For
|
||||
inflate, two is enough.
|
||||
|
||||
So a table entry either points to another table (in which case nine bits in
|
||||
the above example are gobbled), or it contains the translation for the symbol
|
||||
and the number of bits to gobble. Then you start again with the next
|
||||
ungobbled bit.
|
||||
|
||||
You may wonder: why not just have one lookup table for how ever many bits the
|
||||
longest symbol is? The reason is that if you do that, you end up spending
|
||||
more time filling in duplicate symbol entries than you do actually decoding.
|
||||
At least for deflate's output that generates new trees every several 10's of
|
||||
kbytes. You can imagine that filling in a 2^15 entry table for a 15-bit code
|
||||
would take too long if you're only decoding several thousand symbols. At the
|
||||
other extreme, you could make a new table for every bit in the code. In fact,
|
||||
that's essentially a Huffman tree. But then you spend too much time
|
||||
traversing the tree while decoding, even for short symbols.
|
||||
|
||||
So the number of bits for the first lookup table is a trade of the time to
|
||||
fill out the table vs. the time spent looking at the second level and above of
|
||||
the table.
|
||||
|
||||
Here is an example, scaled down:
|
||||
|
||||
The code being decoded, with 10 symbols, from 1 to 6 bits long:
|
||||
|
||||
A: 0
|
||||
B: 10
|
||||
C: 1100
|
||||
D: 11010
|
||||
E: 11011
|
||||
F: 11100
|
||||
G: 11101
|
||||
H: 11110
|
||||
I: 111110
|
||||
J: 111111
|
||||
|
||||
Let's make the first table three bits long (eight entries):
|
||||
|
||||
000: A,1
|
||||
001: A,1
|
||||
010: A,1
|
||||
011: A,1
|
||||
100: B,2
|
||||
101: B,2
|
||||
110: -> table X (gobble 3 bits)
|
||||
111: -> table Y (gobble 3 bits)
|
||||
|
||||
Each entry is what the bits decode as and how many bits that is, i.e. how
|
||||
many bits to gobble. Or the entry points to another table, with the number of
|
||||
bits to gobble implicit in the size of the table.
|
||||
|
||||
Table X is two bits long since the longest code starting with 110 is five bits
|
||||
long:
|
||||
|
||||
00: C,1
|
||||
01: C,1
|
||||
10: D,2
|
||||
11: E,2
|
||||
|
||||
Table Y is three bits long since the longest code starting with 111 is six
|
||||
bits long:
|
||||
|
||||
000: F,2
|
||||
001: F,2
|
||||
010: G,2
|
||||
011: G,2
|
||||
100: H,2
|
||||
101: H,2
|
||||
110: I,3
|
||||
111: J,3
|
||||
|
||||
So what we have here are three tables with a total of 20 entries that had to
|
||||
be constructed. That's compared to 64 entries for a single table. Or
|
||||
compared to 16 entries for a Huffman tree (six two entry tables and one four
|
||||
entry table). Assuming that the code ideally represents the probability of
|
||||
the symbols, it takes on the average 1.25 lookups per symbol. That's compared
|
||||
to one lookup for the single table, or 1.66 lookups per symbol for the
|
||||
Huffman tree.
|
||||
|
||||
There, I think that gives you a picture of what's going on. For inflate, the
|
||||
meaning of a particular symbol is often more than just a letter. It can be a
|
||||
byte (a "literal"), or it can be either a length or a distance which
|
||||
indicates a base value and a number of bits to fetch after the code that is
|
||||
added to the base value. Or it might be the special end-of-block code. The
|
||||
data structures created in inftrees.c try to encode all that information
|
||||
compactly in the tables.
|
||||
|
||||
|
||||
Jean-loup Gailly Mark Adler
|
||||
jloup@gzip.org madler@alumni.caltech.edu
|
||||
|
||||
|
||||
References:
|
||||
|
||||
[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
|
||||
Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
|
||||
pp. 337-343.
|
||||
|
||||
``DEFLATE Compressed Data Format Specification'' available in
|
||||
http://tools.ietf.org/html/rfc1951
|
619
external/zlib/doc/rfc1950.txt
vendored
619
external/zlib/doc/rfc1950.txt
vendored
@ -1,619 +0,0 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Network Working Group P. Deutsch
|
||||
Request for Comments: 1950 Aladdin Enterprises
|
||||
Category: Informational J-L. Gailly
|
||||
Info-ZIP
|
||||
May 1996
|
||||
|
||||
|
||||
ZLIB Compressed Data Format Specification version 3.3
|
||||
|
||||
Status of This Memo
|
||||
|
||||
This memo provides information for the Internet community. This memo
|
||||
does not specify an Internet standard of any kind. Distribution of
|
||||
this memo is unlimited.
|
||||
|
||||
IESG Note:
|
||||
|
||||
The IESG takes no position on the validity of any Intellectual
|
||||
Property Rights statements contained in this document.
|
||||
|
||||
Notices
|
||||
|
||||
Copyright (c) 1996 L. Peter Deutsch and Jean-Loup Gailly
|
||||
|
||||
Permission is granted to copy and distribute this document for any
|
||||
purpose and without charge, including translations into other
|
||||
languages and incorporation into compilations, provided that the
|
||||
copyright notice and this notice are preserved, and that any
|
||||
substantive changes or deletions from the original are clearly
|
||||
marked.
|
||||
|
||||
A pointer to the latest version of this and related documentation in
|
||||
HTML format can be found at the URL
|
||||
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
||||
|
||||
Abstract
|
||||
|
||||
This specification defines a lossless compressed data format. The
|
||||
data can be produced or consumed, even for an arbitrarily long
|
||||
sequentially presented input data stream, using only an a priori
|
||||
bounded amount of intermediate storage. The format presently uses
|
||||
the DEFLATE compression method but can be easily extended to use
|
||||
other compression methods. It can be implemented readily in a manner
|
||||
not covered by patents. This specification also defines the ADLER-32
|
||||
checksum (an extension and improvement of the Fletcher checksum),
|
||||
used for detection of data corruption, and provides an algorithm for
|
||||
computing it.
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 1]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
Table of Contents
|
||||
|
||||
1. Introduction ................................................... 2
|
||||
1.1. Purpose ................................................... 2
|
||||
1.2. Intended audience ......................................... 3
|
||||
1.3. Scope ..................................................... 3
|
||||
1.4. Compliance ................................................ 3
|
||||
1.5. Definitions of terms and conventions used ................ 3
|
||||
1.6. Changes from previous versions ............................ 3
|
||||
2. Detailed specification ......................................... 3
|
||||
2.1. Overall conventions ....................................... 3
|
||||
2.2. Data format ............................................... 4
|
||||
2.3. Compliance ................................................ 7
|
||||
3. References ..................................................... 7
|
||||
4. Source code .................................................... 8
|
||||
5. Security Considerations ........................................ 8
|
||||
6. Acknowledgements ............................................... 8
|
||||
7. Authors' Addresses ............................................. 8
|
||||
8. Appendix: Rationale ............................................ 9
|
||||
9. Appendix: Sample code ..........................................10
|
||||
|
||||
1. Introduction
|
||||
|
||||
1.1. Purpose
|
||||
|
||||
The purpose of this specification is to define a lossless
|
||||
compressed data format that:
|
||||
|
||||
* Is independent of CPU type, operating system, file system,
|
||||
and character set, and hence can be used for interchange;
|
||||
|
||||
* Can be produced or consumed, even for an arbitrarily long
|
||||
sequentially presented input data stream, using only an a
|
||||
priori bounded amount of intermediate storage, and hence can
|
||||
be used in data communications or similar structures such as
|
||||
Unix filters;
|
||||
|
||||
* Can use a number of different compression methods;
|
||||
|
||||
* Can be implemented readily in a manner not covered by
|
||||
patents, and hence can be practiced freely.
|
||||
|
||||
The data format defined by this specification does not attempt to
|
||||
allow random access to compressed data.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 2]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
1.2. Intended audience
|
||||
|
||||
This specification is intended for use by implementors of software
|
||||
to compress data into zlib format and/or decompress data from zlib
|
||||
format.
|
||||
|
||||
The text of the specification assumes a basic background in
|
||||
programming at the level of bits and other primitive data
|
||||
representations.
|
||||
|
||||
1.3. Scope
|
||||
|
||||
The specification specifies a compressed data format that can be
|
||||
used for in-memory compression of a sequence of arbitrary bytes.
|
||||
|
||||
1.4. Compliance
|
||||
|
||||
Unless otherwise indicated below, a compliant decompressor must be
|
||||
able to accept and decompress any data set that conforms to all
|
||||
the specifications presented here; a compliant compressor must
|
||||
produce data sets that conform to all the specifications presented
|
||||
here.
|
||||
|
||||
1.5. Definitions of terms and conventions used
|
||||
|
||||
byte: 8 bits stored or transmitted as a unit (same as an octet).
|
||||
(For this specification, a byte is exactly 8 bits, even on
|
||||
machines which store a character on a number of bits different
|
||||
from 8.) See below, for the numbering of bits within a byte.
|
||||
|
||||
1.6. Changes from previous versions
|
||||
|
||||
Version 3.1 was the first public release of this specification.
|
||||
In version 3.2, some terminology was changed and the Adler-32
|
||||
sample code was rewritten for clarity. In version 3.3, the
|
||||
support for a preset dictionary was introduced, and the
|
||||
specification was converted to RFC style.
|
||||
|
||||
2. Detailed specification
|
||||
|
||||
2.1. Overall conventions
|
||||
|
||||
In the diagrams below, a box like this:
|
||||
|
||||
+---+
|
||||
| | <-- the vertical bars might be missing
|
||||
+---+
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 3]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
represents one byte; a box like this:
|
||||
|
||||
+==============+
|
||||
| |
|
||||
+==============+
|
||||
|
||||
represents a variable number of bytes.
|
||||
|
||||
Bytes stored within a computer do not have a "bit order", since
|
||||
they are always treated as a unit. However, a byte considered as
|
||||
an integer between 0 and 255 does have a most- and least-
|
||||
significant bit, and since we write numbers with the most-
|
||||
significant digit on the left, we also write bytes with the most-
|
||||
significant bit on the left. In the diagrams below, we number the
|
||||
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
||||
the bits are numbered:
|
||||
|
||||
+--------+
|
||||
|76543210|
|
||||
+--------+
|
||||
|
||||
Within a computer, a number may occupy multiple bytes. All
|
||||
multi-byte numbers in the format described here are stored with
|
||||
the MOST-significant byte first (at the lower memory address).
|
||||
For example, the decimal number 520 is stored as:
|
||||
|
||||
0 1
|
||||
+--------+--------+
|
||||
|00000010|00001000|
|
||||
+--------+--------+
|
||||
^ ^
|
||||
| |
|
||||
| + less significant byte = 8
|
||||
+ more significant byte = 2 x 256
|
||||
|
||||
2.2. Data format
|
||||
|
||||
A zlib stream has the following structure:
|
||||
|
||||
0 1
|
||||
+---+---+
|
||||
|CMF|FLG| (more-->)
|
||||
+---+---+
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 4]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
(if FLG.FDICT set)
|
||||
|
||||
0 1 2 3
|
||||
+---+---+---+---+
|
||||
| DICTID | (more-->)
|
||||
+---+---+---+---+
|
||||
|
||||
+=====================+---+---+---+---+
|
||||
|...compressed data...| ADLER32 |
|
||||
+=====================+---+---+---+---+
|
||||
|
||||
Any data which may appear after ADLER32 are not part of the zlib
|
||||
stream.
|
||||
|
||||
CMF (Compression Method and flags)
|
||||
This byte is divided into a 4-bit compression method and a 4-
|
||||
bit information field depending on the compression method.
|
||||
|
||||
bits 0 to 3 CM Compression method
|
||||
bits 4 to 7 CINFO Compression info
|
||||
|
||||
CM (Compression method)
|
||||
This identifies the compression method used in the file. CM = 8
|
||||
denotes the "deflate" compression method with a window size up
|
||||
to 32K. This is the method used by gzip and PNG (see
|
||||
references [1] and [2] in Chapter 3, below, for the reference
|
||||
documents). CM = 15 is reserved. It might be used in a future
|
||||
version of this specification to indicate the presence of an
|
||||
extra field before the compressed data.
|
||||
|
||||
CINFO (Compression info)
|
||||
For CM = 8, CINFO is the base-2 logarithm of the LZ77 window
|
||||
size, minus eight (CINFO=7 indicates a 32K window size). Values
|
||||
of CINFO above 7 are not allowed in this version of the
|
||||
specification. CINFO is not defined in this specification for
|
||||
CM not equal to 8.
|
||||
|
||||
FLG (FLaGs)
|
||||
This flag byte is divided as follows:
|
||||
|
||||
bits 0 to 4 FCHECK (check bits for CMF and FLG)
|
||||
bit 5 FDICT (preset dictionary)
|
||||
bits 6 to 7 FLEVEL (compression level)
|
||||
|
||||
The FCHECK value must be such that CMF and FLG, when viewed as
|
||||
a 16-bit unsigned integer stored in MSB order (CMF*256 + FLG),
|
||||
is a multiple of 31.
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 5]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
FDICT (Preset dictionary)
|
||||
If FDICT is set, a DICT dictionary identifier is present
|
||||
immediately after the FLG byte. The dictionary is a sequence of
|
||||
bytes which are initially fed to the compressor without
|
||||
producing any compressed output. DICT is the Adler-32 checksum
|
||||
of this sequence of bytes (see the definition of ADLER32
|
||||
below). The decompressor can use this identifier to determine
|
||||
which dictionary has been used by the compressor.
|
||||
|
||||
FLEVEL (Compression level)
|
||||
These flags are available for use by specific compression
|
||||
methods. The "deflate" method (CM = 8) sets these flags as
|
||||
follows:
|
||||
|
||||
0 - compressor used fastest algorithm
|
||||
1 - compressor used fast algorithm
|
||||
2 - compressor used default algorithm
|
||||
3 - compressor used maximum compression, slowest algorithm
|
||||
|
||||
The information in FLEVEL is not needed for decompression; it
|
||||
is there to indicate if recompression might be worthwhile.
|
||||
|
||||
compressed data
|
||||
For compression method 8, the compressed data is stored in the
|
||||
deflate compressed data format as described in the document
|
||||
"DEFLATE Compressed Data Format Specification" by L. Peter
|
||||
Deutsch. (See reference [3] in Chapter 3, below)
|
||||
|
||||
Other compressed data formats are not specified in this version
|
||||
of the zlib specification.
|
||||
|
||||
ADLER32 (Adler-32 checksum)
|
||||
This contains a checksum value of the uncompressed data
|
||||
(excluding any dictionary data) computed according to Adler-32
|
||||
algorithm. This algorithm is a 32-bit extension and improvement
|
||||
of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
|
||||
standard. See references [4] and [5] in Chapter 3, below)
|
||||
|
||||
Adler-32 is composed of two sums accumulated per byte: s1 is
|
||||
the sum of all bytes, s2 is the sum of all s1 values. Both sums
|
||||
are done modulo 65521. s1 is initialized to 1, s2 to zero. The
|
||||
Adler-32 checksum is stored as s2*65536 + s1 in most-
|
||||
significant-byte first (network) order.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 6]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
2.3. Compliance
|
||||
|
||||
A compliant compressor must produce streams with correct CMF, FLG
|
||||
and ADLER32, but need not support preset dictionaries. When the
|
||||
zlib data format is used as part of another standard data format,
|
||||
the compressor may use only preset dictionaries that are specified
|
||||
by this other data format. If this other format does not use the
|
||||
preset dictionary feature, the compressor must not set the FDICT
|
||||
flag.
|
||||
|
||||
A compliant decompressor must check CMF, FLG, and ADLER32, and
|
||||
provide an error indication if any of these have incorrect values.
|
||||
A compliant decompressor must give an error indication if CM is
|
||||
not one of the values defined in this specification (only the
|
||||
value 8 is permitted in this version), since another value could
|
||||
indicate the presence of new features that would cause subsequent
|
||||
data to be interpreted incorrectly. A compliant decompressor must
|
||||
give an error indication if FDICT is set and DICTID is not the
|
||||
identifier of a known preset dictionary. A decompressor may
|
||||
ignore FLEVEL and still be compliant. When the zlib data format
|
||||
is being used as a part of another standard format, a compliant
|
||||
decompressor must support all the preset dictionaries specified by
|
||||
the other format. When the other format does not use the preset
|
||||
dictionary feature, a compliant decompressor must reject any
|
||||
stream in which the FDICT flag is set.
|
||||
|
||||
3. References
|
||||
|
||||
[1] Deutsch, L.P.,"GZIP Compressed Data Format Specification",
|
||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
||||
|
||||
[2] Thomas Boutell, "PNG (Portable Network Graphics) specification",
|
||||
available in ftp://ftp.uu.net/graphics/png/documents/
|
||||
|
||||
[3] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
|
||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
||||
|
||||
[4] Fletcher, J. G., "An Arithmetic Checksum for Serial
|
||||
Transmissions," IEEE Transactions on Communications, Vol. COM-30,
|
||||
No. 1, January 1982, pp. 247-252.
|
||||
|
||||
[5] ITU-T Recommendation X.224, Annex D, "Checksum Algorithms,"
|
||||
November, 1993, pp. 144, 145. (Available from
|
||||
gopher://info.itu.ch). ITU-T X.244 is also the same as ISO 8073.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 7]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
4. Source code
|
||||
|
||||
Source code for a C language implementation of a "zlib" compliant
|
||||
library is available at ftp://ftp.uu.net/pub/archiving/zip/zlib/.
|
||||
|
||||
5. Security Considerations
|
||||
|
||||
A decoder that fails to check the ADLER32 checksum value may be
|
||||
subject to undetected data corruption.
|
||||
|
||||
6. Acknowledgements
|
||||
|
||||
Trademarks cited in this document are the property of their
|
||||
respective owners.
|
||||
|
||||
Jean-Loup Gailly and Mark Adler designed the zlib format and wrote
|
||||
the related software described in this specification. Glenn
|
||||
Randers-Pehrson converted this document to RFC and HTML format.
|
||||
|
||||
7. Authors' Addresses
|
||||
|
||||
L. Peter Deutsch
|
||||
Aladdin Enterprises
|
||||
203 Santa Margarita Ave.
|
||||
Menlo Park, CA 94025
|
||||
|
||||
Phone: (415) 322-0103 (AM only)
|
||||
FAX: (415) 322-1734
|
||||
EMail: <ghost@aladdin.com>
|
||||
|
||||
|
||||
Jean-Loup Gailly
|
||||
|
||||
EMail: <gzip@prep.ai.mit.edu>
|
||||
|
||||
Questions about the technical content of this specification can be
|
||||
sent by email to
|
||||
|
||||
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
||||
Mark Adler <madler@alumni.caltech.edu>
|
||||
|
||||
Editorial comments on this specification can be sent by email to
|
||||
|
||||
L. Peter Deutsch <ghost@aladdin.com> and
|
||||
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 8]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
8. Appendix: Rationale
|
||||
|
||||
8.1. Preset dictionaries
|
||||
|
||||
A preset dictionary is specially useful to compress short input
|
||||
sequences. The compressor can take advantage of the dictionary
|
||||
context to encode the input in a more compact manner. The
|
||||
decompressor can be initialized with the appropriate context by
|
||||
virtually decompressing a compressed version of the dictionary
|
||||
without producing any output. However for certain compression
|
||||
algorithms such as the deflate algorithm this operation can be
|
||||
achieved without actually performing any decompression.
|
||||
|
||||
The compressor and the decompressor must use exactly the same
|
||||
dictionary. The dictionary may be fixed or may be chosen among a
|
||||
certain number of predefined dictionaries, according to the kind
|
||||
of input data. The decompressor can determine which dictionary has
|
||||
been chosen by the compressor by checking the dictionary
|
||||
identifier. This document does not specify the contents of
|
||||
predefined dictionaries, since the optimal dictionaries are
|
||||
application specific. Standard data formats using this feature of
|
||||
the zlib specification must precisely define the allowed
|
||||
dictionaries.
|
||||
|
||||
8.2. The Adler-32 algorithm
|
||||
|
||||
The Adler-32 algorithm is much faster than the CRC32 algorithm yet
|
||||
still provides an extremely low probability of undetected errors.
|
||||
|
||||
The modulo on unsigned long accumulators can be delayed for 5552
|
||||
bytes, so the modulo operation time is negligible. If the bytes
|
||||
are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
|
||||
and order sensitive, unlike the first sum, which is just a
|
||||
checksum. That 65521 is prime is important to avoid a possible
|
||||
large class of two-byte errors that leave the check unchanged.
|
||||
(The Fletcher checksum uses 255, which is not prime and which also
|
||||
makes the Fletcher check insensitive to single byte changes 0 <->
|
||||
255.)
|
||||
|
||||
The sum s1 is initialized to 1 instead of zero to make the length
|
||||
of the sequence part of s2, so that the length does not have to be
|
||||
checked separately. (Any sequence of zeroes has a Fletcher
|
||||
checksum of zero.)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 9]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
9. Appendix: Sample code
|
||||
|
||||
The following C code computes the Adler-32 checksum of a data buffer.
|
||||
It is written for clarity, not for speed. The sample code is in the
|
||||
ANSI C programming language. Non C users may find it easier to read
|
||||
with these hints:
|
||||
|
||||
& Bitwise AND operator.
|
||||
>> Bitwise right shift operator. When applied to an
|
||||
unsigned quantity, as here, right shift inserts zero bit(s)
|
||||
at the left.
|
||||
<< Bitwise left shift operator. Left shift inserts zero
|
||||
bit(s) at the right.
|
||||
++ "n++" increments the variable n.
|
||||
% modulo operator: a % b is the remainder of a divided by b.
|
||||
|
||||
#define BASE 65521 /* largest prime smaller than 65536 */
|
||||
|
||||
/*
|
||||
Update a running Adler-32 checksum with the bytes buf[0..len-1]
|
||||
and return the updated checksum. The Adler-32 checksum should be
|
||||
initialized to 1.
|
||||
|
||||
Usage example:
|
||||
|
||||
unsigned long adler = 1L;
|
||||
|
||||
while (read_buffer(buffer, length) != EOF) {
|
||||
adler = update_adler32(adler, buffer, length);
|
||||
}
|
||||
if (adler != original_adler) error();
|
||||
*/
|
||||
unsigned long update_adler32(unsigned long adler,
|
||||
unsigned char *buf, int len)
|
||||
{
|
||||
unsigned long s1 = adler & 0xffff;
|
||||
unsigned long s2 = (adler >> 16) & 0xffff;
|
||||
int n;
|
||||
|
||||
for (n = 0; n < len; n++) {
|
||||
s1 = (s1 + buf[n]) % BASE;
|
||||
s2 = (s2 + s1) % BASE;
|
||||
}
|
||||
return (s2 << 16) + s1;
|
||||
}
|
||||
|
||||
/* Return the adler32 of the bytes buf[0..len-1] */
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 10]
|
||||
|
||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
unsigned long adler32(unsigned char *buf, int len)
|
||||
{
|
||||
return update_adler32(1L, buf, len);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch & Gailly Informational [Page 11]
|
||||
|
955
external/zlib/doc/rfc1951.txt
vendored
955
external/zlib/doc/rfc1951.txt
vendored
@ -1,955 +0,0 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Network Working Group P. Deutsch
|
||||
Request for Comments: 1951 Aladdin Enterprises
|
||||
Category: Informational May 1996
|
||||
|
||||
|
||||
DEFLATE Compressed Data Format Specification version 1.3
|
||||
|
||||
Status of This Memo
|
||||
|
||||
This memo provides information for the Internet community. This memo
|
||||
does not specify an Internet standard of any kind. Distribution of
|
||||
this memo is unlimited.
|
||||
|
||||
IESG Note:
|
||||
|
||||
The IESG takes no position on the validity of any Intellectual
|
||||
Property Rights statements contained in this document.
|
||||
|
||||
Notices
|
||||
|
||||
Copyright (c) 1996 L. Peter Deutsch
|
||||
|
||||
Permission is granted to copy and distribute this document for any
|
||||
purpose and without charge, including translations into other
|
||||
languages and incorporation into compilations, provided that the
|
||||
copyright notice and this notice are preserved, and that any
|
||||
substantive changes or deletions from the original are clearly
|
||||
marked.
|
||||
|
||||
A pointer to the latest version of this and related documentation in
|
||||
HTML format can be found at the URL
|
||||
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
||||
|
||||
Abstract
|
||||
|
||||
This specification defines a lossless compressed data format that
|
||||
compresses data using a combination of the LZ77 algorithm and Huffman
|
||||
coding, with efficiency comparable to the best currently available
|
||||
general-purpose compression methods. The data can be produced or
|
||||
consumed, even for an arbitrarily long sequentially presented input
|
||||
data stream, using only an a priori bounded amount of intermediate
|
||||
storage. The format can be implemented readily in a manner not
|
||||
covered by patents.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 1]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
Table of Contents
|
||||
|
||||
1. Introduction ................................................... 2
|
||||
1.1. Purpose ................................................... 2
|
||||
1.2. Intended audience ......................................... 3
|
||||
1.3. Scope ..................................................... 3
|
||||
1.4. Compliance ................................................ 3
|
||||
1.5. Definitions of terms and conventions used ................ 3
|
||||
1.6. Changes from previous versions ............................ 4
|
||||
2. Compressed representation overview ............................. 4
|
||||
3. Detailed specification ......................................... 5
|
||||
3.1. Overall conventions ....................................... 5
|
||||
3.1.1. Packing into bytes .................................. 5
|
||||
3.2. Compressed block format ................................... 6
|
||||
3.2.1. Synopsis of prefix and Huffman coding ............... 6
|
||||
3.2.2. Use of Huffman coding in the "deflate" format ....... 7
|
||||
3.2.3. Details of block format ............................. 9
|
||||
3.2.4. Non-compressed blocks (BTYPE=00) ................... 11
|
||||
3.2.5. Compressed blocks (length and distance codes) ...... 11
|
||||
3.2.6. Compression with fixed Huffman codes (BTYPE=01) .... 12
|
||||
3.2.7. Compression with dynamic Huffman codes (BTYPE=10) .. 13
|
||||
3.3. Compliance ............................................... 14
|
||||
4. Compression algorithm details ................................. 14
|
||||
5. References .................................................... 16
|
||||
6. Security Considerations ....................................... 16
|
||||
7. Source code ................................................... 16
|
||||
8. Acknowledgements .............................................. 16
|
||||
9. Author's Address .............................................. 17
|
||||
|
||||
1. Introduction
|
||||
|
||||
1.1. Purpose
|
||||
|
||||
The purpose of this specification is to define a lossless
|
||||
compressed data format that:
|
||||
* Is independent of CPU type, operating system, file system,
|
||||
and character set, and hence can be used for interchange;
|
||||
* Can be produced or consumed, even for an arbitrarily long
|
||||
sequentially presented input data stream, using only an a
|
||||
priori bounded amount of intermediate storage, and hence
|
||||
can be used in data communications or similar structures
|
||||
such as Unix filters;
|
||||
* Compresses data with efficiency comparable to the best
|
||||
currently available general-purpose compression methods,
|
||||
and in particular considerably better than the "compress"
|
||||
program;
|
||||
* Can be implemented readily in a manner not covered by
|
||||
patents, and hence can be practiced freely;
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 2]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
* Is compatible with the file format produced by the current
|
||||
widely used gzip utility, in that conforming decompressors
|
||||
will be able to read data produced by the existing gzip
|
||||
compressor.
|
||||
|
||||
The data format defined by this specification does not attempt to:
|
||||
|
||||
* Allow random access to compressed data;
|
||||
* Compress specialized data (e.g., raster graphics) as well
|
||||
as the best currently available specialized algorithms.
|
||||
|
||||
A simple counting argument shows that no lossless compression
|
||||
algorithm can compress every possible input data set. For the
|
||||
format defined here, the worst case expansion is 5 bytes per 32K-
|
||||
byte block, i.e., a size increase of 0.015% for large data sets.
|
||||
English text usually compresses by a factor of 2.5 to 3;
|
||||
executable files usually compress somewhat less; graphical data
|
||||
such as raster images may compress much more.
|
||||
|
||||
1.2. Intended audience
|
||||
|
||||
This specification is intended for use by implementors of software
|
||||
to compress data into "deflate" format and/or decompress data from
|
||||
"deflate" format.
|
||||
|
||||
The text of the specification assumes a basic background in
|
||||
programming at the level of bits and other primitive data
|
||||
representations. Familiarity with the technique of Huffman coding
|
||||
is helpful but not required.
|
||||
|
||||
1.3. Scope
|
||||
|
||||
The specification specifies a method for representing a sequence
|
||||
of bytes as a (usually shorter) sequence of bits, and a method for
|
||||
packing the latter bit sequence into bytes.
|
||||
|
||||
1.4. Compliance
|
||||
|
||||
Unless otherwise indicated below, a compliant decompressor must be
|
||||
able to accept and decompress any data set that conforms to all
|
||||
the specifications presented here; a compliant compressor must
|
||||
produce data sets that conform to all the specifications presented
|
||||
here.
|
||||
|
||||
1.5. Definitions of terms and conventions used
|
||||
|
||||
Byte: 8 bits stored or transmitted as a unit (same as an octet).
|
||||
For this specification, a byte is exactly 8 bits, even on machines
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 3]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
which store a character on a number of bits different from eight.
|
||||
See below, for the numbering of bits within a byte.
|
||||
|
||||
String: a sequence of arbitrary bytes.
|
||||
|
||||
1.6. Changes from previous versions
|
||||
|
||||
There have been no technical changes to the deflate format since
|
||||
version 1.1 of this specification. In version 1.2, some
|
||||
terminology was changed. Version 1.3 is a conversion of the
|
||||
specification to RFC style.
|
||||
|
||||
2. Compressed representation overview
|
||||
|
||||
A compressed data set consists of a series of blocks, corresponding
|
||||
to successive blocks of input data. The block sizes are arbitrary,
|
||||
except that non-compressible blocks are limited to 65,535 bytes.
|
||||
|
||||
Each block is compressed using a combination of the LZ77 algorithm
|
||||
and Huffman coding. The Huffman trees for each block are independent
|
||||
of those for previous or subsequent blocks; the LZ77 algorithm may
|
||||
use a reference to a duplicated string occurring in a previous block,
|
||||
up to 32K input bytes before.
|
||||
|
||||
Each block consists of two parts: a pair of Huffman code trees that
|
||||
describe the representation of the compressed data part, and a
|
||||
compressed data part. (The Huffman trees themselves are compressed
|
||||
using Huffman encoding.) The compressed data consists of a series of
|
||||
elements of two types: literal bytes (of strings that have not been
|
||||
detected as duplicated within the previous 32K input bytes), and
|
||||
pointers to duplicated strings, where a pointer is represented as a
|
||||
pair <length, backward distance>. The representation used in the
|
||||
"deflate" format limits distances to 32K bytes and lengths to 258
|
||||
bytes, but does not limit the size of a block, except for
|
||||
uncompressible blocks, which are limited as noted above.
|
||||
|
||||
Each type of value (literals, distances, and lengths) in the
|
||||
compressed data is represented using a Huffman code, using one code
|
||||
tree for literals and lengths and a separate code tree for distances.
|
||||
The code trees for each block appear in a compact form just before
|
||||
the compressed data for that block.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 4]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
3. Detailed specification
|
||||
|
||||
3.1. Overall conventions In the diagrams below, a box like this:
|
||||
|
||||
+---+
|
||||
| | <-- the vertical bars might be missing
|
||||
+---+
|
||||
|
||||
represents one byte; a box like this:
|
||||
|
||||
+==============+
|
||||
| |
|
||||
+==============+
|
||||
|
||||
represents a variable number of bytes.
|
||||
|
||||
Bytes stored within a computer do not have a "bit order", since
|
||||
they are always treated as a unit. However, a byte considered as
|
||||
an integer between 0 and 255 does have a most- and least-
|
||||
significant bit, and since we write numbers with the most-
|
||||
significant digit on the left, we also write bytes with the most-
|
||||
significant bit on the left. In the diagrams below, we number the
|
||||
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
||||
the bits are numbered:
|
||||
|
||||
+--------+
|
||||
|76543210|
|
||||
+--------+
|
||||
|
||||
Within a computer, a number may occupy multiple bytes. All
|
||||
multi-byte numbers in the format described here are stored with
|
||||
the least-significant byte first (at the lower memory address).
|
||||
For example, the decimal number 520 is stored as:
|
||||
|
||||
0 1
|
||||
+--------+--------+
|
||||
|00001000|00000010|
|
||||
+--------+--------+
|
||||
^ ^
|
||||
| |
|
||||
| + more significant byte = 2 x 256
|
||||
+ less significant byte = 8
|
||||
|
||||
3.1.1. Packing into bytes
|
||||
|
||||
This document does not address the issue of the order in which
|
||||
bits of a byte are transmitted on a bit-sequential medium,
|
||||
since the final data format described here is byte- rather than
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 5]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
bit-oriented. However, we describe the compressed block format
|
||||
in below, as a sequence of data elements of various bit
|
||||
lengths, not a sequence of bytes. We must therefore specify
|
||||
how to pack these data elements into bytes to form the final
|
||||
compressed byte sequence:
|
||||
|
||||
* Data elements are packed into bytes in order of
|
||||
increasing bit number within the byte, i.e., starting
|
||||
with the least-significant bit of the byte.
|
||||
* Data elements other than Huffman codes are packed
|
||||
starting with the least-significant bit of the data
|
||||
element.
|
||||
* Huffman codes are packed starting with the most-
|
||||
significant bit of the code.
|
||||
|
||||
In other words, if one were to print out the compressed data as
|
||||
a sequence of bytes, starting with the first byte at the
|
||||
*right* margin and proceeding to the *left*, with the most-
|
||||
significant bit of each byte on the left as usual, one would be
|
||||
able to parse the result from right to left, with fixed-width
|
||||
elements in the correct MSB-to-LSB order and Huffman codes in
|
||||
bit-reversed order (i.e., with the first bit of the code in the
|
||||
relative LSB position).
|
||||
|
||||
3.2. Compressed block format
|
||||
|
||||
3.2.1. Synopsis of prefix and Huffman coding
|
||||
|
||||
Prefix coding represents symbols from an a priori known
|
||||
alphabet by bit sequences (codes), one code for each symbol, in
|
||||
a manner such that different symbols may be represented by bit
|
||||
sequences of different lengths, but a parser can always parse
|
||||
an encoded string unambiguously symbol-by-symbol.
|
||||
|
||||
We define a prefix code in terms of a binary tree in which the
|
||||
two edges descending from each non-leaf node are labeled 0 and
|
||||
1 and in which the leaf nodes correspond one-for-one with (are
|
||||
labeled with) the symbols of the alphabet; then the code for a
|
||||
symbol is the sequence of 0's and 1's on the edges leading from
|
||||
the root to the leaf labeled with that symbol. For example:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 6]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
/\ Symbol Code
|
||||
0 1 ------ ----
|
||||
/ \ A 00
|
||||
/\ B B 1
|
||||
0 1 C 011
|
||||
/ \ D 010
|
||||
A /\
|
||||
0 1
|
||||
/ \
|
||||
D C
|
||||
|
||||
A parser can decode the next symbol from an encoded input
|
||||
stream by walking down the tree from the root, at each step
|
||||
choosing the edge corresponding to the next input bit.
|
||||
|
||||
Given an alphabet with known symbol frequencies, the Huffman
|
||||
algorithm allows the construction of an optimal prefix code
|
||||
(one which represents strings with those symbol frequencies
|
||||
using the fewest bits of any possible prefix codes for that
|
||||
alphabet). Such a code is called a Huffman code. (See
|
||||
reference [1] in Chapter 5, references for additional
|
||||
information on Huffman codes.)
|
||||
|
||||
Note that in the "deflate" format, the Huffman codes for the
|
||||
various alphabets must not exceed certain maximum code lengths.
|
||||
This constraint complicates the algorithm for computing code
|
||||
lengths from symbol frequencies. Again, see Chapter 5,
|
||||
references for details.
|
||||
|
||||
3.2.2. Use of Huffman coding in the "deflate" format
|
||||
|
||||
The Huffman codes used for each alphabet in the "deflate"
|
||||
format have two additional rules:
|
||||
|
||||
* All codes of a given bit length have lexicographically
|
||||
consecutive values, in the same order as the symbols
|
||||
they represent;
|
||||
|
||||
* Shorter codes lexicographically precede longer codes.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 7]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
We could recode the example above to follow this rule as
|
||||
follows, assuming that the order of the alphabet is ABCD:
|
||||
|
||||
Symbol Code
|
||||
------ ----
|
||||
A 10
|
||||
B 0
|
||||
C 110
|
||||
D 111
|
||||
|
||||
I.e., 0 precedes 10 which precedes 11x, and 110 and 111 are
|
||||
lexicographically consecutive.
|
||||
|
||||
Given this rule, we can define the Huffman code for an alphabet
|
||||
just by giving the bit lengths of the codes for each symbol of
|
||||
the alphabet in order; this is sufficient to determine the
|
||||
actual codes. In our example, the code is completely defined
|
||||
by the sequence of bit lengths (2, 1, 3, 3). The following
|
||||
algorithm generates the codes as integers, intended to be read
|
||||
from most- to least-significant bit. The code lengths are
|
||||
initially in tree[I].Len; the codes are produced in
|
||||
tree[I].Code.
|
||||
|
||||
1) Count the number of codes for each code length. Let
|
||||
bl_count[N] be the number of codes of length N, N >= 1.
|
||||
|
||||
2) Find the numerical value of the smallest code for each
|
||||
code length:
|
||||
|
||||
code = 0;
|
||||
bl_count[0] = 0;
|
||||
for (bits = 1; bits <= MAX_BITS; bits++) {
|
||||
code = (code + bl_count[bits-1]) << 1;
|
||||
next_code[bits] = code;
|
||||
}
|
||||
|
||||
3) Assign numerical values to all codes, using consecutive
|
||||
values for all codes of the same length with the base
|
||||
values determined at step 2. Codes that are never used
|
||||
(which have a bit length of zero) must not be assigned a
|
||||
value.
|
||||
|
||||
for (n = 0; n <= max_code; n++) {
|
||||
len = tree[n].Len;
|
||||
if (len != 0) {
|
||||
tree[n].Code = next_code[len];
|
||||
next_code[len]++;
|
||||
}
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 8]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
}
|
||||
|
||||
Example:
|
||||
|
||||
Consider the alphabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
|
||||
3, 2, 4, 4). After step 1, we have:
|
||||
|
||||
N bl_count[N]
|
||||
- -----------
|
||||
2 1
|
||||
3 5
|
||||
4 2
|
||||
|
||||
Step 2 computes the following next_code values:
|
||||
|
||||
N next_code[N]
|
||||
- ------------
|
||||
1 0
|
||||
2 0
|
||||
3 2
|
||||
4 14
|
||||
|
||||
Step 3 produces the following code values:
|
||||
|
||||
Symbol Length Code
|
||||
------ ------ ----
|
||||
A 3 010
|
||||
B 3 011
|
||||
C 3 100
|
||||
D 3 101
|
||||
E 3 110
|
||||
F 2 00
|
||||
G 4 1110
|
||||
H 4 1111
|
||||
|
||||
3.2.3. Details of block format
|
||||
|
||||
Each block of compressed data begins with 3 header bits
|
||||
containing the following data:
|
||||
|
||||
first bit BFINAL
|
||||
next 2 bits BTYPE
|
||||
|
||||
Note that the header bits do not necessarily begin on a byte
|
||||
boundary, since a block does not necessarily occupy an integral
|
||||
number of bytes.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 9]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
BFINAL is set if and only if this is the last block of the data
|
||||
set.
|
||||
|
||||
BTYPE specifies how the data are compressed, as follows:
|
||||
|
||||
00 - no compression
|
||||
01 - compressed with fixed Huffman codes
|
||||
10 - compressed with dynamic Huffman codes
|
||||
11 - reserved (error)
|
||||
|
||||
The only difference between the two compressed cases is how the
|
||||
Huffman codes for the literal/length and distance alphabets are
|
||||
defined.
|
||||
|
||||
In all cases, the decoding algorithm for the actual data is as
|
||||
follows:
|
||||
|
||||
do
|
||||
read block header from input stream.
|
||||
if stored with no compression
|
||||
skip any remaining bits in current partially
|
||||
processed byte
|
||||
read LEN and NLEN (see next section)
|
||||
copy LEN bytes of data to output
|
||||
otherwise
|
||||
if compressed with dynamic Huffman codes
|
||||
read representation of code trees (see
|
||||
subsection below)
|
||||
loop (until end of block code recognized)
|
||||
decode literal/length value from input stream
|
||||
if value < 256
|
||||
copy value (literal byte) to output stream
|
||||
otherwise
|
||||
if value = end of block (256)
|
||||
break from loop
|
||||
otherwise (value = 257..285)
|
||||
decode distance from input stream
|
||||
|
||||
move backwards distance bytes in the output
|
||||
stream, and copy length bytes from this
|
||||
position to the output stream.
|
||||
end loop
|
||||
while not last block
|
||||
|
||||
Note that a duplicated string reference may refer to a string
|
||||
in a previous block; i.e., the backward distance may cross one
|
||||
or more block boundaries. However a distance cannot refer past
|
||||
the beginning of the output stream. (An application using a
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 10]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
preset dictionary might discard part of the output stream; a
|
||||
distance can refer to that part of the output stream anyway)
|
||||
Note also that the referenced string may overlap the current
|
||||
position; for example, if the last 2 bytes decoded have values
|
||||
X and Y, a string reference with <length = 5, distance = 2>
|
||||
adds X,Y,X,Y,X to the output stream.
|
||||
|
||||
We now specify each compression method in turn.
|
||||
|
||||
3.2.4. Non-compressed blocks (BTYPE=00)
|
||||
|
||||
Any bits of input up to the next byte boundary are ignored.
|
||||
The rest of the block consists of the following information:
|
||||
|
||||
0 1 2 3 4...
|
||||
+---+---+---+---+================================+
|
||||
| LEN | NLEN |... LEN bytes of literal data...|
|
||||
+---+---+---+---+================================+
|
||||
|
||||
LEN is the number of data bytes in the block. NLEN is the
|
||||
one's complement of LEN.
|
||||
|
||||
3.2.5. Compressed blocks (length and distance codes)
|
||||
|
||||
As noted above, encoded data blocks in the "deflate" format
|
||||
consist of sequences of symbols drawn from three conceptually
|
||||
distinct alphabets: either literal bytes, from the alphabet of
|
||||
byte values (0..255), or <length, backward distance> pairs,
|
||||
where the length is drawn from (3..258) and the distance is
|
||||
drawn from (1..32,768). In fact, the literal and length
|
||||
alphabets are merged into a single alphabet (0..285), where
|
||||
values 0..255 represent literal bytes, the value 256 indicates
|
||||
end-of-block, and values 257..285 represent length codes
|
||||
(possibly in conjunction with extra bits following the symbol
|
||||
code) as follows:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 11]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
Extra Extra Extra
|
||||
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)
|
||||
---- ---- ------ ---- ---- ------- ---- ---- -------
|
||||
257 0 3 267 1 15,16 277 4 67-82
|
||||
258 0 4 268 1 17,18 278 4 83-98
|
||||
259 0 5 269 2 19-22 279 4 99-114
|
||||
260 0 6 270 2 23-26 280 4 115-130
|
||||
261 0 7 271 2 27-30 281 5 131-162
|
||||
262 0 8 272 2 31-34 282 5 163-194
|
||||
263 0 9 273 3 35-42 283 5 195-226
|
||||
264 0 10 274 3 43-50 284 5 227-257
|
||||
265 1 11,12 275 3 51-58 285 0 258
|
||||
266 1 13,14 276 3 59-66
|
||||
|
||||
The extra bits should be interpreted as a machine integer
|
||||
stored with the most-significant bit first, e.g., bits 1110
|
||||
represent the value 14.
|
||||
|
||||
Extra Extra Extra
|
||||
Code Bits Dist Code Bits Dist Code Bits Distance
|
||||
---- ---- ---- ---- ---- ------ ---- ---- --------
|
||||
0 0 1 10 4 33-48 20 9 1025-1536
|
||||
1 0 2 11 4 49-64 21 9 1537-2048
|
||||
2 0 3 12 5 65-96 22 10 2049-3072
|
||||
3 0 4 13 5 97-128 23 10 3073-4096
|
||||
4 1 5,6 14 6 129-192 24 11 4097-6144
|
||||
5 1 7,8 15 6 193-256 25 11 6145-8192
|
||||
6 2 9-12 16 7 257-384 26 12 8193-12288
|
||||
7 2 13-16 17 7 385-512 27 12 12289-16384
|
||||
8 3 17-24 18 8 513-768 28 13 16385-24576
|
||||
9 3 25-32 19 8 769-1024 29 13 24577-32768
|
||||
|
||||
3.2.6. Compression with fixed Huffman codes (BTYPE=01)
|
||||
|
||||
The Huffman codes for the two alphabets are fixed, and are not
|
||||
represented explicitly in the data. The Huffman code lengths
|
||||
for the literal/length alphabet are:
|
||||
|
||||
Lit Value Bits Codes
|
||||
--------- ---- -----
|
||||
0 - 143 8 00110000 through
|
||||
10111111
|
||||
144 - 255 9 110010000 through
|
||||
111111111
|
||||
256 - 279 7 0000000 through
|
||||
0010111
|
||||
280 - 287 8 11000000 through
|
||||
11000111
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 12]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
The code lengths are sufficient to generate the actual codes,
|
||||
as described above; we show the codes in the table for added
|
||||
clarity. Literal/length values 286-287 will never actually
|
||||
occur in the compressed data, but participate in the code
|
||||
construction.
|
||||
|
||||
Distance codes 0-31 are represented by (fixed-length) 5-bit
|
||||
codes, with possible additional bits as shown in the table
|
||||
shown in Paragraph 3.2.5, above. Note that distance codes 30-
|
||||
31 will never actually occur in the compressed data.
|
||||
|
||||
3.2.7. Compression with dynamic Huffman codes (BTYPE=10)
|
||||
|
||||
The Huffman codes for the two alphabets appear in the block
|
||||
immediately after the header bits and before the actual
|
||||
compressed data, first the literal/length code and then the
|
||||
distance code. Each code is defined by a sequence of code
|
||||
lengths, as discussed in Paragraph 3.2.2, above. For even
|
||||
greater compactness, the code length sequences themselves are
|
||||
compressed using a Huffman code. The alphabet for code lengths
|
||||
is as follows:
|
||||
|
||||
0 - 15: Represent code lengths of 0 - 15
|
||||
16: Copy the previous code length 3 - 6 times.
|
||||
The next 2 bits indicate repeat length
|
||||
(0 = 3, ... , 3 = 6)
|
||||
Example: Codes 8, 16 (+2 bits 11),
|
||||
16 (+2 bits 10) will expand to
|
||||
12 code lengths of 8 (1 + 6 + 5)
|
||||
17: Repeat a code length of 0 for 3 - 10 times.
|
||||
(3 bits of length)
|
||||
18: Repeat a code length of 0 for 11 - 138 times
|
||||
(7 bits of length)
|
||||
|
||||
A code length of 0 indicates that the corresponding symbol in
|
||||
the literal/length or distance alphabet will not occur in the
|
||||
block, and should not participate in the Huffman code
|
||||
construction algorithm given earlier. If only one distance
|
||||
code is used, it is encoded using one bit, not zero bits; in
|
||||
this case there is a single code length of one, with one unused
|
||||
code. One distance code of zero bits means that there are no
|
||||
distance codes used at all (the data is all literals).
|
||||
|
||||
We can now define the format of the block:
|
||||
|
||||
5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
|
||||
5 Bits: HDIST, # of Distance codes - 1 (1 - 32)
|
||||
4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 13]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
(HCLEN + 4) x 3 bits: code lengths for the code length
|
||||
alphabet given just above, in the order: 16, 17, 18,
|
||||
0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
|
||||
|
||||
These code lengths are interpreted as 3-bit integers
|
||||
(0-7); as above, a code length of 0 means the
|
||||
corresponding symbol (literal/length or distance code
|
||||
length) is not used.
|
||||
|
||||
HLIT + 257 code lengths for the literal/length alphabet,
|
||||
encoded using the code length Huffman code
|
||||
|
||||
HDIST + 1 code lengths for the distance alphabet,
|
||||
encoded using the code length Huffman code
|
||||
|
||||
The actual compressed data of the block,
|
||||
encoded using the literal/length and distance Huffman
|
||||
codes
|
||||
|
||||
The literal/length symbol 256 (end of data),
|
||||
encoded using the literal/length Huffman code
|
||||
|
||||
The code length repeat codes can cross from HLIT + 257 to the
|
||||
HDIST + 1 code lengths. In other words, all code lengths form
|
||||
a single sequence of HLIT + HDIST + 258 values.
|
||||
|
||||
3.3. Compliance
|
||||
|
||||
A compressor may limit further the ranges of values specified in
|
||||
the previous section and still be compliant; for example, it may
|
||||
limit the range of backward pointers to some value smaller than
|
||||
32K. Similarly, a compressor may limit the size of blocks so that
|
||||
a compressible block fits in memory.
|
||||
|
||||
A compliant decompressor must accept the full range of possible
|
||||
values defined in the previous section, and must accept blocks of
|
||||
arbitrary size.
|
||||
|
||||
4. Compression algorithm details
|
||||
|
||||
While it is the intent of this document to define the "deflate"
|
||||
compressed data format without reference to any particular
|
||||
compression algorithm, the format is related to the compressed
|
||||
formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);
|
||||
since many variations of LZ77 are patented, it is strongly
|
||||
recommended that the implementor of a compressor follow the general
|
||||
algorithm presented here, which is known not to be patented per se.
|
||||
The material in this section is not part of the definition of the
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 14]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
specification per se, and a compressor need not follow it in order to
|
||||
be compliant.
|
||||
|
||||
The compressor terminates a block when it determines that starting a
|
||||
new block with fresh trees would be useful, or when the block size
|
||||
fills up the compressor's block buffer.
|
||||
|
||||
The compressor uses a chained hash table to find duplicated strings,
|
||||
using a hash function that operates on 3-byte sequences. At any
|
||||
given point during compression, let XYZ be the next 3 input bytes to
|
||||
be examined (not necessarily all different, of course). First, the
|
||||
compressor examines the hash chain for XYZ. If the chain is empty,
|
||||
the compressor simply writes out X as a literal byte and advances one
|
||||
byte in the input. If the hash chain is not empty, indicating that
|
||||
the sequence XYZ (or, if we are unlucky, some other 3 bytes with the
|
||||
same hash function value) has occurred recently, the compressor
|
||||
compares all strings on the XYZ hash chain with the actual input data
|
||||
sequence starting at the current point, and selects the longest
|
||||
match.
|
||||
|
||||
The compressor searches the hash chains starting with the most recent
|
||||
strings, to favor small distances and thus take advantage of the
|
||||
Huffman encoding. The hash chains are singly linked. There are no
|
||||
deletions from the hash chains; the algorithm simply discards matches
|
||||
that are too old. To avoid a worst-case situation, very long hash
|
||||
chains are arbitrarily truncated at a certain length, determined by a
|
||||
run-time parameter.
|
||||
|
||||
To improve overall compression, the compressor optionally defers the
|
||||
selection of matches ("lazy matching"): after a match of length N has
|
||||
been found, the compressor searches for a longer match starting at
|
||||
the next input byte. If it finds a longer match, it truncates the
|
||||
previous match to a length of one (thus producing a single literal
|
||||
byte) and then emits the longer match. Otherwise, it emits the
|
||||
original match, and, as described above, advances N bytes before
|
||||
continuing.
|
||||
|
||||
Run-time parameters also control this "lazy match" procedure. If
|
||||
compression ratio is most important, the compressor attempts a
|
||||
complete second search regardless of the length of the first match.
|
||||
In the normal case, if the current match is "long enough", the
|
||||
compressor reduces the search for a longer match, thus speeding up
|
||||
the process. If speed is most important, the compressor inserts new
|
||||
strings in the hash table only when no match was found, or when the
|
||||
match is not "too long". This degrades the compression ratio but
|
||||
saves time since there are both fewer insertions and fewer searches.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 15]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
5. References
|
||||
|
||||
[1] Huffman, D. A., "A Method for the Construction of Minimum
|
||||
Redundancy Codes", Proceedings of the Institute of Radio
|
||||
Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.
|
||||
|
||||
[2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data
|
||||
Compression", IEEE Transactions on Information Theory, Vol. 23,
|
||||
No. 3, pp. 337-343.
|
||||
|
||||
[3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources,
|
||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
||||
|
||||
[4] Gailly, J.-L., and Adler, M., GZIP documentation and sources,
|
||||
available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/
|
||||
|
||||
[5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix
|
||||
encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.
|
||||
|
||||
[6] Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
|
||||
Comm. ACM, 33,4, April 1990, pp. 449-459.
|
||||
|
||||
6. Security Considerations
|
||||
|
||||
Any data compression method involves the reduction of redundancy in
|
||||
the data. Consequently, any corruption of the data is likely to have
|
||||
severe effects and be difficult to correct. Uncompressed text, on
|
||||
the other hand, will probably still be readable despite the presence
|
||||
of some corrupted bytes.
|
||||
|
||||
It is recommended that systems using this data format provide some
|
||||
means of validating the integrity of the compressed data. See
|
||||
reference [3], for example.
|
||||
|
||||
7. Source code
|
||||
|
||||
Source code for a C language implementation of a "deflate" compliant
|
||||
compressor and decompressor is available within the zlib package at
|
||||
ftp://ftp.uu.net/pub/archiving/zip/zlib/.
|
||||
|
||||
8. Acknowledgements
|
||||
|
||||
Trademarks cited in this document are the property of their
|
||||
respective owners.
|
||||
|
||||
Phil Katz designed the deflate format. Jean-Loup Gailly and Mark
|
||||
Adler wrote the related software described in this specification.
|
||||
Glenn Randers-Pehrson converted this document to RFC and HTML format.
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 16]
|
||||
|
||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
||||
|
||||
|
||||
9. Author's Address
|
||||
|
||||
L. Peter Deutsch
|
||||
Aladdin Enterprises
|
||||
203 Santa Margarita Ave.
|
||||
Menlo Park, CA 94025
|
||||
|
||||
Phone: (415) 322-0103 (AM only)
|
||||
FAX: (415) 322-1734
|
||||
EMail: <ghost@aladdin.com>
|
||||
|
||||
Questions about the technical content of this specification can be
|
||||
sent by email to:
|
||||
|
||||
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
||||
Mark Adler <madler@alumni.caltech.edu>
|
||||
|
||||
Editorial comments on this specification can be sent by email to:
|
||||
|
||||
L. Peter Deutsch <ghost@aladdin.com> and
|
||||
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 17]
|
||||
|
675
external/zlib/doc/rfc1952.txt
vendored
675
external/zlib/doc/rfc1952.txt
vendored
@ -1,675 +0,0 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Network Working Group P. Deutsch
|
||||
Request for Comments: 1952 Aladdin Enterprises
|
||||
Category: Informational May 1996
|
||||
|
||||
|
||||
GZIP file format specification version 4.3
|
||||
|
||||
Status of This Memo
|
||||
|
||||
This memo provides information for the Internet community. This memo
|
||||
does not specify an Internet standard of any kind. Distribution of
|
||||
this memo is unlimited.
|
||||
|
||||
IESG Note:
|
||||
|
||||
The IESG takes no position on the validity of any Intellectual
|
||||
Property Rights statements contained in this document.
|
||||
|
||||
Notices
|
||||
|
||||
Copyright (c) 1996 L. Peter Deutsch
|
||||
|
||||
Permission is granted to copy and distribute this document for any
|
||||
purpose and without charge, including translations into other
|
||||
languages and incorporation into compilations, provided that the
|
||||
copyright notice and this notice are preserved, and that any
|
||||
substantive changes or deletions from the original are clearly
|
||||
marked.
|
||||
|
||||
A pointer to the latest version of this and related documentation in
|
||||
HTML format can be found at the URL
|
||||
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
||||
|
||||
Abstract
|
||||
|
||||
This specification defines a lossless compressed data format that is
|
||||
compatible with the widely used GZIP utility. The format includes a
|
||||
cyclic redundancy check value for detecting data corruption. The
|
||||
format presently uses the DEFLATE method of compression but can be
|
||||
easily extended to use other compression methods. The format can be
|
||||
implemented readily in a manner not covered by patents.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 1]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
Table of Contents
|
||||
|
||||
1. Introduction ................................................... 2
|
||||
1.1. Purpose ................................................... 2
|
||||
1.2. Intended audience ......................................... 3
|
||||
1.3. Scope ..................................................... 3
|
||||
1.4. Compliance ................................................ 3
|
||||
1.5. Definitions of terms and conventions used ................. 3
|
||||
1.6. Changes from previous versions ............................ 3
|
||||
2. Detailed specification ......................................... 4
|
||||
2.1. Overall conventions ....................................... 4
|
||||
2.2. File format ............................................... 5
|
||||
2.3. Member format ............................................. 5
|
||||
2.3.1. Member header and trailer ........................... 6
|
||||
2.3.1.1. Extra field ................................... 8
|
||||
2.3.1.2. Compliance .................................... 9
|
||||
3. References .................................................. 9
|
||||
4. Security Considerations .................................... 10
|
||||
5. Acknowledgements ........................................... 10
|
||||
6. Author's Address ........................................... 10
|
||||
7. Appendix: Jean-Loup Gailly's gzip utility .................. 11
|
||||
8. Appendix: Sample CRC Code .................................. 11
|
||||
|
||||
1. Introduction
|
||||
|
||||
1.1. Purpose
|
||||
|
||||
The purpose of this specification is to define a lossless
|
||||
compressed data format that:
|
||||
|
||||
* Is independent of CPU type, operating system, file system,
|
||||
and character set, and hence can be used for interchange;
|
||||
* Can compress or decompress a data stream (as opposed to a
|
||||
randomly accessible file) to produce another data stream,
|
||||
using only an a priori bounded amount of intermediate
|
||||
storage, and hence can be used in data communications or
|
||||
similar structures such as Unix filters;
|
||||
* Compresses data with efficiency comparable to the best
|
||||
currently available general-purpose compression methods,
|
||||
and in particular considerably better than the "compress"
|
||||
program;
|
||||
* Can be implemented readily in a manner not covered by
|
||||
patents, and hence can be practiced freely;
|
||||
* Is compatible with the file format produced by the current
|
||||
widely used gzip utility, in that conforming decompressors
|
||||
will be able to read data produced by the existing gzip
|
||||
compressor.
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 2]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
The data format defined by this specification does not attempt to:
|
||||
|
||||
* Provide random access to compressed data;
|
||||
* Compress specialized data (e.g., raster graphics) as well as
|
||||
the best currently available specialized algorithms.
|
||||
|
||||
1.2. Intended audience
|
||||
|
||||
This specification is intended for use by implementors of software
|
||||
to compress data into gzip format and/or decompress data from gzip
|
||||
format.
|
||||
|
||||
The text of the specification assumes a basic background in
|
||||
programming at the level of bits and other primitive data
|
||||
representations.
|
||||
|
||||
1.3. Scope
|
||||
|
||||
The specification specifies a compression method and a file format
|
||||
(the latter assuming only that a file can store a sequence of
|
||||
arbitrary bytes). It does not specify any particular interface to
|
||||
a file system or anything about character sets or encodings
|
||||
(except for file names and comments, which are optional).
|
||||
|
||||
1.4. Compliance
|
||||
|
||||
Unless otherwise indicated below, a compliant decompressor must be
|
||||
able to accept and decompress any file that conforms to all the
|
||||
specifications presented here; a compliant compressor must produce
|
||||
files that conform to all the specifications presented here. The
|
||||
material in the appendices is not part of the specification per se
|
||||
and is not relevant to compliance.
|
||||
|
||||
1.5. Definitions of terms and conventions used
|
||||
|
||||
byte: 8 bits stored or transmitted as a unit (same as an octet).
|
||||
(For this specification, a byte is exactly 8 bits, even on
|
||||
machines which store a character on a number of bits different
|
||||
from 8.) See below for the numbering of bits within a byte.
|
||||
|
||||
1.6. Changes from previous versions
|
||||
|
||||
There have been no technical changes to the gzip format since
|
||||
version 4.1 of this specification. In version 4.2, some
|
||||
terminology was changed, and the sample CRC code was rewritten for
|
||||
clarity and to eliminate the requirement for the caller to do pre-
|
||||
and post-conditioning. Version 4.3 is a conversion of the
|
||||
specification to RFC style.
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 3]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
2. Detailed specification
|
||||
|
||||
2.1. Overall conventions
|
||||
|
||||
In the diagrams below, a box like this:
|
||||
|
||||
+---+
|
||||
| | <-- the vertical bars might be missing
|
||||
+---+
|
||||
|
||||
represents one byte; a box like this:
|
||||
|
||||
+==============+
|
||||
| |
|
||||
+==============+
|
||||
|
||||
represents a variable number of bytes.
|
||||
|
||||
Bytes stored within a computer do not have a "bit order", since
|
||||
they are always treated as a unit. However, a byte considered as
|
||||
an integer between 0 and 255 does have a most- and least-
|
||||
significant bit, and since we write numbers with the most-
|
||||
significant digit on the left, we also write bytes with the most-
|
||||
significant bit on the left. In the diagrams below, we number the
|
||||
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
||||
the bits are numbered:
|
||||
|
||||
+--------+
|
||||
|76543210|
|
||||
+--------+
|
||||
|
||||
This document does not address the issue of the order in which
|
||||
bits of a byte are transmitted on a bit-sequential medium, since
|
||||
the data format described here is byte- rather than bit-oriented.
|
||||
|
||||
Within a computer, a number may occupy multiple bytes. All
|
||||
multi-byte numbers in the format described here are stored with
|
||||
the least-significant byte first (at the lower memory address).
|
||||
For example, the decimal number 520 is stored as:
|
||||
|
||||
0 1
|
||||
+--------+--------+
|
||||
|00001000|00000010|
|
||||
+--------+--------+
|
||||
^ ^
|
||||
| |
|
||||
| + more significant byte = 2 x 256
|
||||
+ less significant byte = 8
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 4]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
2.2. File format
|
||||
|
||||
A gzip file consists of a series of "members" (compressed data
|
||||
sets). The format of each member is specified in the following
|
||||
section. The members simply appear one after another in the file,
|
||||
with no additional information before, between, or after them.
|
||||
|
||||
2.3. Member format
|
||||
|
||||
Each member has the following structure:
|
||||
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
|ID1|ID2|CM |FLG| MTIME |XFL|OS | (more-->)
|
||||
+---+---+---+---+---+---+---+---+---+---+
|
||||
|
||||
(if FLG.FEXTRA set)
|
||||
|
||||
+---+---+=================================+
|
||||
| XLEN |...XLEN bytes of "extra field"...| (more-->)
|
||||
+---+---+=================================+
|
||||
|
||||
(if FLG.FNAME set)
|
||||
|
||||
+=========================================+
|
||||
|...original file name, zero-terminated...| (more-->)
|
||||
+=========================================+
|
||||
|
||||
(if FLG.FCOMMENT set)
|
||||
|
||||
+===================================+
|
||||
|...file comment, zero-terminated...| (more-->)
|
||||
+===================================+
|
||||
|
||||
(if FLG.FHCRC set)
|
||||
|
||||
+---+---+
|
||||
| CRC16 |
|
||||
+---+---+
|
||||
|
||||
+=======================+
|
||||
|...compressed blocks...| (more-->)
|
||||
+=======================+
|
||||
|
||||
0 1 2 3 4 5 6 7
|
||||
+---+---+---+---+---+---+---+---+
|
||||
| CRC32 | ISIZE |
|
||||
+---+---+---+---+---+---+---+---+
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 5]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
2.3.1. Member header and trailer
|
||||
|
||||
ID1 (IDentification 1)
|
||||
ID2 (IDentification 2)
|
||||
These have the fixed values ID1 = 31 (0x1f, \037), ID2 = 139
|
||||
(0x8b, \213), to identify the file as being in gzip format.
|
||||
|
||||
CM (Compression Method)
|
||||
This identifies the compression method used in the file. CM
|
||||
= 0-7 are reserved. CM = 8 denotes the "deflate"
|
||||
compression method, which is the one customarily used by
|
||||
gzip and which is documented elsewhere.
|
||||
|
||||
FLG (FLaGs)
|
||||
This flag byte is divided into individual bits as follows:
|
||||
|
||||
bit 0 FTEXT
|
||||
bit 1 FHCRC
|
||||
bit 2 FEXTRA
|
||||
bit 3 FNAME
|
||||
bit 4 FCOMMENT
|
||||
bit 5 reserved
|
||||
bit 6 reserved
|
||||
bit 7 reserved
|
||||
|
||||
If FTEXT is set, the file is probably ASCII text. This is
|
||||
an optional indication, which the compressor may set by
|
||||
checking a small amount of the input data to see whether any
|
||||
non-ASCII characters are present. In case of doubt, FTEXT
|
||||
is cleared, indicating binary data. For systems which have
|
||||
different file formats for ascii text and binary data, the
|
||||
decompressor can use FTEXT to choose the appropriate format.
|
||||
We deliberately do not specify the algorithm used to set
|
||||
this bit, since a compressor always has the option of
|
||||
leaving it cleared and a decompressor always has the option
|
||||
of ignoring it and letting some other program handle issues
|
||||
of data conversion.
|
||||
|
||||
If FHCRC is set, a CRC16 for the gzip header is present,
|
||||
immediately before the compressed data. The CRC16 consists
|
||||
of the two least significant bytes of the CRC32 for all
|
||||
bytes of the gzip header up to and not including the CRC16.
|
||||
[The FHCRC bit was never set by versions of gzip up to
|
||||
1.2.4, even though it was documented with a different
|
||||
meaning in gzip 1.2.4.]
|
||||
|
||||
If FEXTRA is set, optional extra fields are present, as
|
||||
described in a following section.
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 6]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
If FNAME is set, an original file name is present,
|
||||
terminated by a zero byte. The name must consist of ISO
|
||||
8859-1 (LATIN-1) characters; on operating systems using
|
||||
EBCDIC or any other character set for file names, the name
|
||||
must be translated to the ISO LATIN-1 character set. This
|
||||
is the original name of the file being compressed, with any
|
||||
directory components removed, and, if the file being
|
||||
compressed is on a file system with case insensitive names,
|
||||
forced to lower case. There is no original file name if the
|
||||
data was compressed from a source other than a named file;
|
||||
for example, if the source was stdin on a Unix system, there
|
||||
is no file name.
|
||||
|
||||
If FCOMMENT is set, a zero-terminated file comment is
|
||||
present. This comment is not interpreted; it is only
|
||||
intended for human consumption. The comment must consist of
|
||||
ISO 8859-1 (LATIN-1) characters. Line breaks should be
|
||||
denoted by a single line feed character (10 decimal).
|
||||
|
||||
Reserved FLG bits must be zero.
|
||||
|
||||
MTIME (Modification TIME)
|
||||
This gives the most recent modification time of the original
|
||||
file being compressed. The time is in Unix format, i.e.,
|
||||
seconds since 00:00:00 GMT, Jan. 1, 1970. (Note that this
|
||||
may cause problems for MS-DOS and other systems that use
|
||||
local rather than Universal time.) If the compressed data
|
||||
did not come from a file, MTIME is set to the time at which
|
||||
compression started. MTIME = 0 means no time stamp is
|
||||
available.
|
||||
|
||||
XFL (eXtra FLags)
|
||||
These flags are available for use by specific compression
|
||||
methods. The "deflate" method (CM = 8) sets these flags as
|
||||
follows:
|
||||
|
||||
XFL = 2 - compressor used maximum compression,
|
||||
slowest algorithm
|
||||
XFL = 4 - compressor used fastest algorithm
|
||||
|
||||
OS (Operating System)
|
||||
This identifies the type of file system on which compression
|
||||
took place. This may be useful in determining end-of-line
|
||||
convention for text files. The currently defined values are
|
||||
as follows:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 7]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
0 - FAT filesystem (MS-DOS, OS/2, NT/Win32)
|
||||
1 - Amiga
|
||||
2 - VMS (or OpenVMS)
|
||||
3 - Unix
|
||||
4 - VM/CMS
|
||||
5 - Atari TOS
|
||||
6 - HPFS filesystem (OS/2, NT)
|
||||
7 - Macintosh
|
||||
8 - Z-System
|
||||
9 - CP/M
|
||||
10 - TOPS-20
|
||||
11 - NTFS filesystem (NT)
|
||||
12 - QDOS
|
||||
13 - Acorn RISCOS
|
||||
255 - unknown
|
||||
|
||||
XLEN (eXtra LENgth)
|
||||
If FLG.FEXTRA is set, this gives the length of the optional
|
||||
extra field. See below for details.
|
||||
|
||||
CRC32 (CRC-32)
|
||||
This contains a Cyclic Redundancy Check value of the
|
||||
uncompressed data computed according to CRC-32 algorithm
|
||||
used in the ISO 3309 standard and in section 8.1.1.6.2 of
|
||||
ITU-T recommendation V.42. (See http://www.iso.ch for
|
||||
ordering ISO documents. See gopher://info.itu.ch for an
|
||||
online version of ITU-T V.42.)
|
||||
|
||||
ISIZE (Input SIZE)
|
||||
This contains the size of the original (uncompressed) input
|
||||
data modulo 2^32.
|
||||
|
||||
2.3.1.1. Extra field
|
||||
|
||||
If the FLG.FEXTRA bit is set, an "extra field" is present in
|
||||
the header, with total length XLEN bytes. It consists of a
|
||||
series of subfields, each of the form:
|
||||
|
||||
+---+---+---+---+==================================+
|
||||
|SI1|SI2| LEN |... LEN bytes of subfield data ...|
|
||||
+---+---+---+---+==================================+
|
||||
|
||||
SI1 and SI2 provide a subfield ID, typically two ASCII letters
|
||||
with some mnemonic value. Jean-Loup Gailly
|
||||
<gzip@prep.ai.mit.edu> is maintaining a registry of subfield
|
||||
IDs; please send him any subfield ID you wish to use. Subfield
|
||||
IDs with SI2 = 0 are reserved for future use. The following
|
||||
IDs are currently defined:
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 8]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
SI1 SI2 Data
|
||||
---------- ---------- ----
|
||||
0x41 ('A') 0x70 ('P') Apollo file type information
|
||||
|
||||
LEN gives the length of the subfield data, excluding the 4
|
||||
initial bytes.
|
||||
|
||||
2.3.1.2. Compliance
|
||||
|
||||
A compliant compressor must produce files with correct ID1,
|
||||
ID2, CM, CRC32, and ISIZE, but may set all the other fields in
|
||||
the fixed-length part of the header to default values (255 for
|
||||
OS, 0 for all others). The compressor must set all reserved
|
||||
bits to zero.
|
||||
|
||||
A compliant decompressor must check ID1, ID2, and CM, and
|
||||
provide an error indication if any of these have incorrect
|
||||
values. It must examine FEXTRA/XLEN, FNAME, FCOMMENT and FHCRC
|
||||
at least so it can skip over the optional fields if they are
|
||||
present. It need not examine any other part of the header or
|
||||
trailer; in particular, a decompressor may ignore FTEXT and OS
|
||||
and always produce binary output, and still be compliant. A
|
||||
compliant decompressor must give an error indication if any
|
||||
reserved bit is non-zero, since such a bit could indicate the
|
||||
presence of a new field that would cause subsequent data to be
|
||||
interpreted incorrectly.
|
||||
|
||||
3. References
|
||||
|
||||
[1] "Information Processing - 8-bit single-byte coded graphic
|
||||
character sets - Part 1: Latin alphabet No.1" (ISO 8859-1:1987).
|
||||
The ISO 8859-1 (Latin-1) character set is a superset of 7-bit
|
||||
ASCII. Files defining this character set are available as
|
||||
iso_8859-1.* in ftp://ftp.uu.net/graphics/png/documents/
|
||||
|
||||
[2] ISO 3309
|
||||
|
||||
[3] ITU-T recommendation V.42
|
||||
|
||||
[4] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
|
||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
||||
|
||||
[5] Gailly, J.-L., GZIP documentation, available as gzip-*.tar in
|
||||
ftp://prep.ai.mit.edu/pub/gnu/
|
||||
|
||||
[6] Sarwate, D.V., "Computation of Cyclic Redundancy Checks via Table
|
||||
Look-Up", Communications of the ACM, 31(8), pp.1008-1013.
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 9]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
[7] Schwaderer, W.D., "CRC Calculation", April 85 PC Tech Journal,
|
||||
pp.118-133.
|
||||
|
||||
[8] ftp://ftp.adelaide.edu.au/pub/rocksoft/papers/crc_v3.txt,
|
||||
describing the CRC concept.
|
||||
|
||||
4. Security Considerations
|
||||
|
||||
Any data compression method involves the reduction of redundancy in
|
||||
the data. Consequently, any corruption of the data is likely to have
|
||||
severe effects and be difficult to correct. Uncompressed text, on
|
||||
the other hand, will probably still be readable despite the presence
|
||||
of some corrupted bytes.
|
||||
|
||||
It is recommended that systems using this data format provide some
|
||||
means of validating the integrity of the compressed data, such as by
|
||||
setting and checking the CRC-32 check value.
|
||||
|
||||
5. Acknowledgements
|
||||
|
||||
Trademarks cited in this document are the property of their
|
||||
respective owners.
|
||||
|
||||
Jean-Loup Gailly designed the gzip format and wrote, with Mark Adler,
|
||||
the related software described in this specification. Glenn
|
||||
Randers-Pehrson converted this document to RFC and HTML format.
|
||||
|
||||
6. Author's Address
|
||||
|
||||
L. Peter Deutsch
|
||||
Aladdin Enterprises
|
||||
203 Santa Margarita Ave.
|
||||
Menlo Park, CA 94025
|
||||
|
||||
Phone: (415) 322-0103 (AM only)
|
||||
FAX: (415) 322-1734
|
||||
EMail: <ghost@aladdin.com>
|
||||
|
||||
Questions about the technical content of this specification can be
|
||||
sent by email to:
|
||||
|
||||
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
||||
Mark Adler <madler@alumni.caltech.edu>
|
||||
|
||||
Editorial comments on this specification can be sent by email to:
|
||||
|
||||
L. Peter Deutsch <ghost@aladdin.com> and
|
||||
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 10]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
7. Appendix: Jean-Loup Gailly's gzip utility
|
||||
|
||||
The most widely used implementation of gzip compression, and the
|
||||
original documentation on which this specification is based, were
|
||||
created by Jean-Loup Gailly <gzip@prep.ai.mit.edu>. Since this
|
||||
implementation is a de facto standard, we mention some more of its
|
||||
features here. Again, the material in this section is not part of
|
||||
the specification per se, and implementations need not follow it to
|
||||
be compliant.
|
||||
|
||||
When compressing or decompressing a file, gzip preserves the
|
||||
protection, ownership, and modification time attributes on the local
|
||||
file system, since there is no provision for representing protection
|
||||
attributes in the gzip file format itself. Since the file format
|
||||
includes a modification time, the gzip decompressor provides a
|
||||
command line switch that assigns the modification time from the file,
|
||||
rather than the local modification time of the compressed input, to
|
||||
the decompressed output.
|
||||
|
||||
8. Appendix: Sample CRC Code
|
||||
|
||||
The following sample code represents a practical implementation of
|
||||
the CRC (Cyclic Redundancy Check). (See also ISO 3309 and ITU-T V.42
|
||||
for a formal specification.)
|
||||
|
||||
The sample code is in the ANSI C programming language. Non C users
|
||||
may find it easier to read with these hints:
|
||||
|
||||
& Bitwise AND operator.
|
||||
^ Bitwise exclusive-OR operator.
|
||||
>> Bitwise right shift operator. When applied to an
|
||||
unsigned quantity, as here, right shift inserts zero
|
||||
bit(s) at the left.
|
||||
! Logical NOT operator.
|
||||
++ "n++" increments the variable n.
|
||||
0xNNN 0x introduces a hexadecimal (base 16) constant.
|
||||
Suffix L indicates a long value (at least 32 bits).
|
||||
|
||||
/* Table of CRCs of all 8-bit messages. */
|
||||
unsigned long crc_table[256];
|
||||
|
||||
/* Flag: has the table been computed? Initially false. */
|
||||
int crc_table_computed = 0;
|
||||
|
||||
/* Make the table for a fast CRC. */
|
||||
void make_crc_table(void)
|
||||
{
|
||||
unsigned long c;
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 11]
|
||||
|
||||
RFC 1952 GZIP File Format Specification May 1996
|
||||
|
||||
|
||||
int n, k;
|
||||
for (n = 0; n < 256; n++) {
|
||||
c = (unsigned long) n;
|
||||
for (k = 0; k < 8; k++) {
|
||||
if (c & 1) {
|
||||
c = 0xedb88320L ^ (c >> 1);
|
||||
} else {
|
||||
c = c >> 1;
|
||||
}
|
||||
}
|
||||
crc_table[n] = c;
|
||||
}
|
||||
crc_table_computed = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
Update a running crc with the bytes buf[0..len-1] and return
|
||||
the updated crc. The crc should be initialized to zero. Pre- and
|
||||
post-conditioning (one's complement) is performed within this
|
||||
function so it shouldn't be done by the caller. Usage example:
|
||||
|
||||
unsigned long crc = 0L;
|
||||
|
||||
while (read_buffer(buffer, length) != EOF) {
|
||||
crc = update_crc(crc, buffer, length);
|
||||
}
|
||||
if (crc != original_crc) error();
|
||||
*/
|
||||
unsigned long update_crc(unsigned long crc,
|
||||
unsigned char *buf, int len)
|
||||
{
|
||||
unsigned long c = crc ^ 0xffffffffL;
|
||||
int n;
|
||||
|
||||
if (!crc_table_computed)
|
||||
make_crc_table();
|
||||
for (n = 0; n < len; n++) {
|
||||
c = crc_table[(c ^ buf[n]) & 0xff] ^ (c >> 8);
|
||||
}
|
||||
return c ^ 0xffffffffL;
|
||||
}
|
||||
|
||||
/* Return the CRC of the bytes buf[0..len-1]. */
|
||||
unsigned long crc(unsigned char *buf, int len)
|
||||
{
|
||||
return update_crc(0L, buf, len);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
Deutsch Informational [Page 12]
|
||||
|
107
external/zlib/doc/txtvsbin.txt
vendored
107
external/zlib/doc/txtvsbin.txt
vendored
@ -1,107 +0,0 @@
|
||||
A Fast Method for Identifying Plain Text Files
|
||||
==============================================
|
||||
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
Given a file coming from an unknown source, it is sometimes desirable
|
||||
to find out whether the format of that file is plain text. Although
|
||||
this may appear like a simple task, a fully accurate detection of the
|
||||
file type requires heavy-duty semantic analysis on the file contents.
|
||||
It is, however, possible to obtain satisfactory results by employing
|
||||
various heuristics.
|
||||
|
||||
Previous versions of PKZip and other zip-compatible compression tools
|
||||
were using a crude detection scheme: if more than 80% (4/5) of the bytes
|
||||
found in a certain buffer are within the range [7..127], the file is
|
||||
labeled as plain text, otherwise it is labeled as binary. A prominent
|
||||
limitation of this scheme is the restriction to Latin-based alphabets.
|
||||
Other alphabets, like Greek, Cyrillic or Asian, make extensive use of
|
||||
the bytes within the range [128..255], and texts using these alphabets
|
||||
are most often misidentified by this scheme; in other words, the rate
|
||||
of false negatives is sometimes too high, which means that the recall
|
||||
is low. Another weakness of this scheme is a reduced precision, due to
|
||||
the false positives that may occur when binary files containing large
|
||||
amounts of textual characters are misidentified as plain text.
|
||||
|
||||
In this article we propose a new, simple detection scheme that features
|
||||
a much increased precision and a near-100% recall. This scheme is
|
||||
designed to work on ASCII, Unicode and other ASCII-derived alphabets,
|
||||
and it handles single-byte encodings (ISO-8859, MacRoman, KOI8, etc.)
|
||||
and variable-sized encodings (ISO-2022, UTF-8, etc.). Wider encodings
|
||||
(UCS-2/UTF-16 and UCS-4/UTF-32) are not handled, however.
|
||||
|
||||
|
||||
The Algorithm
|
||||
-------------
|
||||
|
||||
The algorithm works by dividing the set of bytecodes [0..255] into three
|
||||
categories:
|
||||
- The white list of textual bytecodes:
|
||||
9 (TAB), 10 (LF), 13 (CR), 32 (SPACE) to 255.
|
||||
- The gray list of tolerated bytecodes:
|
||||
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB), 27 (ESC).
|
||||
- The black list of undesired, non-textual bytecodes:
|
||||
0 (NUL) to 6, 14 to 31.
|
||||
|
||||
If a file contains at least one byte that belongs to the white list and
|
||||
no byte that belongs to the black list, then the file is categorized as
|
||||
plain text; otherwise, it is categorized as binary. (The boundary case,
|
||||
when the file is empty, automatically falls into the latter category.)
|
||||
|
||||
|
||||
Rationale
|
||||
---------
|
||||
|
||||
The idea behind this algorithm relies on two observations.
|
||||
|
||||
The first observation is that, although the full range of 7-bit codes
|
||||
[0..127] is properly specified by the ASCII standard, most control
|
||||
characters in the range [0..31] are not used in practice. The only
|
||||
widely-used, almost universally-portable control codes are 9 (TAB),
|
||||
10 (LF) and 13 (CR). There are a few more control codes that are
|
||||
recognized on a reduced range of platforms and text viewers/editors:
|
||||
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB) and 27 (ESC); but these
|
||||
codes are rarely (if ever) used alone, without being accompanied by
|
||||
some printable text. Even the newer, portable text formats such as
|
||||
XML avoid using control characters outside the list mentioned here.
|
||||
|
||||
The second observation is that most of the binary files tend to contain
|
||||
control characters, especially 0 (NUL). Even though the older text
|
||||
detection schemes observe the presence of non-ASCII codes from the range
|
||||
[128..255], the precision rarely has to suffer if this upper range is
|
||||
labeled as textual, because the files that are genuinely binary tend to
|
||||
contain both control characters and codes from the upper range. On the
|
||||
other hand, the upper range needs to be labeled as textual, because it
|
||||
is used by virtually all ASCII extensions. In particular, this range is
|
||||
used for encoding non-Latin scripts.
|
||||
|
||||
Since there is no counting involved, other than simply observing the
|
||||
presence or the absence of some byte values, the algorithm produces
|
||||
consistent results, regardless what alphabet encoding is being used.
|
||||
(If counting were involved, it could be possible to obtain different
|
||||
results on a text encoded, say, using ISO-8859-16 versus UTF-8.)
|
||||
|
||||
There is an extra category of plain text files that are "polluted" with
|
||||
one or more black-listed codes, either by mistake or by peculiar design
|
||||
considerations. In such cases, a scheme that tolerates a small fraction
|
||||
of black-listed codes would provide an increased recall (i.e. more true
|
||||
positives). This, however, incurs a reduced precision overall, since
|
||||
false positives are more likely to appear in binary files that contain
|
||||
large chunks of textual data. Furthermore, "polluted" plain text should
|
||||
be regarded as binary by general-purpose text detection schemes, because
|
||||
general-purpose text processing algorithms might not be applicable.
|
||||
Under this premise, it is safe to say that our detection method provides
|
||||
a near-100% recall.
|
||||
|
||||
Experiments have been run on many files coming from various platforms
|
||||
and applications. We tried plain text files, system logs, source code,
|
||||
formatted office documents, compiled object code, etc. The results
|
||||
confirm the optimistic assumptions about the capabilities of this
|
||||
algorithm.
|
||||
|
||||
|
||||
--
|
||||
Cosmin Truta
|
||||
Last updated: 2006-May-28
|
49
external/zlib/examples/README.examples
vendored
49
external/zlib/examples/README.examples
vendored
@ -1,49 +0,0 @@
|
||||
This directory contains examples of the use of zlib and other relevant
|
||||
programs and documentation.
|
||||
|
||||
enough.c
|
||||
calculation and justification of ENOUGH parameter in inftrees.h
|
||||
- calculates the maximum table space used in inflate tree
|
||||
construction over all possible Huffman codes
|
||||
|
||||
fitblk.c
|
||||
compress just enough input to nearly fill a requested output size
|
||||
- zlib isn't designed to do this, but fitblk does it anyway
|
||||
|
||||
gun.c
|
||||
uncompress a gzip file
|
||||
- illustrates the use of inflateBack() for high speed file-to-file
|
||||
decompression using call-back functions
|
||||
- is approximately twice as fast as gzip -d
|
||||
- also provides Unix uncompress functionality, again twice as fast
|
||||
|
||||
gzappend.c
|
||||
append to a gzip file
|
||||
- illustrates the use of the Z_BLOCK flush parameter for inflate()
|
||||
- illustrates the use of deflatePrime() to start at any bit
|
||||
|
||||
gzjoin.c
|
||||
join gzip files without recalculating the crc or recompressing
|
||||
- illustrates the use of the Z_BLOCK flush parameter for inflate()
|
||||
- illustrates the use of crc32_combine()
|
||||
|
||||
gzlog.c
|
||||
gzlog.h
|
||||
efficiently and robustly maintain a message log file in gzip format
|
||||
- illustrates use of raw deflate, Z_PARTIAL_FLUSH, deflatePrime(),
|
||||
and deflateSetDictionary()
|
||||
- illustrates use of a gzip header extra field
|
||||
|
||||
zlib_how.html
|
||||
painfully comprehensive description of zpipe.c (see below)
|
||||
- describes in excruciating detail the use of deflate() and inflate()
|
||||
|
||||
zpipe.c
|
||||
reads and writes zlib streams from stdin to stdout
|
||||
- illustrates the proper use of deflate() and inflate()
|
||||
- deeply commented in zlib_how.html (see above)
|
||||
|
||||
zran.c
|
||||
index a zlib or gzip stream and randomly access it
|
||||
- illustrates the use of Z_BLOCK, inflatePrime(), and
|
||||
inflateSetDictionary() to provide random access
|
572
external/zlib/examples/enough.c
vendored
572
external/zlib/examples/enough.c
vendored
@ -1,572 +0,0 @@
|
||||
/* enough.c -- determine the maximum size of inflate's Huffman code tables over
|
||||
* all possible valid and complete Huffman codes, subject to a length limit.
|
||||
* Copyright (C) 2007, 2008, 2012 Mark Adler
|
||||
* Version 1.4 18 August 2012 Mark Adler
|
||||
*/
|
||||
|
||||
/* Version history:
|
||||
1.0 3 Jan 2007 First version (derived from codecount.c version 1.4)
|
||||
1.1 4 Jan 2007 Use faster incremental table usage computation
|
||||
Prune examine() search on previously visited states
|
||||
1.2 5 Jan 2007 Comments clean up
|
||||
As inflate does, decrease root for short codes
|
||||
Refuse cases where inflate would increase root
|
||||
1.3 17 Feb 2008 Add argument for initial root table size
|
||||
Fix bug for initial root table size == max - 1
|
||||
Use a macro to compute the history index
|
||||
1.4 18 Aug 2012 Avoid shifts more than bits in type (caused endless loop!)
|
||||
Clean up comparisons of different types
|
||||
Clean up code indentation
|
||||
*/
|
||||
|
||||
/*
|
||||
Examine all possible Huffman codes for a given number of symbols and a
|
||||
maximum code length in bits to determine the maximum table size for zilb's
|
||||
inflate. Only complete Huffman codes are counted.
|
||||
|
||||
Two codes are considered distinct if the vectors of the number of codes per
|
||||
length are not identical. So permutations of the symbol assignments result
|
||||
in the same code for the counting, as do permutations of the assignments of
|
||||
the bit values to the codes (i.e. only canonical codes are counted).
|
||||
|
||||
We build a code from shorter to longer lengths, determining how many symbols
|
||||
are coded at each length. At each step, we have how many symbols remain to
|
||||
be coded, what the last code length used was, and how many bit patterns of
|
||||
that length remain unused. Then we add one to the code length and double the
|
||||
number of unused patterns to graduate to the next code length. We then
|
||||
assign all portions of the remaining symbols to that code length that
|
||||
preserve the properties of a correct and eventually complete code. Those
|
||||
properties are: we cannot use more bit patterns than are available; and when
|
||||
all the symbols are used, there are exactly zero possible bit patterns
|
||||
remaining.
|
||||
|
||||
The inflate Huffman decoding algorithm uses two-level lookup tables for
|
||||
speed. There is a single first-level table to decode codes up to root bits
|
||||
in length (root == 9 in the current inflate implementation). The table
|
||||
has 1 << root entries and is indexed by the next root bits of input. Codes
|
||||
shorter than root bits have replicated table entries, so that the correct
|
||||
entry is pointed to regardless of the bits that follow the short code. If
|
||||
the code is longer than root bits, then the table entry points to a second-
|
||||
level table. The size of that table is determined by the longest code with
|
||||
that root-bit prefix. If that longest code has length len, then the table
|
||||
has size 1 << (len - root), to index the remaining bits in that set of
|
||||
codes. Each subsequent root-bit prefix then has its own sub-table. The
|
||||
total number of table entries required by the code is calculated
|
||||
incrementally as the number of codes at each bit length is populated. When
|
||||
all of the codes are shorter than root bits, then root is reduced to the
|
||||
longest code length, resulting in a single, smaller, one-level table.
|
||||
|
||||
The inflate algorithm also provides for small values of root (relative to
|
||||
the log2 of the number of symbols), where the shortest code has more bits
|
||||
than root. In that case, root is increased to the length of the shortest
|
||||
code. This program, by design, does not handle that case, so it is verified
|
||||
that the number of symbols is less than 2^(root + 1).
|
||||
|
||||
In order to speed up the examination (by about ten orders of magnitude for
|
||||
the default arguments), the intermediate states in the build-up of a code
|
||||
are remembered and previously visited branches are pruned. The memory
|
||||
required for this will increase rapidly with the total number of symbols and
|
||||
the maximum code length in bits. However this is a very small price to pay
|
||||
for the vast speedup.
|
||||
|
||||
First, all of the possible Huffman codes are counted, and reachable
|
||||
intermediate states are noted by a non-zero count in a saved-results array.
|
||||
Second, the intermediate states that lead to (root + 1) bit or longer codes
|
||||
are used to look at all sub-codes from those junctures for their inflate
|
||||
memory usage. (The amount of memory used is not affected by the number of
|
||||
codes of root bits or less in length.) Third, the visited states in the
|
||||
construction of those sub-codes and the associated calculation of the table
|
||||
size is recalled in order to avoid recalculating from the same juncture.
|
||||
Beginning the code examination at (root + 1) bit codes, which is enabled by
|
||||
identifying the reachable nodes, accounts for about six of the orders of
|
||||
magnitude of improvement for the default arguments. About another four
|
||||
orders of magnitude come from not revisiting previous states. Out of
|
||||
approximately 2x10^16 possible Huffman codes, only about 2x10^6 sub-codes
|
||||
need to be examined to cover all of the possible table memory usage cases
|
||||
for the default arguments of 286 symbols limited to 15-bit codes.
|
||||
|
||||
Note that an unsigned long long type is used for counting. It is quite easy
|
||||
to exceed the capacity of an eight-byte integer with a large number of
|
||||
symbols and a large maximum code length, so multiple-precision arithmetic
|
||||
would need to replace the unsigned long long arithmetic in that case. This
|
||||
program will abort if an overflow occurs. The big_t type identifies where
|
||||
the counting takes place.
|
||||
|
||||
An unsigned long long type is also used for calculating the number of
|
||||
possible codes remaining at the maximum length. This limits the maximum
|
||||
code length to the number of bits in a long long minus the number of bits
|
||||
needed to represent the symbols in a flat code. The code_t type identifies
|
||||
where the bit pattern counting takes place.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
#define local static
|
||||
|
||||
/* special data types */
|
||||
typedef unsigned long long big_t; /* type for code counting */
|
||||
typedef unsigned long long code_t; /* type for bit pattern counting */
|
||||
struct tab { /* type for been here check */
|
||||
size_t len; /* length of bit vector in char's */
|
||||
char *vec; /* allocated bit vector */
|
||||
};
|
||||
|
||||
/* The array for saving results, num[], is indexed with this triplet:
|
||||
|
||||
syms: number of symbols remaining to code
|
||||
left: number of available bit patterns at length len
|
||||
len: number of bits in the codes currently being assigned
|
||||
|
||||
Those indices are constrained thusly when saving results:
|
||||
|
||||
syms: 3..totsym (totsym == total symbols to code)
|
||||
left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
|
||||
len: 1..max - 1 (max == maximum code length in bits)
|
||||
|
||||
syms == 2 is not saved since that immediately leads to a single code. left
|
||||
must be even, since it represents the number of available bit patterns at
|
||||
the current length, which is double the number at the previous length.
|
||||
left ends at syms-1 since left == syms immediately results in a single code.
|
||||
(left > sym is not allowed since that would result in an incomplete code.)
|
||||
len is less than max, since the code completes immediately when len == max.
|
||||
|
||||
The offset into the array is calculated for the three indices with the
|
||||
first one (syms) being outermost, and the last one (len) being innermost.
|
||||
We build the array with length max-1 lists for the len index, with syms-3
|
||||
of those for each symbol. There are totsym-2 of those, with each one
|
||||
varying in length as a function of sym. See the calculation of index in
|
||||
count() for the index, and the calculation of size in main() for the size
|
||||
of the array.
|
||||
|
||||
For the deflate example of 286 symbols limited to 15-bit codes, the array
|
||||
has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than
|
||||
half of the space allocated for saved results is actually used -- not all
|
||||
possible triplets are reached in the generation of valid Huffman codes.
|
||||
*/
|
||||
|
||||
/* The array for tracking visited states, done[], is itself indexed identically
|
||||
to the num[] array as described above for the (syms, left, len) triplet.
|
||||
Each element in the array is further indexed by the (mem, rem) doublet,
|
||||
where mem is the amount of inflate table space used so far, and rem is the
|
||||
remaining unused entries in the current inflate sub-table. Each indexed
|
||||
element is simply one bit indicating whether the state has been visited or
|
||||
not. Since the ranges for mem and rem are not known a priori, each bit
|
||||
vector is of a variable size, and grows as needed to accommodate the visited
|
||||
states. mem and rem are used to calculate a single index in a triangular
|
||||
array. Since the range of mem is expected in the default case to be about
|
||||
ten times larger than the range of rem, the array is skewed to reduce the
|
||||
memory usage, with eight times the range for mem than for rem. See the
|
||||
calculations for offset and bit in beenhere() for the details.
|
||||
|
||||
For the deflate example of 286 symbols limited to 15-bit codes, the bit
|
||||
vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[]
|
||||
array itself.
|
||||
*/
|
||||
|
||||
/* Globals to avoid propagating constants or constant pointers recursively */
|
||||
local int max; /* maximum allowed bit length for the codes */
|
||||
local int root; /* size of base code table in bits */
|
||||
local int large; /* largest code table so far */
|
||||
local size_t size; /* number of elements in num and done */
|
||||
local int *code; /* number of symbols assigned to each bit length */
|
||||
local big_t *num; /* saved results array for code counting */
|
||||
local struct tab *done; /* states already evaluated array */
|
||||
|
||||
/* Index function for num[] and done[] */
|
||||
#define INDEX(i,j,k) (((size_t)((i-1)>>1)*((i-2)>>1)+(j>>1)-1)*(max-1)+k-1)
|
||||
|
||||
/* Free allocated space. Uses globals code, num, and done. */
|
||||
local void cleanup(void)
|
||||
{
|
||||
size_t n;
|
||||
|
||||
if (done != NULL) {
|
||||
for (n = 0; n < size; n++)
|
||||
if (done[n].len)
|
||||
free(done[n].vec);
|
||||
free(done);
|
||||
}
|
||||
if (num != NULL)
|
||||
free(num);
|
||||
if (code != NULL)
|
||||
free(code);
|
||||
}
|
||||
|
||||
/* Return the number of possible Huffman codes using bit patterns of lengths
|
||||
len through max inclusive, coding syms symbols, with left bit patterns of
|
||||
length len unused -- return -1 if there is an overflow in the counting.
|
||||
Keep a record of previous results in num to prevent repeating the same
|
||||
calculation. Uses the globals max and num. */
|
||||
local big_t count(int syms, int len, int left)
|
||||
{
|
||||
big_t sum; /* number of possible codes from this juncture */
|
||||
big_t got; /* value returned from count() */
|
||||
int least; /* least number of syms to use at this juncture */
|
||||
int most; /* most number of syms to use at this juncture */
|
||||
int use; /* number of bit patterns to use in next call */
|
||||
size_t index; /* index of this case in *num */
|
||||
|
||||
/* see if only one possible code */
|
||||
if (syms == left)
|
||||
return 1;
|
||||
|
||||
/* note and verify the expected state */
|
||||
assert(syms > left && left > 0 && len < max);
|
||||
|
||||
/* see if we've done this one already */
|
||||
index = INDEX(syms, left, len);
|
||||
got = num[index];
|
||||
if (got)
|
||||
return got; /* we have -- return the saved result */
|
||||
|
||||
/* we need to use at least this many bit patterns so that the code won't be
|
||||
incomplete at the next length (more bit patterns than symbols) */
|
||||
least = (left << 1) - syms;
|
||||
if (least < 0)
|
||||
least = 0;
|
||||
|
||||
/* we can use at most this many bit patterns, lest there not be enough
|
||||
available for the remaining symbols at the maximum length (if there were
|
||||
no limit to the code length, this would become: most = left - 1) */
|
||||
most = (((code_t)left << (max - len)) - syms) /
|
||||
(((code_t)1 << (max - len)) - 1);
|
||||
|
||||
/* count all possible codes from this juncture and add them up */
|
||||
sum = 0;
|
||||
for (use = least; use <= most; use++) {
|
||||
got = count(syms - use, len + 1, (left - use) << 1);
|
||||
sum += got;
|
||||
if (got == (big_t)0 - 1 || sum < got) /* overflow */
|
||||
return (big_t)0 - 1;
|
||||
}
|
||||
|
||||
/* verify that all recursive calls are productive */
|
||||
assert(sum != 0);
|
||||
|
||||
/* save the result and return it */
|
||||
num[index] = sum;
|
||||
return sum;
|
||||
}
|
||||
|
||||
/* Return true if we've been here before, set to true if not. Set a bit in a
|
||||
bit vector to indicate visiting this state. Each (syms,len,left) state
|
||||
has a variable size bit vector indexed by (mem,rem). The bit vector is
|
||||
lengthened if needed to allow setting the (mem,rem) bit. */
|
||||
local int beenhere(int syms, int len, int left, int mem, int rem)
|
||||
{
|
||||
size_t index; /* index for this state's bit vector */
|
||||
size_t offset; /* offset in this state's bit vector */
|
||||
int bit; /* mask for this state's bit */
|
||||
size_t length; /* length of the bit vector in bytes */
|
||||
char *vector; /* new or enlarged bit vector */
|
||||
|
||||
/* point to vector for (syms,left,len), bit in vector for (mem,rem) */
|
||||
index = INDEX(syms, left, len);
|
||||
mem -= 1 << root;
|
||||
offset = (mem >> 3) + rem;
|
||||
offset = ((offset * (offset + 1)) >> 1) + rem;
|
||||
bit = 1 << (mem & 7);
|
||||
|
||||
/* see if we've been here */
|
||||
length = done[index].len;
|
||||
if (offset < length && (done[index].vec[offset] & bit) != 0)
|
||||
return 1; /* done this! */
|
||||
|
||||
/* we haven't been here before -- set the bit to show we have now */
|
||||
|
||||
/* see if we need to lengthen the vector in order to set the bit */
|
||||
if (length <= offset) {
|
||||
/* if we have one already, enlarge it, zero out the appended space */
|
||||
if (length) {
|
||||
do {
|
||||
length <<= 1;
|
||||
} while (length <= offset);
|
||||
vector = realloc(done[index].vec, length);
|
||||
if (vector != NULL)
|
||||
memset(vector + done[index].len, 0, length - done[index].len);
|
||||
}
|
||||
|
||||
/* otherwise we need to make a new vector and zero it out */
|
||||
else {
|
||||
length = 1 << (len - root);
|
||||
while (length <= offset)
|
||||
length <<= 1;
|
||||
vector = calloc(length, sizeof(char));
|
||||
}
|
||||
|
||||
/* in either case, bail if we can't get the memory */
|
||||
if (vector == NULL) {
|
||||
fputs("abort: unable to allocate enough memory\n", stderr);
|
||||
cleanup();
|
||||
exit(1);
|
||||
}
|
||||
|
||||
/* install the new vector */
|
||||
done[index].len = length;
|
||||
done[index].vec = vector;
|
||||
}
|
||||
|
||||
/* set the bit */
|
||||
done[index].vec[offset] |= bit;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Examine all possible codes from the given node (syms, len, left). Compute
|
||||
the amount of memory required to build inflate's decoding tables, where the
|
||||
number of code structures used so far is mem, and the number remaining in
|
||||
the current sub-table is rem. Uses the globals max, code, root, large, and
|
||||
done. */
|
||||
local void examine(int syms, int len, int left, int mem, int rem)
|
||||
{
|
||||
int least; /* least number of syms to use at this juncture */
|
||||
int most; /* most number of syms to use at this juncture */
|
||||
int use; /* number of bit patterns to use in next call */
|
||||
|
||||
/* see if we have a complete code */
|
||||
if (syms == left) {
|
||||
/* set the last code entry */
|
||||
code[len] = left;
|
||||
|
||||
/* complete computation of memory used by this code */
|
||||
while (rem < left) {
|
||||
left -= rem;
|
||||
rem = 1 << (len - root);
|
||||
mem += rem;
|
||||
}
|
||||
assert(rem == left);
|
||||
|
||||
/* if this is a new maximum, show the entries used and the sub-code */
|
||||
if (mem > large) {
|
||||
large = mem;
|
||||
printf("max %d: ", mem);
|
||||
for (use = root + 1; use <= max; use++)
|
||||
if (code[use])
|
||||
printf("%d[%d] ", code[use], use);
|
||||
putchar('\n');
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
/* remove entries as we drop back down in the recursion */
|
||||
code[len] = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/* prune the tree if we can */
|
||||
if (beenhere(syms, len, left, mem, rem))
|
||||
return;
|
||||
|
||||
/* we need to use at least this many bit patterns so that the code won't be
|
||||
incomplete at the next length (more bit patterns than symbols) */
|
||||
least = (left << 1) - syms;
|
||||
if (least < 0)
|
||||
least = 0;
|
||||
|
||||
/* we can use at most this many bit patterns, lest there not be enough
|
||||
available for the remaining symbols at the maximum length (if there were
|
||||
no limit to the code length, this would become: most = left - 1) */
|
||||
most = (((code_t)left << (max - len)) - syms) /
|
||||
(((code_t)1 << (max - len)) - 1);
|
||||
|
||||
/* occupy least table spaces, creating new sub-tables as needed */
|
||||
use = least;
|
||||
while (rem < use) {
|
||||
use -= rem;
|
||||
rem = 1 << (len - root);
|
||||
mem += rem;
|
||||
}
|
||||
rem -= use;
|
||||
|
||||
/* examine codes from here, updating table space as we go */
|
||||
for (use = least; use <= most; use++) {
|
||||
code[len] = use;
|
||||
examine(syms - use, len + 1, (left - use) << 1,
|
||||
mem + (rem ? 1 << (len - root) : 0), rem << 1);
|
||||
if (rem == 0) {
|
||||
rem = 1 << (len - root);
|
||||
mem += rem;
|
||||
}
|
||||
rem--;
|
||||
}
|
||||
|
||||
/* remove entries as we drop back down in the recursion */
|
||||
code[len] = 0;
|
||||
}
|
||||
|
||||
/* Look at all sub-codes starting with root + 1 bits. Look at only the valid
|
||||
intermediate code states (syms, left, len). For each completed code,
|
||||
calculate the amount of memory required by inflate to build the decoding
|
||||
tables. Find the maximum amount of memory required and show the code that
|
||||
requires that maximum. Uses the globals max, root, and num. */
|
||||
local void enough(int syms)
|
||||
{
|
||||
int n; /* number of remaing symbols for this node */
|
||||
int left; /* number of unused bit patterns at this length */
|
||||
size_t index; /* index of this case in *num */
|
||||
|
||||
/* clear code */
|
||||
for (n = 0; n <= max; n++)
|
||||
code[n] = 0;
|
||||
|
||||
/* look at all (root + 1) bit and longer codes */
|
||||
large = 1 << root; /* base table */
|
||||
if (root < max) /* otherwise, there's only a base table */
|
||||
for (n = 3; n <= syms; n++)
|
||||
for (left = 2; left < n; left += 2)
|
||||
{
|
||||
/* look at all reachable (root + 1) bit nodes, and the
|
||||
resulting codes (complete at root + 2 or more) */
|
||||
index = INDEX(n, left, root + 1);
|
||||
if (root + 1 < max && num[index]) /* reachable node */
|
||||
examine(n, root + 1, left, 1 << root, 0);
|
||||
|
||||
/* also look at root bit codes with completions at root + 1
|
||||
bits (not saved in num, since complete), just in case */
|
||||
if (num[index - 1] && n <= left << 1)
|
||||
examine((n - left) << 1, root + 1, (n - left) << 1,
|
||||
1 << root, 0);
|
||||
}
|
||||
|
||||
/* done */
|
||||
printf("done: maximum of %d table entries\n", large);
|
||||
}
|
||||
|
||||
/*
|
||||
Examine and show the total number of possible Huffman codes for a given
|
||||
maximum number of symbols, initial root table size, and maximum code length
|
||||
in bits -- those are the command arguments in that order. The default
|
||||
values are 286, 9, and 15 respectively, for the deflate literal/length code.
|
||||
The possible codes are counted for each number of coded symbols from two to
|
||||
the maximum. The counts for each of those and the total number of codes are
|
||||
shown. The maximum number of inflate table entires is then calculated
|
||||
across all possible codes. Each new maximum number of table entries and the
|
||||
associated sub-code (starting at root + 1 == 10 bits) is shown.
|
||||
|
||||
To count and examine Huffman codes that are not length-limited, provide a
|
||||
maximum length equal to the number of symbols minus one.
|
||||
|
||||
For the deflate literal/length code, use "enough". For the deflate distance
|
||||
code, use "enough 30 6".
|
||||
|
||||
This uses the %llu printf format to print big_t numbers, which assumes that
|
||||
big_t is an unsigned long long. If the big_t type is changed (for example
|
||||
to a multiple precision type), the method of printing will also need to be
|
||||
updated.
|
||||
*/
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int syms; /* total number of symbols to code */
|
||||
int n; /* number of symbols to code for this run */
|
||||
big_t got; /* return value of count() */
|
||||
big_t sum; /* accumulated number of codes over n */
|
||||
code_t word; /* for counting bits in code_t */
|
||||
|
||||
/* set up globals for cleanup() */
|
||||
code = NULL;
|
||||
num = NULL;
|
||||
done = NULL;
|
||||
|
||||
/* get arguments -- default to the deflate literal/length code */
|
||||
syms = 286;
|
||||
root = 9;
|
||||
max = 15;
|
||||
if (argc > 1) {
|
||||
syms = atoi(argv[1]);
|
||||
if (argc > 2) {
|
||||
root = atoi(argv[2]);
|
||||
if (argc > 3)
|
||||
max = atoi(argv[3]);
|
||||
}
|
||||
}
|
||||
if (argc > 4 || syms < 2 || root < 1 || max < 1) {
|
||||
fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
|
||||
stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* if not restricting the code length, the longest is syms - 1 */
|
||||
if (max > syms - 1)
|
||||
max = syms - 1;
|
||||
|
||||
/* determine the number of bits in a code_t */
|
||||
for (n = 0, word = 1; word; n++, word <<= 1)
|
||||
;
|
||||
|
||||
/* make sure that the calculation of most will not overflow */
|
||||
if (max > n || (code_t)(syms - 2) >= (((code_t)0 - 1) >> (max - 1))) {
|
||||
fputs("abort: code length too long for internal types\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* reject impossible code requests */
|
||||
if ((code_t)(syms - 1) > ((code_t)1 << max) - 1) {
|
||||
fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
|
||||
syms, max);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* allocate code vector */
|
||||
code = calloc(max + 1, sizeof(int));
|
||||
if (code == NULL) {
|
||||
fputs("abort: unable to allocate enough memory\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* determine size of saved results array, checking for overflows,
|
||||
allocate and clear the array (set all to zero with calloc()) */
|
||||
if (syms == 2) /* iff max == 1 */
|
||||
num = NULL; /* won't be saving any results */
|
||||
else {
|
||||
size = syms >> 1;
|
||||
if (size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) ||
|
||||
(size *= n, size > ((size_t)0 - 1) / (n = max - 1)) ||
|
||||
(size *= n, size > ((size_t)0 - 1) / sizeof(big_t)) ||
|
||||
(num = calloc(size, sizeof(big_t))) == NULL) {
|
||||
fputs("abort: unable to allocate enough memory\n", stderr);
|
||||
cleanup();
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* count possible codes for all numbers of symbols, add up counts */
|
||||
sum = 0;
|
||||
for (n = 2; n <= syms; n++) {
|
||||
got = count(n, 1, 2);
|
||||
sum += got;
|
||||
if (got == (big_t)0 - 1 || sum < got) { /* overflow */
|
||||
fputs("abort: can't count that high!\n", stderr);
|
||||
cleanup();
|
||||
return 1;
|
||||
}
|
||||
printf("%llu %d-codes\n", got, n);
|
||||
}
|
||||
printf("%llu total codes for 2 to %d symbols", sum, syms);
|
||||
if (max < syms - 1)
|
||||
printf(" (%d-bit length limit)\n", max);
|
||||
else
|
||||
puts(" (no length limit)");
|
||||
|
||||
/* allocate and clear done array for beenhere() */
|
||||
if (syms == 2)
|
||||
done = NULL;
|
||||
else if (size > ((size_t)0 - 1) / sizeof(struct tab) ||
|
||||
(done = calloc(size, sizeof(struct tab))) == NULL) {
|
||||
fputs("abort: unable to allocate enough memory\n", stderr);
|
||||
cleanup();
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* find and show maximum inflate table usage */
|
||||
if (root > max) /* reduce root to max length */
|
||||
root = max;
|
||||
if ((code_t)syms < ((code_t)1 << (root + 1)))
|
||||
enough(syms);
|
||||
else
|
||||
puts("cannot handle minimum code lengths > root");
|
||||
|
||||
/* done */
|
||||
cleanup();
|
||||
return 0;
|
||||
}
|
233
external/zlib/examples/fitblk.c
vendored
233
external/zlib/examples/fitblk.c
vendored
@ -1,233 +0,0 @@
|
||||
/* fitblk.c: example of fitting compressed output to a specified size
|
||||
Not copyrighted -- provided to the public domain
|
||||
Version 1.1 25 November 2004 Mark Adler */
|
||||
|
||||
/* Version history:
|
||||
1.0 24 Nov 2004 First version
|
||||
1.1 25 Nov 2004 Change deflateInit2() to deflateInit()
|
||||
Use fixed-size, stack-allocated raw buffers
|
||||
Simplify code moving compression to subroutines
|
||||
Use assert() for internal errors
|
||||
Add detailed description of approach
|
||||
*/
|
||||
|
||||
/* Approach to just fitting a requested compressed size:
|
||||
|
||||
fitblk performs three compression passes on a portion of the input
|
||||
data in order to determine how much of that input will compress to
|
||||
nearly the requested output block size. The first pass generates
|
||||
enough deflate blocks to produce output to fill the requested
|
||||
output size plus a specfied excess amount (see the EXCESS define
|
||||
below). The last deflate block may go quite a bit past that, but
|
||||
is discarded. The second pass decompresses and recompresses just
|
||||
the compressed data that fit in the requested plus excess sized
|
||||
buffer. The deflate process is terminated after that amount of
|
||||
input, which is less than the amount consumed on the first pass.
|
||||
The last deflate block of the result will be of a comparable size
|
||||
to the final product, so that the header for that deflate block and
|
||||
the compression ratio for that block will be about the same as in
|
||||
the final product. The third compression pass decompresses the
|
||||
result of the second step, but only the compressed data up to the
|
||||
requested size minus an amount to allow the compressed stream to
|
||||
complete (see the MARGIN define below). That will result in a
|
||||
final compressed stream whose length is less than or equal to the
|
||||
requested size. Assuming sufficient input and a requested size
|
||||
greater than a few hundred bytes, the shortfall will typically be
|
||||
less than ten bytes.
|
||||
|
||||
If the input is short enough that the first compression completes
|
||||
before filling the requested output size, then that compressed
|
||||
stream is return with no recompression.
|
||||
|
||||
EXCESS is chosen to be just greater than the shortfall seen in a
|
||||
two pass approach similar to the above. That shortfall is due to
|
||||
the last deflate block compressing more efficiently with a smaller
|
||||
header on the second pass. EXCESS is set to be large enough so
|
||||
that there is enough uncompressed data for the second pass to fill
|
||||
out the requested size, and small enough so that the final deflate
|
||||
block of the second pass will be close in size to the final deflate
|
||||
block of the third and final pass. MARGIN is chosen to be just
|
||||
large enough to assure that the final compression has enough room
|
||||
to complete in all cases.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include "zlib.h"
|
||||
|
||||
#define local static
|
||||
|
||||
/* print nastygram and leave */
|
||||
local void quit(char *why)
|
||||
{
|
||||
fprintf(stderr, "fitblk abort: %s\n", why);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
#define RAWLEN 4096 /* intermediate uncompressed buffer size */
|
||||
|
||||
/* compress from file to def until provided buffer is full or end of
|
||||
input reached; return last deflate() return value, or Z_ERRNO if
|
||||
there was read error on the file */
|
||||
local int partcompress(FILE *in, z_streamp def)
|
||||
{
|
||||
int ret, flush;
|
||||
unsigned char raw[RAWLEN];
|
||||
|
||||
flush = Z_NO_FLUSH;
|
||||
do {
|
||||
def->avail_in = fread(raw, 1, RAWLEN, in);
|
||||
if (ferror(in))
|
||||
return Z_ERRNO;
|
||||
def->next_in = raw;
|
||||
if (feof(in))
|
||||
flush = Z_FINISH;
|
||||
ret = deflate(def, flush);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
} while (def->avail_out != 0 && flush == Z_NO_FLUSH);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* recompress from inf's input to def's output; the input for inf and
|
||||
the output for def are set in those structures before calling;
|
||||
return last deflate() return value, or Z_MEM_ERROR if inflate()
|
||||
was not able to allocate enough memory when it needed to */
|
||||
local int recompress(z_streamp inf, z_streamp def)
|
||||
{
|
||||
int ret, flush;
|
||||
unsigned char raw[RAWLEN];
|
||||
|
||||
flush = Z_NO_FLUSH;
|
||||
do {
|
||||
/* decompress */
|
||||
inf->avail_out = RAWLEN;
|
||||
inf->next_out = raw;
|
||||
ret = inflate(inf, Z_NO_FLUSH);
|
||||
assert(ret != Z_STREAM_ERROR && ret != Z_DATA_ERROR &&
|
||||
ret != Z_NEED_DICT);
|
||||
if (ret == Z_MEM_ERROR)
|
||||
return ret;
|
||||
|
||||
/* compress what was decompresed until done or no room */
|
||||
def->avail_in = RAWLEN - inf->avail_out;
|
||||
def->next_in = raw;
|
||||
if (inf->avail_out != 0)
|
||||
flush = Z_FINISH;
|
||||
ret = deflate(def, flush);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
} while (ret != Z_STREAM_END && def->avail_out != 0);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define EXCESS 256 /* empirically determined stream overage */
|
||||
#define MARGIN 8 /* amount to back off for completion */
|
||||
|
||||
/* compress from stdin to fixed-size block on stdout */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ret; /* return code */
|
||||
unsigned size; /* requested fixed output block size */
|
||||
unsigned have; /* bytes written by deflate() call */
|
||||
unsigned char *blk; /* intermediate and final stream */
|
||||
unsigned char *tmp; /* close to desired size stream */
|
||||
z_stream def, inf; /* zlib deflate and inflate states */
|
||||
|
||||
/* get requested output size */
|
||||
if (argc != 2)
|
||||
quit("need one argument: size of output block");
|
||||
ret = strtol(argv[1], argv + 1, 10);
|
||||
if (argv[1][0] != 0)
|
||||
quit("argument must be a number");
|
||||
if (ret < 8) /* 8 is minimum zlib stream size */
|
||||
quit("need positive size of 8 or greater");
|
||||
size = (unsigned)ret;
|
||||
|
||||
/* allocate memory for buffers and compression engine */
|
||||
blk = malloc(size + EXCESS);
|
||||
def.zalloc = Z_NULL;
|
||||
def.zfree = Z_NULL;
|
||||
def.opaque = Z_NULL;
|
||||
ret = deflateInit(&def, Z_DEFAULT_COMPRESSION);
|
||||
if (ret != Z_OK || blk == NULL)
|
||||
quit("out of memory");
|
||||
|
||||
/* compress from stdin until output full, or no more input */
|
||||
def.avail_out = size + EXCESS;
|
||||
def.next_out = blk;
|
||||
ret = partcompress(stdin, &def);
|
||||
if (ret == Z_ERRNO)
|
||||
quit("error reading input");
|
||||
|
||||
/* if it all fit, then size was undersubscribed -- done! */
|
||||
if (ret == Z_STREAM_END && def.avail_out >= EXCESS) {
|
||||
/* write block to stdout */
|
||||
have = size + EXCESS - def.avail_out;
|
||||
if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
|
||||
quit("error writing output");
|
||||
|
||||
/* clean up and print results to stderr */
|
||||
ret = deflateEnd(&def);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
free(blk);
|
||||
fprintf(stderr,
|
||||
"%u bytes unused out of %u requested (all input)\n",
|
||||
size - have, size);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* it didn't all fit -- set up for recompression */
|
||||
inf.zalloc = Z_NULL;
|
||||
inf.zfree = Z_NULL;
|
||||
inf.opaque = Z_NULL;
|
||||
inf.avail_in = 0;
|
||||
inf.next_in = Z_NULL;
|
||||
ret = inflateInit(&inf);
|
||||
tmp = malloc(size + EXCESS);
|
||||
if (ret != Z_OK || tmp == NULL)
|
||||
quit("out of memory");
|
||||
ret = deflateReset(&def);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
|
||||
/* do first recompression close to the right amount */
|
||||
inf.avail_in = size + EXCESS;
|
||||
inf.next_in = blk;
|
||||
def.avail_out = size + EXCESS;
|
||||
def.next_out = tmp;
|
||||
ret = recompress(&inf, &def);
|
||||
if (ret == Z_MEM_ERROR)
|
||||
quit("out of memory");
|
||||
|
||||
/* set up for next reocmpression */
|
||||
ret = inflateReset(&inf);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
ret = deflateReset(&def);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
|
||||
/* do second and final recompression (third compression) */
|
||||
inf.avail_in = size - MARGIN; /* assure stream will complete */
|
||||
inf.next_in = tmp;
|
||||
def.avail_out = size;
|
||||
def.next_out = blk;
|
||||
ret = recompress(&inf, &def);
|
||||
if (ret == Z_MEM_ERROR)
|
||||
quit("out of memory");
|
||||
assert(ret == Z_STREAM_END); /* otherwise MARGIN too small */
|
||||
|
||||
/* done -- write block to stdout */
|
||||
have = size - def.avail_out;
|
||||
if (fwrite(blk, 1, have, stdout) != have || ferror(stdout))
|
||||
quit("error writing output");
|
||||
|
||||
/* clean up and print results to stderr */
|
||||
free(tmp);
|
||||
ret = inflateEnd(&inf);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
ret = deflateEnd(&def);
|
||||
assert(ret != Z_STREAM_ERROR);
|
||||
free(blk);
|
||||
fprintf(stderr,
|
||||
"%u bytes unused out of %u requested (%lu input)\n",
|
||||
size - have, size, def.total_in);
|
||||
return 0;
|
||||
}
|
702
external/zlib/examples/gun.c
vendored
702
external/zlib/examples/gun.c
vendored
@ -1,702 +0,0 @@
|
||||
/* gun.c -- simple gunzip to give an example of the use of inflateBack()
|
||||
* Copyright (C) 2003, 2005, 2008, 2010, 2012 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
Version 1.7 12 August 2012 Mark Adler */
|
||||
|
||||
/* Version history:
|
||||
1.0 16 Feb 2003 First version for testing of inflateBack()
|
||||
1.1 21 Feb 2005 Decompress concatenated gzip streams
|
||||
Remove use of "this" variable (C++ keyword)
|
||||
Fix return value for in()
|
||||
Improve allocation failure checking
|
||||
Add typecasting for void * structures
|
||||
Add -h option for command version and usage
|
||||
Add a bunch of comments
|
||||
1.2 20 Mar 2005 Add Unix compress (LZW) decompression
|
||||
Copy file attributes from input file to output file
|
||||
1.3 12 Jun 2005 Add casts for error messages [Oberhumer]
|
||||
1.4 8 Dec 2006 LZW decompression speed improvements
|
||||
1.5 9 Feb 2008 Avoid warning in latest version of gcc
|
||||
1.6 17 Jan 2010 Avoid signed/unsigned comparison warnings
|
||||
1.7 12 Aug 2012 Update for z_const usage in zlib 1.2.8
|
||||
*/
|
||||
|
||||
/*
|
||||
gun [ -t ] [ name ... ]
|
||||
|
||||
decompresses the data in the named gzip files. If no arguments are given,
|
||||
gun will decompress from stdin to stdout. The names must end in .gz, -gz,
|
||||
.z, -z, _z, or .Z. The uncompressed data will be written to a file name
|
||||
with the suffix stripped. On success, the original file is deleted. On
|
||||
failure, the output file is deleted. For most failures, the command will
|
||||
continue to process the remaining names on the command line. A memory
|
||||
allocation failure will abort the command. If -t is specified, then the
|
||||
listed files or stdin will be tested as gzip files for integrity (without
|
||||
checking for a proper suffix), no output will be written, and no files
|
||||
will be deleted.
|
||||
|
||||
Like gzip, gun allows concatenated gzip streams and will decompress them,
|
||||
writing all of the uncompressed data to the output. Unlike gzip, gun allows
|
||||
an empty file on input, and will produce no error writing an empty output
|
||||
file.
|
||||
|
||||
gun will also decompress files made by Unix compress, which uses LZW
|
||||
compression. These files are automatically detected by virtue of their
|
||||
magic header bytes. Since the end of Unix compress stream is marked by the
|
||||
end-of-file, they cannot be concantenated. If a Unix compress stream is
|
||||
encountered in an input file, it is the last stream in that file.
|
||||
|
||||
Like gunzip and uncompress, the file attributes of the orignal compressed
|
||||
file are maintained in the final uncompressed file, to the extent that the
|
||||
user permissions allow it.
|
||||
|
||||
On my Mac OS X PowerPC G4, gun is almost twice as fast as gunzip (version
|
||||
1.2.4) is on the same file, when gun is linked with zlib 1.2.2. Also the
|
||||
LZW decompression provided by gun is about twice as fast as the standard
|
||||
Unix uncompress command.
|
||||
*/
|
||||
|
||||
/* external functions and related types and constants */
|
||||
#include <stdio.h> /* fprintf() */
|
||||
#include <stdlib.h> /* malloc(), free() */
|
||||
#include <string.h> /* strerror(), strcmp(), strlen(), memcpy() */
|
||||
#include <errno.h> /* errno */
|
||||
#include <fcntl.h> /* open() */
|
||||
#include <unistd.h> /* read(), write(), close(), chown(), unlink() */
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h> /* stat(), chmod() */
|
||||
#include <utime.h> /* utime() */
|
||||
#include "zlib.h" /* inflateBackInit(), inflateBack(), */
|
||||
/* inflateBackEnd(), crc32() */
|
||||
|
||||
/* function declaration */
|
||||
#define local static
|
||||
|
||||
/* buffer constants */
|
||||
#define SIZE 32768U /* input and output buffer sizes */
|
||||
#define PIECE 16384 /* limits i/o chunks for 16-bit int case */
|
||||
|
||||
/* structure for infback() to pass to input function in() -- it maintains the
|
||||
input file and a buffer of size SIZE */
|
||||
struct ind {
|
||||
int infile;
|
||||
unsigned char *inbuf;
|
||||
};
|
||||
|
||||
/* Load input buffer, assumed to be empty, and return bytes loaded and a
|
||||
pointer to them. read() is called until the buffer is full, or until it
|
||||
returns end-of-file or error. Return 0 on error. */
|
||||
local unsigned in(void *in_desc, z_const unsigned char **buf)
|
||||
{
|
||||
int ret;
|
||||
unsigned len;
|
||||
unsigned char *next;
|
||||
struct ind *me = (struct ind *)in_desc;
|
||||
|
||||
next = me->inbuf;
|
||||
*buf = next;
|
||||
len = 0;
|
||||
do {
|
||||
ret = PIECE;
|
||||
if ((unsigned)ret > SIZE - len)
|
||||
ret = (int)(SIZE - len);
|
||||
ret = (int)read(me->infile, next, ret);
|
||||
if (ret == -1) {
|
||||
len = 0;
|
||||
break;
|
||||
}
|
||||
next += ret;
|
||||
len += ret;
|
||||
} while (ret != 0 && len < SIZE);
|
||||
return len;
|
||||
}
|
||||
|
||||
/* structure for infback() to pass to output function out() -- it maintains the
|
||||
output file, a running CRC-32 check on the output and the total number of
|
||||
bytes output, both for checking against the gzip trailer. (The length in
|
||||
the gzip trailer is stored modulo 2^32, so it's ok if a long is 32 bits and
|
||||
the output is greater than 4 GB.) */
|
||||
struct outd {
|
||||
int outfile;
|
||||
int check; /* true if checking crc and total */
|
||||
unsigned long crc;
|
||||
unsigned long total;
|
||||
};
|
||||
|
||||
/* Write output buffer and update the CRC-32 and total bytes written. write()
|
||||
is called until all of the output is written or an error is encountered.
|
||||
On success out() returns 0. For a write failure, out() returns 1. If the
|
||||
output file descriptor is -1, then nothing is written.
|
||||
*/
|
||||
local int out(void *out_desc, unsigned char *buf, unsigned len)
|
||||
{
|
||||
int ret;
|
||||
struct outd *me = (struct outd *)out_desc;
|
||||
|
||||
if (me->check) {
|
||||
me->crc = crc32(me->crc, buf, len);
|
||||
me->total += len;
|
||||
}
|
||||
if (me->outfile != -1)
|
||||
do {
|
||||
ret = PIECE;
|
||||
if ((unsigned)ret > len)
|
||||
ret = (int)len;
|
||||
ret = (int)write(me->outfile, buf, ret);
|
||||
if (ret == -1)
|
||||
return 1;
|
||||
buf += ret;
|
||||
len -= ret;
|
||||
} while (len != 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* next input byte macro for use inside lunpipe() and gunpipe() */
|
||||
#define NEXT() (have ? 0 : (have = in(indp, &next)), \
|
||||
last = have ? (have--, (int)(*next++)) : -1)
|
||||
|
||||
/* memory for gunpipe() and lunpipe() --
|
||||
the first 256 entries of prefix[] and suffix[] are never used, could
|
||||
have offset the index, but it's faster to waste the memory */
|
||||
unsigned char inbuf[SIZE]; /* input buffer */
|
||||
unsigned char outbuf[SIZE]; /* output buffer */
|
||||
unsigned short prefix[65536]; /* index to LZW prefix string */
|
||||
unsigned char suffix[65536]; /* one-character LZW suffix */
|
||||
unsigned char match[65280 + 2]; /* buffer for reversed match or gzip
|
||||
32K sliding window */
|
||||
|
||||
/* throw out what's left in the current bits byte buffer (this is a vestigial
|
||||
aspect of the compressed data format derived from an implementation that
|
||||
made use of a special VAX machine instruction!) */
|
||||
#define FLUSHCODE() \
|
||||
do { \
|
||||
left = 0; \
|
||||
rem = 0; \
|
||||
if (chunk > have) { \
|
||||
chunk -= have; \
|
||||
have = 0; \
|
||||
if (NEXT() == -1) \
|
||||
break; \
|
||||
chunk--; \
|
||||
if (chunk > have) { \
|
||||
chunk = have = 0; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
have -= chunk; \
|
||||
next += chunk; \
|
||||
chunk = 0; \
|
||||
} while (0)
|
||||
|
||||
/* Decompress a compress (LZW) file from indp to outfile. The compress magic
|
||||
header (two bytes) has already been read and verified. There are have bytes
|
||||
of buffered input at next. strm is used for passing error information back
|
||||
to gunpipe().
|
||||
|
||||
lunpipe() will return Z_OK on success, Z_BUF_ERROR for an unexpected end of
|
||||
file, read error, or write error (a write error indicated by strm->next_in
|
||||
not equal to Z_NULL), or Z_DATA_ERROR for invalid input.
|
||||
*/
|
||||
local int lunpipe(unsigned have, z_const unsigned char *next, struct ind *indp,
|
||||
int outfile, z_stream *strm)
|
||||
{
|
||||
int last; /* last byte read by NEXT(), or -1 if EOF */
|
||||
unsigned chunk; /* bytes left in current chunk */
|
||||
int left; /* bits left in rem */
|
||||
unsigned rem; /* unused bits from input */
|
||||
int bits; /* current bits per code */
|
||||
unsigned code; /* code, table traversal index */
|
||||
unsigned mask; /* mask for current bits codes */
|
||||
int max; /* maximum bits per code for this stream */
|
||||
unsigned flags; /* compress flags, then block compress flag */
|
||||
unsigned end; /* last valid entry in prefix/suffix tables */
|
||||
unsigned temp; /* current code */
|
||||
unsigned prev; /* previous code */
|
||||
unsigned final; /* last character written for previous code */
|
||||
unsigned stack; /* next position for reversed string */
|
||||
unsigned outcnt; /* bytes in output buffer */
|
||||
struct outd outd; /* output structure */
|
||||
unsigned char *p;
|
||||
|
||||
/* set up output */
|
||||
outd.outfile = outfile;
|
||||
outd.check = 0;
|
||||
|
||||
/* process remainder of compress header -- a flags byte */
|
||||
flags = NEXT();
|
||||
if (last == -1)
|
||||
return Z_BUF_ERROR;
|
||||
if (flags & 0x60) {
|
||||
strm->msg = (char *)"unknown lzw flags set";
|
||||
return Z_DATA_ERROR;
|
||||
}
|
||||
max = flags & 0x1f;
|
||||
if (max < 9 || max > 16) {
|
||||
strm->msg = (char *)"lzw bits out of range";
|
||||
return Z_DATA_ERROR;
|
||||
}
|
||||
if (max == 9) /* 9 doesn't really mean 9 */
|
||||
max = 10;
|
||||
flags &= 0x80; /* true if block compress */
|
||||
|
||||
/* clear table */
|
||||
bits = 9;
|
||||
mask = 0x1ff;
|
||||
end = flags ? 256 : 255;
|
||||
|
||||
/* set up: get first 9-bit code, which is the first decompressed byte, but
|
||||
don't create a table entry until the next code */
|
||||
if (NEXT() == -1) /* no compressed data is ok */
|
||||
return Z_OK;
|
||||
final = prev = (unsigned)last; /* low 8 bits of code */
|
||||
if (NEXT() == -1) /* missing a bit */
|
||||
return Z_BUF_ERROR;
|
||||
if (last & 1) { /* code must be < 256 */
|
||||
strm->msg = (char *)"invalid lzw code";
|
||||
return Z_DATA_ERROR;
|
||||
}
|
||||
rem = (unsigned)last >> 1; /* remaining 7 bits */
|
||||
left = 7;
|
||||
chunk = bits - 2; /* 7 bytes left in this chunk */
|
||||
outbuf[0] = (unsigned char)final; /* write first decompressed byte */
|
||||
outcnt = 1;
|
||||
|
||||
/* decode codes */
|
||||
stack = 0;
|
||||
for (;;) {
|
||||
/* if the table will be full after this, increment the code size */
|
||||
if (end >= mask && bits < max) {
|
||||
FLUSHCODE();
|
||||
bits++;
|
||||
mask <<= 1;
|
||||
mask++;
|
||||
}
|
||||
|
||||
/* get a code of length bits */
|
||||
if (chunk == 0) /* decrement chunk modulo bits */
|
||||
chunk = bits;
|
||||
code = rem; /* low bits of code */
|
||||
if (NEXT() == -1) { /* EOF is end of compressed data */
|
||||
/* write remaining buffered output */
|
||||
if (outcnt && out(&outd, outbuf, outcnt)) {
|
||||
strm->next_in = outbuf; /* signal write error */
|
||||
return Z_BUF_ERROR;
|
||||
}
|
||||
return Z_OK;
|
||||
}
|
||||
code += (unsigned)last << left; /* middle (or high) bits of code */
|
||||
left += 8;
|
||||
chunk--;
|
||||
if (bits > left) { /* need more bits */
|
||||
if (NEXT() == -1) /* can't end in middle of code */
|
||||
return Z_BUF_ERROR;
|
||||
code += (unsigned)last << left; /* high bits of code */
|
||||
left += 8;
|
||||
chunk--;
|
||||
}
|
||||
code &= mask; /* mask to current code length */
|
||||
left -= bits; /* number of unused bits */
|
||||
rem = (unsigned)last >> (8 - left); /* unused bits from last byte */
|
||||
|
||||
/* process clear code (256) */
|
||||
if (code == 256 && flags) {
|
||||
FLUSHCODE();
|
||||
bits = 9; /* initialize bits and mask */
|
||||
mask = 0x1ff;
|
||||
end = 255; /* empty table */
|
||||
continue; /* get next code */
|
||||
}
|
||||
|
||||
/* special code to reuse last match */
|
||||
temp = code; /* save the current code */
|
||||
if (code > end) {
|
||||
/* Be picky on the allowed code here, and make sure that the code
|
||||
we drop through (prev) will be a valid index so that random
|
||||
input does not cause an exception. The code != end + 1 check is
|
||||
empirically derived, and not checked in the original uncompress
|
||||
code. If this ever causes a problem, that check could be safely
|
||||
removed. Leaving this check in greatly improves gun's ability
|
||||
to detect random or corrupted input after a compress header.
|
||||
In any case, the prev > end check must be retained. */
|
||||
if (code != end + 1 || prev > end) {
|
||||
strm->msg = (char *)"invalid lzw code";
|
||||
return Z_DATA_ERROR;
|
||||
}
|
||||
match[stack++] = (unsigned char)final;
|
||||
code = prev;
|
||||
}
|
||||
|
||||
/* walk through linked list to generate output in reverse order */
|
||||
p = match + stack;
|
||||
while (code >= 256) {
|
||||
*p++ = suffix[code];
|
||||
code = prefix[code];
|
||||
}
|
||||
stack = p - match;
|
||||
match[stack++] = (unsigned char)code;
|
||||
final = code;
|
||||
|
||||
/* link new table entry */
|
||||
if (end < mask) {
|
||||
end++;
|
||||
prefix[end] = (unsigned short)prev;
|
||||
suffix[end] = (unsigned char)final;
|
||||
}
|
||||
|
||||
/* set previous code for next iteration */
|
||||
prev = temp;
|
||||
|
||||
/* write output in forward order */
|
||||
while (stack > SIZE - outcnt) {
|
||||
while (outcnt < SIZE)
|
||||
outbuf[outcnt++] = match[--stack];
|
||||
if (out(&outd, outbuf, outcnt)) {
|
||||
strm->next_in = outbuf; /* signal write error */
|
||||
return Z_BUF_ERROR;
|
||||
}
|
||||
outcnt = 0;
|
||||
}
|
||||
p = match + stack;
|
||||
do {
|
||||
outbuf[outcnt++] = *--p;
|
||||
} while (p > match);
|
||||
stack = 0;
|
||||
|
||||
/* loop for next code with final and prev as the last match, rem and
|
||||
left provide the first 0..7 bits of the next code, end is the last
|
||||
valid table entry */
|
||||
}
|
||||
}
|
||||
|
||||
/* Decompress a gzip file from infile to outfile. strm is assumed to have been
|
||||
successfully initialized with inflateBackInit(). The input file may consist
|
||||
of a series of gzip streams, in which case all of them will be decompressed
|
||||
to the output file. If outfile is -1, then the gzip stream(s) integrity is
|
||||
checked and nothing is written.
|
||||
|
||||
The return value is a zlib error code: Z_MEM_ERROR if out of memory,
|
||||
Z_DATA_ERROR if the header or the compressed data is invalid, or if the
|
||||
trailer CRC-32 check or length doesn't match, Z_BUF_ERROR if the input ends
|
||||
prematurely or a write error occurs, or Z_ERRNO if junk (not a another gzip
|
||||
stream) follows a valid gzip stream.
|
||||
*/
|
||||
local int gunpipe(z_stream *strm, int infile, int outfile)
|
||||
{
|
||||
int ret, first, last;
|
||||
unsigned have, flags, len;
|
||||
z_const unsigned char *next = NULL;
|
||||
struct ind ind, *indp;
|
||||
struct outd outd;
|
||||
|
||||
/* setup input buffer */
|
||||
ind.infile = infile;
|
||||
ind.inbuf = inbuf;
|
||||
indp = &ind;
|
||||
|
||||
/* decompress concatenated gzip streams */
|
||||
have = 0; /* no input data read in yet */
|
||||
first = 1; /* looking for first gzip header */
|
||||
strm->next_in = Z_NULL; /* so Z_BUF_ERROR means EOF */
|
||||
for (;;) {
|
||||
/* look for the two magic header bytes for a gzip stream */
|
||||
if (NEXT() == -1) {
|
||||
ret = Z_OK;
|
||||
break; /* empty gzip stream is ok */
|
||||
}
|
||||
if (last != 31 || (NEXT() != 139 && last != 157)) {
|
||||
strm->msg = (char *)"incorrect header check";
|
||||
ret = first ? Z_DATA_ERROR : Z_ERRNO;
|
||||
break; /* not a gzip or compress header */
|
||||
}
|
||||
first = 0; /* next non-header is junk */
|
||||
|
||||
/* process a compress (LZW) file -- can't be concatenated after this */
|
||||
if (last == 157) {
|
||||
ret = lunpipe(have, next, indp, outfile, strm);
|
||||
break;
|
||||
}
|
||||
|
||||
/* process remainder of gzip header */
|
||||
ret = Z_BUF_ERROR;
|
||||
if (NEXT() != 8) { /* only deflate method allowed */
|
||||
if (last == -1) break;
|
||||
strm->msg = (char *)"unknown compression method";
|
||||
ret = Z_DATA_ERROR;
|
||||
break;
|
||||
}
|
||||
flags = NEXT(); /* header flags */
|
||||
NEXT(); /* discard mod time, xflgs, os */
|
||||
NEXT();
|
||||
NEXT();
|
||||
NEXT();
|
||||
NEXT();
|
||||
NEXT();
|
||||
if (last == -1) break;
|
||||
if (flags & 0xe0) {
|
||||
strm->msg = (char *)"unknown header flags set";
|
||||
ret = Z_DATA_ERROR;
|
||||
break;
|
||||
}
|
||||
if (flags & 4) { /* extra field */
|
||||
len = NEXT();
|
||||
len += (unsigned)(NEXT()) << 8;
|
||||
if (last == -1) break;
|
||||
while (len > have) {
|
||||
len -= have;
|
||||
have = 0;
|
||||
if (NEXT() == -1) break;
|
||||
len--;
|
||||
}
|
||||
if (last == -1) break;
|
||||
have -= len;
|
||||
next += len;
|
||||
}
|
||||
if (flags & 8) /* file name */
|
||||
while (NEXT() != 0 && last != -1)
|
||||
;
|
||||
if (flags & 16) /* comment */
|
||||
while (NEXT() != 0 && last != -1)
|
||||
;
|
||||
if (flags & 2) { /* header crc */
|
||||
NEXT();
|
||||
NEXT();
|
||||
}
|
||||
if (last == -1) break;
|
||||
|
||||
/* set up output */
|
||||
outd.outfile = outfile;
|
||||
outd.check = 1;
|
||||
outd.crc = crc32(0L, Z_NULL, 0);
|
||||
outd.total = 0;
|
||||
|
||||
/* decompress data to output */
|
||||
strm->next_in = next;
|
||||
strm->avail_in = have;
|
||||
ret = inflateBack(strm, in, indp, out, &outd);
|
||||
if (ret != Z_STREAM_END) break;
|
||||
next = strm->next_in;
|
||||
have = strm->avail_in;
|
||||
strm->next_in = Z_NULL; /* so Z_BUF_ERROR means EOF */
|
||||
|
||||
/* check trailer */
|
||||
ret = Z_BUF_ERROR;
|
||||
if (NEXT() != (int)(outd.crc & 0xff) ||
|
||||
NEXT() != (int)((outd.crc >> 8) & 0xff) ||
|
||||
NEXT() != (int)((outd.crc >> 16) & 0xff) ||
|
||||
NEXT() != (int)((outd.crc >> 24) & 0xff)) {
|
||||
/* crc error */
|
||||
if (last != -1) {
|
||||
strm->msg = (char *)"incorrect data check";
|
||||
ret = Z_DATA_ERROR;
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (NEXT() != (int)(outd.total & 0xff) ||
|
||||
NEXT() != (int)((outd.total >> 8) & 0xff) ||
|
||||
NEXT() != (int)((outd.total >> 16) & 0xff) ||
|
||||
NEXT() != (int)((outd.total >> 24) & 0xff)) {
|
||||
/* length error */
|
||||
if (last != -1) {
|
||||
strm->msg = (char *)"incorrect length check";
|
||||
ret = Z_DATA_ERROR;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* go back and look for another gzip stream */
|
||||
}
|
||||
|
||||
/* clean up and return */
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Copy file attributes, from -> to, as best we can. This is best effort, so
|
||||
no errors are reported. The mode bits, including suid, sgid, and the sticky
|
||||
bit are copied (if allowed), the owner's user id and group id are copied
|
||||
(again if allowed), and the access and modify times are copied. */
|
||||
local void copymeta(char *from, char *to)
|
||||
{
|
||||
struct stat was;
|
||||
struct utimbuf when;
|
||||
|
||||
/* get all of from's Unix meta data, return if not a regular file */
|
||||
if (stat(from, &was) != 0 || (was.st_mode & S_IFMT) != S_IFREG)
|
||||
return;
|
||||
|
||||
/* set to's mode bits, ignore errors */
|
||||
(void)chmod(to, was.st_mode & 07777);
|
||||
|
||||
/* copy owner's user and group, ignore errors */
|
||||
(void)chown(to, was.st_uid, was.st_gid);
|
||||
|
||||
/* copy access and modify times, ignore errors */
|
||||
when.actime = was.st_atime;
|
||||
when.modtime = was.st_mtime;
|
||||
(void)utime(to, &when);
|
||||
}
|
||||
|
||||
/* Decompress the file inname to the file outnname, of if test is true, just
|
||||
decompress without writing and check the gzip trailer for integrity. If
|
||||
inname is NULL or an empty string, read from stdin. If outname is NULL or
|
||||
an empty string, write to stdout. strm is a pre-initialized inflateBack
|
||||
structure. When appropriate, copy the file attributes from inname to
|
||||
outname.
|
||||
|
||||
gunzip() returns 1 if there is an out-of-memory error or an unexpected
|
||||
return code from gunpipe(). Otherwise it returns 0.
|
||||
*/
|
||||
local int gunzip(z_stream *strm, char *inname, char *outname, int test)
|
||||
{
|
||||
int ret;
|
||||
int infile, outfile;
|
||||
|
||||
/* open files */
|
||||
if (inname == NULL || *inname == 0) {
|
||||
inname = "-";
|
||||
infile = 0; /* stdin */
|
||||
}
|
||||
else {
|
||||
infile = open(inname, O_RDONLY, 0);
|
||||
if (infile == -1) {
|
||||
fprintf(stderr, "gun cannot open %s\n", inname);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if (test)
|
||||
outfile = -1;
|
||||
else if (outname == NULL || *outname == 0) {
|
||||
outname = "-";
|
||||
outfile = 1; /* stdout */
|
||||
}
|
||||
else {
|
||||
outfile = open(outname, O_CREAT | O_TRUNC | O_WRONLY, 0666);
|
||||
if (outfile == -1) {
|
||||
close(infile);
|
||||
fprintf(stderr, "gun cannot create %s\n", outname);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
errno = 0;
|
||||
|
||||
/* decompress */
|
||||
ret = gunpipe(strm, infile, outfile);
|
||||
if (outfile > 2) close(outfile);
|
||||
if (infile > 2) close(infile);
|
||||
|
||||
/* interpret result */
|
||||
switch (ret) {
|
||||
case Z_OK:
|
||||
case Z_ERRNO:
|
||||
if (infile > 2 && outfile > 2) {
|
||||
copymeta(inname, outname); /* copy attributes */
|
||||
unlink(inname);
|
||||
}
|
||||
if (ret == Z_ERRNO)
|
||||
fprintf(stderr, "gun warning: trailing garbage ignored in %s\n",
|
||||
inname);
|
||||
break;
|
||||
case Z_DATA_ERROR:
|
||||
if (outfile > 2) unlink(outname);
|
||||
fprintf(stderr, "gun data error on %s: %s\n", inname, strm->msg);
|
||||
break;
|
||||
case Z_MEM_ERROR:
|
||||
if (outfile > 2) unlink(outname);
|
||||
fprintf(stderr, "gun out of memory error--aborting\n");
|
||||
return 1;
|
||||
case Z_BUF_ERROR:
|
||||
if (outfile > 2) unlink(outname);
|
||||
if (strm->next_in != Z_NULL) {
|
||||
fprintf(stderr, "gun write error on %s: %s\n",
|
||||
outname, strerror(errno));
|
||||
}
|
||||
else if (errno) {
|
||||
fprintf(stderr, "gun read error on %s: %s\n",
|
||||
inname, strerror(errno));
|
||||
}
|
||||
else {
|
||||
fprintf(stderr, "gun unexpected end of file on %s\n",
|
||||
inname);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
if (outfile > 2) unlink(outname);
|
||||
fprintf(stderr, "gun internal error--aborting\n");
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Process the gun command line arguments. See the command syntax near the
|
||||
beginning of this source file. */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ret, len, test;
|
||||
char *outname;
|
||||
unsigned char *window;
|
||||
z_stream strm;
|
||||
|
||||
/* initialize inflateBack state for repeated use */
|
||||
window = match; /* reuse LZW match buffer */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
ret = inflateBackInit(&strm, 15, window);
|
||||
if (ret != Z_OK) {
|
||||
fprintf(stderr, "gun out of memory error--aborting\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* decompress each file to the same name with the suffix removed */
|
||||
argc--;
|
||||
argv++;
|
||||
test = 0;
|
||||
if (argc && strcmp(*argv, "-h") == 0) {
|
||||
fprintf(stderr, "gun 1.6 (17 Jan 2010)\n");
|
||||
fprintf(stderr, "Copyright (C) 2003-2010 Mark Adler\n");
|
||||
fprintf(stderr, "usage: gun [-t] [file1.gz [file2.Z ...]]\n");
|
||||
return 0;
|
||||
}
|
||||
if (argc && strcmp(*argv, "-t") == 0) {
|
||||
test = 1;
|
||||
argc--;
|
||||
argv++;
|
||||
}
|
||||
if (argc)
|
||||
do {
|
||||
if (test)
|
||||
outname = NULL;
|
||||
else {
|
||||
len = (int)strlen(*argv);
|
||||
if (strcmp(*argv + len - 3, ".gz") == 0 ||
|
||||
strcmp(*argv + len - 3, "-gz") == 0)
|
||||
len -= 3;
|
||||
else if (strcmp(*argv + len - 2, ".z") == 0 ||
|
||||
strcmp(*argv + len - 2, "-z") == 0 ||
|
||||
strcmp(*argv + len - 2, "_z") == 0 ||
|
||||
strcmp(*argv + len - 2, ".Z") == 0)
|
||||
len -= 2;
|
||||
else {
|
||||
fprintf(stderr, "gun error: no gz type on %s--skipping\n",
|
||||
*argv);
|
||||
continue;
|
||||
}
|
||||
outname = malloc(len + 1);
|
||||
if (outname == NULL) {
|
||||
fprintf(stderr, "gun out of memory error--aborting\n");
|
||||
ret = 1;
|
||||
break;
|
||||
}
|
||||
memcpy(outname, *argv, len);
|
||||
outname[len] = 0;
|
||||
}
|
||||
ret = gunzip(&strm, *argv, outname, test);
|
||||
if (outname != NULL) free(outname);
|
||||
if (ret) break;
|
||||
} while (argv++, --argc);
|
||||
else
|
||||
ret = gunzip(&strm, NULL, NULL, test);
|
||||
|
||||
/* clean up */
|
||||
inflateBackEnd(&strm);
|
||||
return ret;
|
||||
}
|
504
external/zlib/examples/gzappend.c
vendored
504
external/zlib/examples/gzappend.c
vendored
@ -1,504 +0,0 @@
|
||||
/* gzappend -- command to append to a gzip file
|
||||
|
||||
Copyright (C) 2003, 2012 Mark Adler, all rights reserved
|
||||
version 1.2, 11 Oct 2012
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the author be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Mark Adler madler@alumni.caltech.edu
|
||||
*/
|
||||
|
||||
/*
|
||||
* Change history:
|
||||
*
|
||||
* 1.0 19 Oct 2003 - First version
|
||||
* 1.1 4 Nov 2003 - Expand and clarify some comments and notes
|
||||
* - Add version and copyright to help
|
||||
* - Send help to stdout instead of stderr
|
||||
* - Add some preemptive typecasts
|
||||
* - Add L to constants in lseek() calls
|
||||
* - Remove some debugging information in error messages
|
||||
* - Use new data_type definition for zlib 1.2.1
|
||||
* - Simplfy and unify file operations
|
||||
* - Finish off gzip file in gztack()
|
||||
* - Use deflatePrime() instead of adding empty blocks
|
||||
* - Keep gzip file clean on appended file read errors
|
||||
* - Use in-place rotate instead of auxiliary buffer
|
||||
* (Why you ask? Because it was fun to write!)
|
||||
* 1.2 11 Oct 2012 - Fix for proper z_const usage
|
||||
* - Check for input buffer malloc failure
|
||||
*/
|
||||
|
||||
/*
|
||||
gzappend takes a gzip file and appends to it, compressing files from the
|
||||
command line or data from stdin. The gzip file is written to directly, to
|
||||
avoid copying that file, in case it's large. Note that this results in the
|
||||
unfriendly behavior that if gzappend fails, the gzip file is corrupted.
|
||||
|
||||
This program was written to illustrate the use of the new Z_BLOCK option of
|
||||
zlib 1.2.x's inflate() function. This option returns from inflate() at each
|
||||
block boundary to facilitate locating and modifying the last block bit at
|
||||
the start of the final deflate block. Also whether using Z_BLOCK or not,
|
||||
another required feature of zlib 1.2.x is that inflate() now provides the
|
||||
number of unusued bits in the last input byte used. gzappend will not work
|
||||
with versions of zlib earlier than 1.2.1.
|
||||
|
||||
gzappend first decompresses the gzip file internally, discarding all but
|
||||
the last 32K of uncompressed data, and noting the location of the last block
|
||||
bit and the number of unused bits in the last byte of the compressed data.
|
||||
The gzip trailer containing the CRC-32 and length of the uncompressed data
|
||||
is verified. This trailer will be later overwritten.
|
||||
|
||||
Then the last block bit is cleared by seeking back in the file and rewriting
|
||||
the byte that contains it. Seeking forward, the last byte of the compressed
|
||||
data is saved along with the number of unused bits to initialize deflate.
|
||||
|
||||
A deflate process is initialized, using the last 32K of the uncompressed
|
||||
data from the gzip file to initialize the dictionary. If the total
|
||||
uncompressed data was less than 32K, then all of it is used to initialize
|
||||
the dictionary. The deflate output bit buffer is also initialized with the
|
||||
last bits from the original deflate stream. From here on, the data to
|
||||
append is simply compressed using deflate, and written to the gzip file.
|
||||
When that is complete, the new CRC-32 and uncompressed length are written
|
||||
as the trailer of the gzip file.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include "zlib.h"
|
||||
|
||||
#define local static
|
||||
#define LGCHUNK 14
|
||||
#define CHUNK (1U << LGCHUNK)
|
||||
#define DSIZE 32768U
|
||||
|
||||
/* print an error message and terminate with extreme prejudice */
|
||||
local void bye(char *msg1, char *msg2)
|
||||
{
|
||||
fprintf(stderr, "gzappend error: %s%s\n", msg1, msg2);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
/* return the greatest common divisor of a and b using Euclid's algorithm,
|
||||
modified to be fast when one argument much greater than the other, and
|
||||
coded to avoid unnecessary swapping */
|
||||
local unsigned gcd(unsigned a, unsigned b)
|
||||
{
|
||||
unsigned c;
|
||||
|
||||
while (a && b)
|
||||
if (a > b) {
|
||||
c = b;
|
||||
while (a - c >= c)
|
||||
c <<= 1;
|
||||
a -= c;
|
||||
}
|
||||
else {
|
||||
c = a;
|
||||
while (b - c >= c)
|
||||
c <<= 1;
|
||||
b -= c;
|
||||
}
|
||||
return a + b;
|
||||
}
|
||||
|
||||
/* rotate list[0..len-1] left by rot positions, in place */
|
||||
local void rotate(unsigned char *list, unsigned len, unsigned rot)
|
||||
{
|
||||
unsigned char tmp;
|
||||
unsigned cycles;
|
||||
unsigned char *start, *last, *to, *from;
|
||||
|
||||
/* normalize rot and handle degenerate cases */
|
||||
if (len < 2) return;
|
||||
if (rot >= len) rot %= len;
|
||||
if (rot == 0) return;
|
||||
|
||||
/* pointer to last entry in list */
|
||||
last = list + (len - 1);
|
||||
|
||||
/* do simple left shift by one */
|
||||
if (rot == 1) {
|
||||
tmp = *list;
|
||||
memcpy(list, list + 1, len - 1);
|
||||
*last = tmp;
|
||||
return;
|
||||
}
|
||||
|
||||
/* do simple right shift by one */
|
||||
if (rot == len - 1) {
|
||||
tmp = *last;
|
||||
memmove(list + 1, list, len - 1);
|
||||
*list = tmp;
|
||||
return;
|
||||
}
|
||||
|
||||
/* otherwise do rotate as a set of cycles in place */
|
||||
cycles = gcd(len, rot); /* number of cycles */
|
||||
do {
|
||||
start = from = list + cycles; /* start index is arbitrary */
|
||||
tmp = *from; /* save entry to be overwritten */
|
||||
for (;;) {
|
||||
to = from; /* next step in cycle */
|
||||
from += rot; /* go right rot positions */
|
||||
if (from > last) from -= len; /* (pointer better not wrap) */
|
||||
if (from == start) break; /* all but one shifted */
|
||||
*to = *from; /* shift left */
|
||||
}
|
||||
*to = tmp; /* complete the circle */
|
||||
} while (--cycles);
|
||||
}
|
||||
|
||||
/* structure for gzip file read operations */
|
||||
typedef struct {
|
||||
int fd; /* file descriptor */
|
||||
int size; /* 1 << size is bytes in buf */
|
||||
unsigned left; /* bytes available at next */
|
||||
unsigned char *buf; /* buffer */
|
||||
z_const unsigned char *next; /* next byte in buffer */
|
||||
char *name; /* file name for error messages */
|
||||
} file;
|
||||
|
||||
/* reload buffer */
|
||||
local int readin(file *in)
|
||||
{
|
||||
int len;
|
||||
|
||||
len = read(in->fd, in->buf, 1 << in->size);
|
||||
if (len == -1) bye("error reading ", in->name);
|
||||
in->left = (unsigned)len;
|
||||
in->next = in->buf;
|
||||
return len;
|
||||
}
|
||||
|
||||
/* read from file in, exit if end-of-file */
|
||||
local int readmore(file *in)
|
||||
{
|
||||
if (readin(in) == 0) bye("unexpected end of ", in->name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define read1(in) (in->left == 0 ? readmore(in) : 0, \
|
||||
in->left--, *(in->next)++)
|
||||
|
||||
/* skip over n bytes of in */
|
||||
local void skip(file *in, unsigned n)
|
||||
{
|
||||
unsigned bypass;
|
||||
|
||||
if (n > in->left) {
|
||||
n -= in->left;
|
||||
bypass = n & ~((1U << in->size) - 1);
|
||||
if (bypass) {
|
||||
if (lseek(in->fd, (off_t)bypass, SEEK_CUR) == -1)
|
||||
bye("seeking ", in->name);
|
||||
n -= bypass;
|
||||
}
|
||||
readmore(in);
|
||||
if (n > in->left)
|
||||
bye("unexpected end of ", in->name);
|
||||
}
|
||||
in->left -= n;
|
||||
in->next += n;
|
||||
}
|
||||
|
||||
/* read a four-byte unsigned integer, little-endian, from in */
|
||||
unsigned long read4(file *in)
|
||||
{
|
||||
unsigned long val;
|
||||
|
||||
val = read1(in);
|
||||
val += (unsigned)read1(in) << 8;
|
||||
val += (unsigned long)read1(in) << 16;
|
||||
val += (unsigned long)read1(in) << 24;
|
||||
return val;
|
||||
}
|
||||
|
||||
/* skip over gzip header */
|
||||
local void gzheader(file *in)
|
||||
{
|
||||
int flags;
|
||||
unsigned n;
|
||||
|
||||
if (read1(in) != 31 || read1(in) != 139) bye(in->name, " not a gzip file");
|
||||
if (read1(in) != 8) bye("unknown compression method in", in->name);
|
||||
flags = read1(in);
|
||||
if (flags & 0xe0) bye("unknown header flags set in", in->name);
|
||||
skip(in, 6);
|
||||
if (flags & 4) {
|
||||
n = read1(in);
|
||||
n += (unsigned)(read1(in)) << 8;
|
||||
skip(in, n);
|
||||
}
|
||||
if (flags & 8) while (read1(in) != 0) ;
|
||||
if (flags & 16) while (read1(in) != 0) ;
|
||||
if (flags & 2) skip(in, 2);
|
||||
}
|
||||
|
||||
/* decompress gzip file "name", return strm with a deflate stream ready to
|
||||
continue compression of the data in the gzip file, and return a file
|
||||
descriptor pointing to where to write the compressed data -- the deflate
|
||||
stream is initialized to compress using level "level" */
|
||||
local int gzscan(char *name, z_stream *strm, int level)
|
||||
{
|
||||
int ret, lastbit, left, full;
|
||||
unsigned have;
|
||||
unsigned long crc, tot;
|
||||
unsigned char *window;
|
||||
off_t lastoff, end;
|
||||
file gz;
|
||||
|
||||
/* open gzip file */
|
||||
gz.name = name;
|
||||
gz.fd = open(name, O_RDWR, 0);
|
||||
if (gz.fd == -1) bye("cannot open ", name);
|
||||
gz.buf = malloc(CHUNK);
|
||||
if (gz.buf == NULL) bye("out of memory", "");
|
||||
gz.size = LGCHUNK;
|
||||
gz.left = 0;
|
||||
|
||||
/* skip gzip header */
|
||||
gzheader(&gz);
|
||||
|
||||
/* prepare to decompress */
|
||||
window = malloc(DSIZE);
|
||||
if (window == NULL) bye("out of memory", "");
|
||||
strm->zalloc = Z_NULL;
|
||||
strm->zfree = Z_NULL;
|
||||
strm->opaque = Z_NULL;
|
||||
ret = inflateInit2(strm, -15);
|
||||
if (ret != Z_OK) bye("out of memory", " or library mismatch");
|
||||
|
||||
/* decompress the deflate stream, saving append information */
|
||||
lastbit = 0;
|
||||
lastoff = lseek(gz.fd, 0L, SEEK_CUR) - gz.left;
|
||||
left = 0;
|
||||
strm->avail_in = gz.left;
|
||||
strm->next_in = gz.next;
|
||||
crc = crc32(0L, Z_NULL, 0);
|
||||
have = full = 0;
|
||||
do {
|
||||
/* if needed, get more input */
|
||||
if (strm->avail_in == 0) {
|
||||
readmore(&gz);
|
||||
strm->avail_in = gz.left;
|
||||
strm->next_in = gz.next;
|
||||
}
|
||||
|
||||
/* set up output to next available section of sliding window */
|
||||
strm->avail_out = DSIZE - have;
|
||||
strm->next_out = window + have;
|
||||
|
||||
/* inflate and check for errors */
|
||||
ret = inflate(strm, Z_BLOCK);
|
||||
if (ret == Z_STREAM_ERROR) bye("internal stream error!", "");
|
||||
if (ret == Z_MEM_ERROR) bye("out of memory", "");
|
||||
if (ret == Z_DATA_ERROR)
|
||||
bye("invalid compressed data--format violated in", name);
|
||||
|
||||
/* update crc and sliding window pointer */
|
||||
crc = crc32(crc, window + have, DSIZE - have - strm->avail_out);
|
||||
if (strm->avail_out)
|
||||
have = DSIZE - strm->avail_out;
|
||||
else {
|
||||
have = 0;
|
||||
full = 1;
|
||||
}
|
||||
|
||||
/* process end of block */
|
||||
if (strm->data_type & 128) {
|
||||
if (strm->data_type & 64)
|
||||
left = strm->data_type & 0x1f;
|
||||
else {
|
||||
lastbit = strm->data_type & 0x1f;
|
||||
lastoff = lseek(gz.fd, 0L, SEEK_CUR) - strm->avail_in;
|
||||
}
|
||||
}
|
||||
} while (ret != Z_STREAM_END);
|
||||
inflateEnd(strm);
|
||||
gz.left = strm->avail_in;
|
||||
gz.next = strm->next_in;
|
||||
|
||||
/* save the location of the end of the compressed data */
|
||||
end = lseek(gz.fd, 0L, SEEK_CUR) - gz.left;
|
||||
|
||||
/* check gzip trailer and save total for deflate */
|
||||
if (crc != read4(&gz))
|
||||
bye("invalid compressed data--crc mismatch in ", name);
|
||||
tot = strm->total_out;
|
||||
if ((tot & 0xffffffffUL) != read4(&gz))
|
||||
bye("invalid compressed data--length mismatch in", name);
|
||||
|
||||
/* if not at end of file, warn */
|
||||
if (gz.left || readin(&gz))
|
||||
fprintf(stderr,
|
||||
"gzappend warning: junk at end of gzip file overwritten\n");
|
||||
|
||||
/* clear last block bit */
|
||||
lseek(gz.fd, lastoff - (lastbit != 0), SEEK_SET);
|
||||
if (read(gz.fd, gz.buf, 1) != 1) bye("reading after seek on ", name);
|
||||
*gz.buf = (unsigned char)(*gz.buf ^ (1 << ((8 - lastbit) & 7)));
|
||||
lseek(gz.fd, -1L, SEEK_CUR);
|
||||
if (write(gz.fd, gz.buf, 1) != 1) bye("writing after seek to ", name);
|
||||
|
||||
/* if window wrapped, build dictionary from window by rotating */
|
||||
if (full) {
|
||||
rotate(window, DSIZE, have);
|
||||
have = DSIZE;
|
||||
}
|
||||
|
||||
/* set up deflate stream with window, crc, total_in, and leftover bits */
|
||||
ret = deflateInit2(strm, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
|
||||
if (ret != Z_OK) bye("out of memory", "");
|
||||
deflateSetDictionary(strm, window, have);
|
||||
strm->adler = crc;
|
||||
strm->total_in = tot;
|
||||
if (left) {
|
||||
lseek(gz.fd, --end, SEEK_SET);
|
||||
if (read(gz.fd, gz.buf, 1) != 1) bye("reading after seek on ", name);
|
||||
deflatePrime(strm, 8 - left, *gz.buf);
|
||||
}
|
||||
lseek(gz.fd, end, SEEK_SET);
|
||||
|
||||
/* clean up and return */
|
||||
free(window);
|
||||
free(gz.buf);
|
||||
return gz.fd;
|
||||
}
|
||||
|
||||
/* append file "name" to gzip file gd using deflate stream strm -- if last
|
||||
is true, then finish off the deflate stream at the end */
|
||||
local void gztack(char *name, int gd, z_stream *strm, int last)
|
||||
{
|
||||
int fd, len, ret;
|
||||
unsigned left;
|
||||
unsigned char *in, *out;
|
||||
|
||||
/* open file to compress and append */
|
||||
fd = 0;
|
||||
if (name != NULL) {
|
||||
fd = open(name, O_RDONLY, 0);
|
||||
if (fd == -1)
|
||||
fprintf(stderr, "gzappend warning: %s not found, skipping ...\n",
|
||||
name);
|
||||
}
|
||||
|
||||
/* allocate buffers */
|
||||
in = malloc(CHUNK);
|
||||
out = malloc(CHUNK);
|
||||
if (in == NULL || out == NULL) bye("out of memory", "");
|
||||
|
||||
/* compress input file and append to gzip file */
|
||||
do {
|
||||
/* get more input */
|
||||
len = read(fd, in, CHUNK);
|
||||
if (len == -1) {
|
||||
fprintf(stderr,
|
||||
"gzappend warning: error reading %s, skipping rest ...\n",
|
||||
name);
|
||||
len = 0;
|
||||
}
|
||||
strm->avail_in = (unsigned)len;
|
||||
strm->next_in = in;
|
||||
if (len) strm->adler = crc32(strm->adler, in, (unsigned)len);
|
||||
|
||||
/* compress and write all available output */
|
||||
do {
|
||||
strm->avail_out = CHUNK;
|
||||
strm->next_out = out;
|
||||
ret = deflate(strm, last && len == 0 ? Z_FINISH : Z_NO_FLUSH);
|
||||
left = CHUNK - strm->avail_out;
|
||||
while (left) {
|
||||
len = write(gd, out + CHUNK - strm->avail_out - left, left);
|
||||
if (len == -1) bye("writing gzip file", "");
|
||||
left -= (unsigned)len;
|
||||
}
|
||||
} while (strm->avail_out == 0 && ret != Z_STREAM_END);
|
||||
} while (len != 0);
|
||||
|
||||
/* write trailer after last entry */
|
||||
if (last) {
|
||||
deflateEnd(strm);
|
||||
out[0] = (unsigned char)(strm->adler);
|
||||
out[1] = (unsigned char)(strm->adler >> 8);
|
||||
out[2] = (unsigned char)(strm->adler >> 16);
|
||||
out[3] = (unsigned char)(strm->adler >> 24);
|
||||
out[4] = (unsigned char)(strm->total_in);
|
||||
out[5] = (unsigned char)(strm->total_in >> 8);
|
||||
out[6] = (unsigned char)(strm->total_in >> 16);
|
||||
out[7] = (unsigned char)(strm->total_in >> 24);
|
||||
len = 8;
|
||||
do {
|
||||
ret = write(gd, out + 8 - len, len);
|
||||
if (ret == -1) bye("writing gzip file", "");
|
||||
len -= ret;
|
||||
} while (len);
|
||||
close(gd);
|
||||
}
|
||||
|
||||
/* clean up and return */
|
||||
free(out);
|
||||
free(in);
|
||||
if (fd > 0) close(fd);
|
||||
}
|
||||
|
||||
/* process the compression level option if present, scan the gzip file, and
|
||||
append the specified files, or append the data from stdin if no other file
|
||||
names are provided on the command line -- the gzip file must be writable
|
||||
and seekable */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int gd, level;
|
||||
z_stream strm;
|
||||
|
||||
/* ignore command name */
|
||||
argc--; argv++;
|
||||
|
||||
/* provide usage if no arguments */
|
||||
if (*argv == NULL) {
|
||||
printf(
|
||||
"gzappend 1.2 (11 Oct 2012) Copyright (C) 2003, 2012 Mark Adler\n"
|
||||
);
|
||||
printf(
|
||||
"usage: gzappend [-level] file.gz [ addthis [ andthis ... ]]\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* set compression level */
|
||||
level = Z_DEFAULT_COMPRESSION;
|
||||
if (argv[0][0] == '-') {
|
||||
if (argv[0][1] < '0' || argv[0][1] > '9' || argv[0][2] != 0)
|
||||
bye("invalid compression level", "");
|
||||
level = argv[0][1] - '0';
|
||||
if (*++argv == NULL) bye("no gzip file name after options", "");
|
||||
}
|
||||
|
||||
/* prepare to append to gzip file */
|
||||
gd = gzscan(*argv++, &strm, level);
|
||||
|
||||
/* append files on command line, or from stdin if none */
|
||||
if (*argv == NULL)
|
||||
gztack(NULL, gd, &strm, 1);
|
||||
else
|
||||
do {
|
||||
gztack(*argv, gd, &strm, argv[1] == NULL);
|
||||
} while (*++argv != NULL);
|
||||
return 0;
|
||||
}
|
449
external/zlib/examples/gzjoin.c
vendored
449
external/zlib/examples/gzjoin.c
vendored
@ -1,449 +0,0 @@
|
||||
/* gzjoin -- command to join gzip files into one gzip file
|
||||
|
||||
Copyright (C) 2004, 2005, 2012 Mark Adler, all rights reserved
|
||||
version 1.2, 14 Aug 2012
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the author be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Mark Adler madler@alumni.caltech.edu
|
||||
*/
|
||||
|
||||
/*
|
||||
* Change history:
|
||||
*
|
||||
* 1.0 11 Dec 2004 - First version
|
||||
* 1.1 12 Jun 2005 - Changed ssize_t to long for portability
|
||||
* 1.2 14 Aug 2012 - Clean up for z_const usage
|
||||
*/
|
||||
|
||||
/*
|
||||
gzjoin takes one or more gzip files on the command line and writes out a
|
||||
single gzip file that will uncompress to the concatenation of the
|
||||
uncompressed data from the individual gzip files. gzjoin does this without
|
||||
having to recompress any of the data and without having to calculate a new
|
||||
crc32 for the concatenated uncompressed data. gzjoin does however have to
|
||||
decompress all of the input data in order to find the bits in the compressed
|
||||
data that need to be modified to concatenate the streams.
|
||||
|
||||
gzjoin does not do an integrity check on the input gzip files other than
|
||||
checking the gzip header and decompressing the compressed data. They are
|
||||
otherwise assumed to be complete and correct.
|
||||
|
||||
Each joint between gzip files removes at least 18 bytes of previous trailer
|
||||
and subsequent header, and inserts an average of about three bytes to the
|
||||
compressed data in order to connect the streams. The output gzip file
|
||||
has a minimal ten-byte gzip header with no file name or modification time.
|
||||
|
||||
This program was written to illustrate the use of the Z_BLOCK option of
|
||||
inflate() and the crc32_combine() function. gzjoin will not compile with
|
||||
versions of zlib earlier than 1.2.3.
|
||||
*/
|
||||
|
||||
#include <stdio.h> /* fputs(), fprintf(), fwrite(), putc() */
|
||||
#include <stdlib.h> /* exit(), malloc(), free() */
|
||||
#include <fcntl.h> /* open() */
|
||||
#include <unistd.h> /* close(), read(), lseek() */
|
||||
#include "zlib.h"
|
||||
/* crc32(), crc32_combine(), inflateInit2(), inflate(), inflateEnd() */
|
||||
|
||||
#define local static
|
||||
|
||||
/* exit with an error (return a value to allow use in an expression) */
|
||||
local int bail(char *why1, char *why2)
|
||||
{
|
||||
fprintf(stderr, "gzjoin error: %s%s, output incomplete\n", why1, why2);
|
||||
exit(1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* -- simple buffered file input with access to the buffer -- */
|
||||
|
||||
#define CHUNK 32768 /* must be a power of two and fit in unsigned */
|
||||
|
||||
/* bin buffered input file type */
|
||||
typedef struct {
|
||||
char *name; /* name of file for error messages */
|
||||
int fd; /* file descriptor */
|
||||
unsigned left; /* bytes remaining at next */
|
||||
unsigned char *next; /* next byte to read */
|
||||
unsigned char *buf; /* allocated buffer of length CHUNK */
|
||||
} bin;
|
||||
|
||||
/* close a buffered file and free allocated memory */
|
||||
local void bclose(bin *in)
|
||||
{
|
||||
if (in != NULL) {
|
||||
if (in->fd != -1)
|
||||
close(in->fd);
|
||||
if (in->buf != NULL)
|
||||
free(in->buf);
|
||||
free(in);
|
||||
}
|
||||
}
|
||||
|
||||
/* open a buffered file for input, return a pointer to type bin, or NULL on
|
||||
failure */
|
||||
local bin *bopen(char *name)
|
||||
{
|
||||
bin *in;
|
||||
|
||||
in = malloc(sizeof(bin));
|
||||
if (in == NULL)
|
||||
return NULL;
|
||||
in->buf = malloc(CHUNK);
|
||||
in->fd = open(name, O_RDONLY, 0);
|
||||
if (in->buf == NULL || in->fd == -1) {
|
||||
bclose(in);
|
||||
return NULL;
|
||||
}
|
||||
in->left = 0;
|
||||
in->next = in->buf;
|
||||
in->name = name;
|
||||
return in;
|
||||
}
|
||||
|
||||
/* load buffer from file, return -1 on read error, 0 or 1 on success, with
|
||||
1 indicating that end-of-file was reached */
|
||||
local int bload(bin *in)
|
||||
{
|
||||
long len;
|
||||
|
||||
if (in == NULL)
|
||||
return -1;
|
||||
if (in->left != 0)
|
||||
return 0;
|
||||
in->next = in->buf;
|
||||
do {
|
||||
len = (long)read(in->fd, in->buf + in->left, CHUNK - in->left);
|
||||
if (len < 0)
|
||||
return -1;
|
||||
in->left += (unsigned)len;
|
||||
} while (len != 0 && in->left < CHUNK);
|
||||
return len == 0 ? 1 : 0;
|
||||
}
|
||||
|
||||
/* get a byte from the file, bail if end of file */
|
||||
#define bget(in) (in->left ? 0 : bload(in), \
|
||||
in->left ? (in->left--, *(in->next)++) : \
|
||||
bail("unexpected end of file on ", in->name))
|
||||
|
||||
/* get a four-byte little-endian unsigned integer from file */
|
||||
local unsigned long bget4(bin *in)
|
||||
{
|
||||
unsigned long val;
|
||||
|
||||
val = bget(in);
|
||||
val += (unsigned long)(bget(in)) << 8;
|
||||
val += (unsigned long)(bget(in)) << 16;
|
||||
val += (unsigned long)(bget(in)) << 24;
|
||||
return val;
|
||||
}
|
||||
|
||||
/* skip bytes in file */
|
||||
local void bskip(bin *in, unsigned skip)
|
||||
{
|
||||
/* check pointer */
|
||||
if (in == NULL)
|
||||
return;
|
||||
|
||||
/* easy case -- skip bytes in buffer */
|
||||
if (skip <= in->left) {
|
||||
in->left -= skip;
|
||||
in->next += skip;
|
||||
return;
|
||||
}
|
||||
|
||||
/* skip what's in buffer, discard buffer contents */
|
||||
skip -= in->left;
|
||||
in->left = 0;
|
||||
|
||||
/* seek past multiples of CHUNK bytes */
|
||||
if (skip > CHUNK) {
|
||||
unsigned left;
|
||||
|
||||
left = skip & (CHUNK - 1);
|
||||
if (left == 0) {
|
||||
/* exact number of chunks: seek all the way minus one byte to check
|
||||
for end-of-file with a read */
|
||||
lseek(in->fd, skip - 1, SEEK_CUR);
|
||||
if (read(in->fd, in->buf, 1) != 1)
|
||||
bail("unexpected end of file on ", in->name);
|
||||
return;
|
||||
}
|
||||
|
||||
/* skip the integral chunks, update skip with remainder */
|
||||
lseek(in->fd, skip - left, SEEK_CUR);
|
||||
skip = left;
|
||||
}
|
||||
|
||||
/* read more input and skip remainder */
|
||||
bload(in);
|
||||
if (skip > in->left)
|
||||
bail("unexpected end of file on ", in->name);
|
||||
in->left -= skip;
|
||||
in->next += skip;
|
||||
}
|
||||
|
||||
/* -- end of buffered input functions -- */
|
||||
|
||||
/* skip the gzip header from file in */
|
||||
local void gzhead(bin *in)
|
||||
{
|
||||
int flags;
|
||||
|
||||
/* verify gzip magic header and compression method */
|
||||
if (bget(in) != 0x1f || bget(in) != 0x8b || bget(in) != 8)
|
||||
bail(in->name, " is not a valid gzip file");
|
||||
|
||||
/* get and verify flags */
|
||||
flags = bget(in);
|
||||
if ((flags & 0xe0) != 0)
|
||||
bail("unknown reserved bits set in ", in->name);
|
||||
|
||||
/* skip modification time, extra flags, and os */
|
||||
bskip(in, 6);
|
||||
|
||||
/* skip extra field if present */
|
||||
if (flags & 4) {
|
||||
unsigned len;
|
||||
|
||||
len = bget(in);
|
||||
len += (unsigned)(bget(in)) << 8;
|
||||
bskip(in, len);
|
||||
}
|
||||
|
||||
/* skip file name if present */
|
||||
if (flags & 8)
|
||||
while (bget(in) != 0)
|
||||
;
|
||||
|
||||
/* skip comment if present */
|
||||
if (flags & 16)
|
||||
while (bget(in) != 0)
|
||||
;
|
||||
|
||||
/* skip header crc if present */
|
||||
if (flags & 2)
|
||||
bskip(in, 2);
|
||||
}
|
||||
|
||||
/* write a four-byte little-endian unsigned integer to out */
|
||||
local void put4(unsigned long val, FILE *out)
|
||||
{
|
||||
putc(val & 0xff, out);
|
||||
putc((val >> 8) & 0xff, out);
|
||||
putc((val >> 16) & 0xff, out);
|
||||
putc((val >> 24) & 0xff, out);
|
||||
}
|
||||
|
||||
/* Load up zlib stream from buffered input, bail if end of file */
|
||||
local void zpull(z_streamp strm, bin *in)
|
||||
{
|
||||
if (in->left == 0)
|
||||
bload(in);
|
||||
if (in->left == 0)
|
||||
bail("unexpected end of file on ", in->name);
|
||||
strm->avail_in = in->left;
|
||||
strm->next_in = in->next;
|
||||
}
|
||||
|
||||
/* Write header for gzip file to out and initialize trailer. */
|
||||
local void gzinit(unsigned long *crc, unsigned long *tot, FILE *out)
|
||||
{
|
||||
fwrite("\x1f\x8b\x08\0\0\0\0\0\0\xff", 1, 10, out);
|
||||
*crc = crc32(0L, Z_NULL, 0);
|
||||
*tot = 0;
|
||||
}
|
||||
|
||||
/* Copy the compressed data from name, zeroing the last block bit of the last
|
||||
block if clr is true, and adding empty blocks as needed to get to a byte
|
||||
boundary. If clr is false, then the last block becomes the last block of
|
||||
the output, and the gzip trailer is written. crc and tot maintains the
|
||||
crc and length (modulo 2^32) of the output for the trailer. The resulting
|
||||
gzip file is written to out. gzinit() must be called before the first call
|
||||
of gzcopy() to write the gzip header and to initialize crc and tot. */
|
||||
local void gzcopy(char *name, int clr, unsigned long *crc, unsigned long *tot,
|
||||
FILE *out)
|
||||
{
|
||||
int ret; /* return value from zlib functions */
|
||||
int pos; /* where the "last block" bit is in byte */
|
||||
int last; /* true if processing the last block */
|
||||
bin *in; /* buffered input file */
|
||||
unsigned char *start; /* start of compressed data in buffer */
|
||||
unsigned char *junk; /* buffer for uncompressed data -- discarded */
|
||||
z_off_t len; /* length of uncompressed data (support > 4 GB) */
|
||||
z_stream strm; /* zlib inflate stream */
|
||||
|
||||
/* open gzip file and skip header */
|
||||
in = bopen(name);
|
||||
if (in == NULL)
|
||||
bail("could not open ", name);
|
||||
gzhead(in);
|
||||
|
||||
/* allocate buffer for uncompressed data and initialize raw inflate
|
||||
stream */
|
||||
junk = malloc(CHUNK);
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit2(&strm, -15);
|
||||
if (junk == NULL || ret != Z_OK)
|
||||
bail("out of memory", "");
|
||||
|
||||
/* inflate and copy compressed data, clear last-block bit if requested */
|
||||
len = 0;
|
||||
zpull(&strm, in);
|
||||
start = in->next;
|
||||
last = start[0] & 1;
|
||||
if (last && clr)
|
||||
start[0] &= ~1;
|
||||
strm.avail_out = 0;
|
||||
for (;;) {
|
||||
/* if input used and output done, write used input and get more */
|
||||
if (strm.avail_in == 0 && strm.avail_out != 0) {
|
||||
fwrite(start, 1, strm.next_in - start, out);
|
||||
start = in->buf;
|
||||
in->left = 0;
|
||||
zpull(&strm, in);
|
||||
}
|
||||
|
||||
/* decompress -- return early when end-of-block reached */
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = junk;
|
||||
ret = inflate(&strm, Z_BLOCK);
|
||||
switch (ret) {
|
||||
case Z_MEM_ERROR:
|
||||
bail("out of memory", "");
|
||||
case Z_DATA_ERROR:
|
||||
bail("invalid compressed data in ", in->name);
|
||||
}
|
||||
|
||||
/* update length of uncompressed data */
|
||||
len += CHUNK - strm.avail_out;
|
||||
|
||||
/* check for block boundary (only get this when block copied out) */
|
||||
if (strm.data_type & 128) {
|
||||
/* if that was the last block, then done */
|
||||
if (last)
|
||||
break;
|
||||
|
||||
/* number of unused bits in last byte */
|
||||
pos = strm.data_type & 7;
|
||||
|
||||
/* find the next last-block bit */
|
||||
if (pos != 0) {
|
||||
/* next last-block bit is in last used byte */
|
||||
pos = 0x100 >> pos;
|
||||
last = strm.next_in[-1] & pos;
|
||||
if (last && clr)
|
||||
in->buf[strm.next_in - in->buf - 1] &= ~pos;
|
||||
}
|
||||
else {
|
||||
/* next last-block bit is in next unused byte */
|
||||
if (strm.avail_in == 0) {
|
||||
/* don't have that byte yet -- get it */
|
||||
fwrite(start, 1, strm.next_in - start, out);
|
||||
start = in->buf;
|
||||
in->left = 0;
|
||||
zpull(&strm, in);
|
||||
}
|
||||
last = strm.next_in[0] & 1;
|
||||
if (last && clr)
|
||||
in->buf[strm.next_in - in->buf] &= ~1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* update buffer with unused input */
|
||||
in->left = strm.avail_in;
|
||||
in->next = in->buf + (strm.next_in - in->buf);
|
||||
|
||||
/* copy used input, write empty blocks to get to byte boundary */
|
||||
pos = strm.data_type & 7;
|
||||
fwrite(start, 1, in->next - start - 1, out);
|
||||
last = in->next[-1];
|
||||
if (pos == 0 || !clr)
|
||||
/* already at byte boundary, or last file: write last byte */
|
||||
putc(last, out);
|
||||
else {
|
||||
/* append empty blocks to last byte */
|
||||
last &= ((0x100 >> pos) - 1); /* assure unused bits are zero */
|
||||
if (pos & 1) {
|
||||
/* odd -- append an empty stored block */
|
||||
putc(last, out);
|
||||
if (pos == 1)
|
||||
putc(0, out); /* two more bits in block header */
|
||||
fwrite("\0\0\xff\xff", 1, 4, out);
|
||||
}
|
||||
else {
|
||||
/* even -- append 1, 2, or 3 empty fixed blocks */
|
||||
switch (pos) {
|
||||
case 6:
|
||||
putc(last | 8, out);
|
||||
last = 0;
|
||||
case 4:
|
||||
putc(last | 0x20, out);
|
||||
last = 0;
|
||||
case 2:
|
||||
putc(last | 0x80, out);
|
||||
putc(0, out);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* update crc and tot */
|
||||
*crc = crc32_combine(*crc, bget4(in), len);
|
||||
*tot += (unsigned long)len;
|
||||
|
||||
/* clean up */
|
||||
inflateEnd(&strm);
|
||||
free(junk);
|
||||
bclose(in);
|
||||
|
||||
/* write trailer if this is the last gzip file */
|
||||
if (!clr) {
|
||||
put4(*crc, out);
|
||||
put4(*tot, out);
|
||||
}
|
||||
}
|
||||
|
||||
/* join the gzip files on the command line, write result to stdout */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
unsigned long crc, tot; /* running crc and total uncompressed length */
|
||||
|
||||
/* skip command name */
|
||||
argc--;
|
||||
argv++;
|
||||
|
||||
/* show usage if no arguments */
|
||||
if (argc == 0) {
|
||||
fputs("gzjoin usage: gzjoin f1.gz [f2.gz [f3.gz ...]] > fjoin.gz\n",
|
||||
stderr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* join gzip files on command line and write to stdout */
|
||||
gzinit(&crc, &tot, stdout);
|
||||
while (argc--)
|
||||
gzcopy(*argv++, argc, &crc, &tot, stdout);
|
||||
|
||||
/* done */
|
||||
return 0;
|
||||
}
|
1059
external/zlib/examples/gzlog.c
vendored
1059
external/zlib/examples/gzlog.c
vendored
File diff suppressed because it is too large
Load Diff
91
external/zlib/examples/gzlog.h
vendored
91
external/zlib/examples/gzlog.h
vendored
@ -1,91 +0,0 @@
|
||||
/* gzlog.h
|
||||
Copyright (C) 2004, 2008, 2012 Mark Adler, all rights reserved
|
||||
version 2.2, 14 Aug 2012
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the author be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Mark Adler madler@alumni.caltech.edu
|
||||
*/
|
||||
|
||||
/* Version History:
|
||||
1.0 26 Nov 2004 First version
|
||||
2.0 25 Apr 2008 Complete redesign for recovery of interrupted operations
|
||||
Interface changed slightly in that now path is a prefix
|
||||
Compression now occurs as needed during gzlog_write()
|
||||
gzlog_write() now always leaves the log file as valid gzip
|
||||
2.1 8 Jul 2012 Fix argument checks in gzlog_compress() and gzlog_write()
|
||||
2.2 14 Aug 2012 Clean up signed comparisons
|
||||
*/
|
||||
|
||||
/*
|
||||
The gzlog object allows writing short messages to a gzipped log file,
|
||||
opening the log file locked for small bursts, and then closing it. The log
|
||||
object works by appending stored (uncompressed) data to the gzip file until
|
||||
1 MB has been accumulated. At that time, the stored data is compressed, and
|
||||
replaces the uncompressed data in the file. The log file is truncated to
|
||||
its new size at that time. After each write operation, the log file is a
|
||||
valid gzip file that can decompressed to recover what was written.
|
||||
|
||||
The gzlog operations can be interupted at any point due to an application or
|
||||
system crash, and the log file will be recovered the next time the log is
|
||||
opened with gzlog_open().
|
||||
*/
|
||||
|
||||
#ifndef GZLOG_H
|
||||
#define GZLOG_H
|
||||
|
||||
/* gzlog object type */
|
||||
typedef void gzlog;
|
||||
|
||||
/* Open a gzlog object, creating the log file if it does not exist. Return
|
||||
NULL on error. Note that gzlog_open() could take a while to complete if it
|
||||
has to wait to verify that a lock is stale (possibly for five minutes), or
|
||||
if there is significant contention with other instantiations of this object
|
||||
when locking the resource. path is the prefix of the file names created by
|
||||
this object. If path is "foo", then the log file will be "foo.gz", and
|
||||
other auxiliary files will be created and destroyed during the process:
|
||||
"foo.dict" for a compression dictionary, "foo.temp" for a temporary (next)
|
||||
dictionary, "foo.add" for data being added or compressed, "foo.lock" for the
|
||||
lock file, and "foo.repairs" to log recovery operations performed due to
|
||||
interrupted gzlog operations. A gzlog_open() followed by a gzlog_close()
|
||||
will recover a previously interrupted operation, if any. */
|
||||
gzlog *gzlog_open(char *path);
|
||||
|
||||
/* Write to a gzlog object. Return zero on success, -1 if there is a file i/o
|
||||
error on any of the gzlog files (this should not happen if gzlog_open()
|
||||
succeeded, unless the device has run out of space or leftover auxiliary
|
||||
files have permissions or ownership that prevent their use), -2 if there is
|
||||
a memory allocation failure, or -3 if the log argument is invalid (e.g. if
|
||||
it was not created by gzlog_open()). This function will write data to the
|
||||
file uncompressed, until 1 MB has been accumulated, at which time that data
|
||||
will be compressed. The log file will be a valid gzip file upon successful
|
||||
return. */
|
||||
int gzlog_write(gzlog *log, void *data, size_t len);
|
||||
|
||||
/* Force compression of any uncompressed data in the log. This should be used
|
||||
sparingly, if at all. The main application would be when a log file will
|
||||
not be appended to again. If this is used to compress frequently while
|
||||
appending, it will both significantly increase the execution time and
|
||||
reduce the compression ratio. The return codes are the same as for
|
||||
gzlog_write(). */
|
||||
int gzlog_compress(gzlog *log);
|
||||
|
||||
/* Close a gzlog object. Return zero on success, -3 if the log argument is
|
||||
invalid. The log object is freed, and so cannot be referenced again. */
|
||||
int gzlog_close(gzlog *log);
|
||||
|
||||
#endif
|
545
external/zlib/examples/zlib_how.html
vendored
545
external/zlib/examples/zlib_how.html
vendored
@ -1,545 +0,0 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
|
||||
"http://www.w3.org/TR/REC-html40/loose.dtd">
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
|
||||
<title>zlib Usage Example</title>
|
||||
<!-- Copyright (c) 2004, 2005 Mark Adler. -->
|
||||
</head>
|
||||
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#00A000">
|
||||
<h2 align="center"> zlib Usage Example </h2>
|
||||
We often get questions about how the <tt>deflate()</tt> and <tt>inflate()</tt> functions should be used.
|
||||
Users wonder when they should provide more input, when they should use more output,
|
||||
what to do with a <tt>Z_BUF_ERROR</tt>, how to make sure the process terminates properly, and
|
||||
so on. So for those who have read <tt>zlib.h</tt> (a few times), and
|
||||
would like further edification, below is an annotated example in C of simple routines to compress and decompress
|
||||
from an input file to an output file using <tt>deflate()</tt> and <tt>inflate()</tt> respectively. The
|
||||
annotations are interspersed between lines of the code. So please read between the lines.
|
||||
We hope this helps explain some of the intricacies of <em>zlib</em>.
|
||||
<p>
|
||||
Without further adieu, here is the program <a href="zpipe.c"><tt>zpipe.c</tt></a>:
|
||||
<pre><b>
|
||||
/* zpipe.c: example of proper use of zlib's inflate() and deflate()
|
||||
Not copyrighted -- provided to the public domain
|
||||
Version 1.4 11 December 2005 Mark Adler */
|
||||
|
||||
/* Version history:
|
||||
1.0 30 Oct 2004 First version
|
||||
1.1 8 Nov 2004 Add void casting for unused return values
|
||||
Use switch statement for inflate() return values
|
||||
1.2 9 Nov 2004 Add assertions to document zlib guarantees
|
||||
1.3 6 Apr 2005 Remove incorrect assertion in inf()
|
||||
1.4 11 Dec 2005 Add hack to avoid MSDOS end-of-line conversions
|
||||
Avoid some compiler warnings for input and output buffers
|
||||
*/
|
||||
</b></pre><!-- -->
|
||||
We now include the header files for the required definitions. From
|
||||
<tt>stdio.h</tt> we use <tt>fopen()</tt>, <tt>fread()</tt>, <tt>fwrite()</tt>,
|
||||
<tt>feof()</tt>, <tt>ferror()</tt>, and <tt>fclose()</tt> for file i/o, and
|
||||
<tt>fputs()</tt> for error messages. From <tt>string.h</tt> we use
|
||||
<tt>strcmp()</tt> for command line argument processing.
|
||||
From <tt>assert.h</tt> we use the <tt>assert()</tt> macro.
|
||||
From <tt>zlib.h</tt>
|
||||
we use the basic compression functions <tt>deflateInit()</tt>,
|
||||
<tt>deflate()</tt>, and <tt>deflateEnd()</tt>, and the basic decompression
|
||||
functions <tt>inflateInit()</tt>, <tt>inflate()</tt>, and
|
||||
<tt>inflateEnd()</tt>.
|
||||
<pre><b>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "zlib.h"
|
||||
</b></pre><!-- -->
|
||||
This is an ugly hack required to avoid corruption of the input and output data on
|
||||
Windows/MS-DOS systems. Without this, those systems would assume that the input and output
|
||||
files are text, and try to convert the end-of-line characters from one standard to
|
||||
another. That would corrupt binary data, and in particular would render the compressed data unusable.
|
||||
This sets the input and output to binary which suppresses the end-of-line conversions.
|
||||
<tt>SET_BINARY_MODE()</tt> will be used later on <tt>stdin</tt> and <tt>stdout</tt>, at the beginning of <tt>main()</tt>.
|
||||
<pre><b>
|
||||
#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
|
||||
# include <fcntl.h>
|
||||
# include <io.h>
|
||||
# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
|
||||
#else
|
||||
# define SET_BINARY_MODE(file)
|
||||
#endif
|
||||
</b></pre><!-- -->
|
||||
<tt>CHUNK</tt> is simply the buffer size for feeding data to and pulling data
|
||||
from the <em>zlib</em> routines. Larger buffer sizes would be more efficient,
|
||||
especially for <tt>inflate()</tt>. If the memory is available, buffers sizes
|
||||
on the order of 128K or 256K bytes should be used.
|
||||
<pre><b>
|
||||
#define CHUNK 16384
|
||||
</b></pre><!-- -->
|
||||
The <tt>def()</tt> routine compresses data from an input file to an output file. The output data
|
||||
will be in the <em>zlib</em> format, which is different from the <em>gzip</em> or <em>zip</em>
|
||||
formats. The <em>zlib</em> format has a very small header of only two bytes to identify it as
|
||||
a <em>zlib</em> stream and to provide decoding information, and a four-byte trailer with a fast
|
||||
check value to verify the integrity of the uncompressed data after decoding.
|
||||
<pre><b>
|
||||
/* Compress from file source to file dest until EOF on source.
|
||||
def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
|
||||
allocated for processing, Z_STREAM_ERROR if an invalid compression
|
||||
level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
|
||||
version of the library linked do not match, or Z_ERRNO if there is
|
||||
an error reading or writing the files. */
|
||||
int def(FILE *source, FILE *dest, int level)
|
||||
{
|
||||
</b></pre>
|
||||
Here are the local variables for <tt>def()</tt>. <tt>ret</tt> will be used for <em>zlib</em>
|
||||
return codes. <tt>flush</tt> will keep track of the current flushing state for <tt>deflate()</tt>,
|
||||
which is either no flushing, or flush to completion after the end of the input file is reached.
|
||||
<tt>have</tt> is the amount of data returned from <tt>deflate()</tt>. The <tt>strm</tt> structure
|
||||
is used to pass information to and from the <em>zlib</em> routines, and to maintain the
|
||||
<tt>deflate()</tt> state. <tt>in</tt> and <tt>out</tt> are the input and output buffers for
|
||||
<tt>deflate()</tt>.
|
||||
<pre><b>
|
||||
int ret, flush;
|
||||
unsigned have;
|
||||
z_stream strm;
|
||||
unsigned char in[CHUNK];
|
||||
unsigned char out[CHUNK];
|
||||
</b></pre><!-- -->
|
||||
The first thing we do is to initialize the <em>zlib</em> state for compression using
|
||||
<tt>deflateInit()</tt>. This must be done before the first use of <tt>deflate()</tt>.
|
||||
The <tt>zalloc</tt>, <tt>zfree</tt>, and <tt>opaque</tt> fields in the <tt>strm</tt>
|
||||
structure must be initialized before calling <tt>deflateInit()</tt>. Here they are
|
||||
set to the <em>zlib</em> constant <tt>Z_NULL</tt> to request that <em>zlib</em> use
|
||||
the default memory allocation routines. An application may also choose to provide
|
||||
custom memory allocation routines here. <tt>deflateInit()</tt> will allocate on the
|
||||
order of 256K bytes for the internal state.
|
||||
(See <a href="zlib_tech.html"><em>zlib Technical Details</em></a>.)
|
||||
<p>
|
||||
<tt>deflateInit()</tt> is called with a pointer to the structure to be initialized and
|
||||
the compression level, which is an integer in the range of -1 to 9. Lower compression
|
||||
levels result in faster execution, but less compression. Higher levels result in
|
||||
greater compression, but slower execution. The <em>zlib</em> constant Z_DEFAULT_COMPRESSION,
|
||||
equal to -1,
|
||||
provides a good compromise between compression and speed and is equivalent to level 6.
|
||||
Level 0 actually does no compression at all, and in fact expands the data slightly to produce
|
||||
the <em>zlib</em> format (it is not a byte-for-byte copy of the input).
|
||||
More advanced applications of <em>zlib</em>
|
||||
may use <tt>deflateInit2()</tt> here instead. Such an application may want to reduce how
|
||||
much memory will be used, at some price in compression. Or it may need to request a
|
||||
<em>gzip</em> header and trailer instead of a <em>zlib</em> header and trailer, or raw
|
||||
encoding with no header or trailer at all.
|
||||
<p>
|
||||
We must check the return value of <tt>deflateInit()</tt> against the <em>zlib</em> constant
|
||||
<tt>Z_OK</tt> to make sure that it was able to
|
||||
allocate memory for the internal state, and that the provided arguments were valid.
|
||||
<tt>deflateInit()</tt> will also check that the version of <em>zlib</em> that the <tt>zlib.h</tt>
|
||||
file came from matches the version of <em>zlib</em> actually linked with the program. This
|
||||
is especially important for environments in which <em>zlib</em> is a shared library.
|
||||
<p>
|
||||
Note that an application can initialize multiple, independent <em>zlib</em> streams, which can
|
||||
operate in parallel. The state information maintained in the structure allows the <em>zlib</em>
|
||||
routines to be reentrant.
|
||||
<pre><b>
|
||||
/* allocate deflate state */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
ret = deflateInit(&strm, level);
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
</b></pre><!-- -->
|
||||
With the pleasantries out of the way, now we can get down to business. The outer <tt>do</tt>-loop
|
||||
reads all of the input file and exits at the bottom of the loop once end-of-file is reached.
|
||||
This loop contains the only call of <tt>deflate()</tt>. So we must make sure that all of the
|
||||
input data has been processed and that all of the output data has been generated and consumed
|
||||
before we fall out of the loop at the bottom.
|
||||
<pre><b>
|
||||
/* compress until end of file */
|
||||
do {
|
||||
</b></pre>
|
||||
We start off by reading data from the input file. The number of bytes read is put directly
|
||||
into <tt>avail_in</tt>, and a pointer to those bytes is put into <tt>next_in</tt>. We also
|
||||
check to see if end-of-file on the input has been reached. If we are at the end of file, then <tt>flush</tt> is set to the
|
||||
<em>zlib</em> constant <tt>Z_FINISH</tt>, which is later passed to <tt>deflate()</tt> to
|
||||
indicate that this is the last chunk of input data to compress. We need to use <tt>feof()</tt>
|
||||
to check for end-of-file as opposed to seeing if fewer than <tt>CHUNK</tt> bytes have been read. The
|
||||
reason is that if the input file length is an exact multiple of <tt>CHUNK</tt>, we will miss
|
||||
the fact that we got to the end-of-file, and not know to tell <tt>deflate()</tt> to finish
|
||||
up the compressed stream. If we are not yet at the end of the input, then the <em>zlib</em>
|
||||
constant <tt>Z_NO_FLUSH</tt> will be passed to <tt>deflate</tt> to indicate that we are still
|
||||
in the middle of the uncompressed data.
|
||||
<p>
|
||||
If there is an error in reading from the input file, the process is aborted with
|
||||
<tt>deflateEnd()</tt> being called to free the allocated <em>zlib</em> state before returning
|
||||
the error. We wouldn't want a memory leak, now would we? <tt>deflateEnd()</tt> can be called
|
||||
at any time after the state has been initialized. Once that's done, <tt>deflateInit()</tt> (or
|
||||
<tt>deflateInit2()</tt>) would have to be called to start a new compression process. There is
|
||||
no point here in checking the <tt>deflateEnd()</tt> return code. The deallocation can't fail.
|
||||
<pre><b>
|
||||
strm.avail_in = fread(in, 1, CHUNK, source);
|
||||
if (ferror(source)) {
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
|
||||
strm.next_in = in;
|
||||
</b></pre><!-- -->
|
||||
The inner <tt>do</tt>-loop passes our chunk of input data to <tt>deflate()</tt>, and then
|
||||
keeps calling <tt>deflate()</tt> until it is done producing output. Once there is no more
|
||||
new output, <tt>deflate()</tt> is guaranteed to have consumed all of the input, i.e.,
|
||||
<tt>avail_in</tt> will be zero.
|
||||
<pre><b>
|
||||
/* run deflate() on input until output buffer not full, finish
|
||||
compression if all of source has been read in */
|
||||
do {
|
||||
</b></pre>
|
||||
Output space is provided to <tt>deflate()</tt> by setting <tt>avail_out</tt> to the number
|
||||
of available output bytes and <tt>next_out</tt> to a pointer to that space.
|
||||
<pre><b>
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = out;
|
||||
</b></pre>
|
||||
Now we call the compression engine itself, <tt>deflate()</tt>. It takes as many of the
|
||||
<tt>avail_in</tt> bytes at <tt>next_in</tt> as it can process, and writes as many as
|
||||
<tt>avail_out</tt> bytes to <tt>next_out</tt>. Those counters and pointers are then
|
||||
updated past the input data consumed and the output data written. It is the amount of
|
||||
output space available that may limit how much input is consumed.
|
||||
Hence the inner loop to make sure that
|
||||
all of the input is consumed by providing more output space each time. Since <tt>avail_in</tt>
|
||||
and <tt>next_in</tt> are updated by <tt>deflate()</tt>, we don't have to mess with those
|
||||
between <tt>deflate()</tt> calls until it's all used up.
|
||||
<p>
|
||||
The parameters to <tt>deflate()</tt> are a pointer to the <tt>strm</tt> structure containing
|
||||
the input and output information and the internal compression engine state, and a parameter
|
||||
indicating whether and how to flush data to the output. Normally <tt>deflate</tt> will consume
|
||||
several K bytes of input data before producing any output (except for the header), in order
|
||||
to accumulate statistics on the data for optimum compression. It will then put out a burst of
|
||||
compressed data, and proceed to consume more input before the next burst. Eventually,
|
||||
<tt>deflate()</tt>
|
||||
must be told to terminate the stream, complete the compression with provided input data, and
|
||||
write out the trailer check value. <tt>deflate()</tt> will continue to compress normally as long
|
||||
as the flush parameter is <tt>Z_NO_FLUSH</tt>. Once the <tt>Z_FINISH</tt> parameter is provided,
|
||||
<tt>deflate()</tt> will begin to complete the compressed output stream. However depending on how
|
||||
much output space is provided, <tt>deflate()</tt> may have to be called several times until it
|
||||
has provided the complete compressed stream, even after it has consumed all of the input. The flush
|
||||
parameter must continue to be <tt>Z_FINISH</tt> for those subsequent calls.
|
||||
<p>
|
||||
There are other values of the flush parameter that are used in more advanced applications. You can
|
||||
force <tt>deflate()</tt> to produce a burst of output that encodes all of the input data provided
|
||||
so far, even if it wouldn't have otherwise, for example to control data latency on a link with
|
||||
compressed data. You can also ask that <tt>deflate()</tt> do that as well as erase any history up to
|
||||
that point so that what follows can be decompressed independently, for example for random access
|
||||
applications. Both requests will degrade compression by an amount depending on how often such
|
||||
requests are made.
|
||||
<p>
|
||||
<tt>deflate()</tt> has a return value that can indicate errors, yet we do not check it here. Why
|
||||
not? Well, it turns out that <tt>deflate()</tt> can do no wrong here. Let's go through
|
||||
<tt>deflate()</tt>'s return values and dispense with them one by one. The possible values are
|
||||
<tt>Z_OK</tt>, <tt>Z_STREAM_END</tt>, <tt>Z_STREAM_ERROR</tt>, or <tt>Z_BUF_ERROR</tt>. <tt>Z_OK</tt>
|
||||
is, well, ok. <tt>Z_STREAM_END</tt> is also ok and will be returned for the last call of
|
||||
<tt>deflate()</tt>. This is already guaranteed by calling <tt>deflate()</tt> with <tt>Z_FINISH</tt>
|
||||
until it has no more output. <tt>Z_STREAM_ERROR</tt> is only possible if the stream is not
|
||||
initialized properly, but we did initialize it properly. There is no harm in checking for
|
||||
<tt>Z_STREAM_ERROR</tt> here, for example to check for the possibility that some
|
||||
other part of the application inadvertently clobbered the memory containing the <em>zlib</em> state.
|
||||
<tt>Z_BUF_ERROR</tt> will be explained further below, but
|
||||
suffice it to say that this is simply an indication that <tt>deflate()</tt> could not consume
|
||||
more input or produce more output. <tt>deflate()</tt> can be called again with more output space
|
||||
or more available input, which it will be in this code.
|
||||
<pre><b>
|
||||
ret = deflate(&strm, flush); /* no bad return value */
|
||||
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
|
||||
</b></pre>
|
||||
Now we compute how much output <tt>deflate()</tt> provided on the last call, which is the
|
||||
difference between how much space was provided before the call, and how much output space
|
||||
is still available after the call. Then that data, if any, is written to the output file.
|
||||
We can then reuse the output buffer for the next call of <tt>deflate()</tt>. Again if there
|
||||
is a file i/o error, we call <tt>deflateEnd()</tt> before returning to avoid a memory leak.
|
||||
<pre><b>
|
||||
have = CHUNK - strm.avail_out;
|
||||
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
</b></pre>
|
||||
The inner <tt>do</tt>-loop is repeated until the last <tt>deflate()</tt> call fails to fill the
|
||||
provided output buffer. Then we know that <tt>deflate()</tt> has done as much as it can with
|
||||
the provided input, and that all of that input has been consumed. We can then fall out of this
|
||||
loop and reuse the input buffer.
|
||||
<p>
|
||||
The way we tell that <tt>deflate()</tt> has no more output is by seeing that it did not fill
|
||||
the output buffer, leaving <tt>avail_out</tt> greater than zero. However suppose that
|
||||
<tt>deflate()</tt> has no more output, but just so happened to exactly fill the output buffer!
|
||||
<tt>avail_out</tt> is zero, and we can't tell that <tt>deflate()</tt> has done all it can.
|
||||
As far as we know, <tt>deflate()</tt>
|
||||
has more output for us. So we call it again. But now <tt>deflate()</tt> produces no output
|
||||
at all, and <tt>avail_out</tt> remains unchanged as <tt>CHUNK</tt>. That <tt>deflate()</tt> call
|
||||
wasn't able to do anything, either consume input or produce output, and so it returns
|
||||
<tt>Z_BUF_ERROR</tt>. (See, I told you I'd cover this later.) However this is not a problem at
|
||||
all. Now we finally have the desired indication that <tt>deflate()</tt> is really done,
|
||||
and so we drop out of the inner loop to provide more input to <tt>deflate()</tt>.
|
||||
<p>
|
||||
With <tt>flush</tt> set to <tt>Z_FINISH</tt>, this final set of <tt>deflate()</tt> calls will
|
||||
complete the output stream. Once that is done, subsequent calls of <tt>deflate()</tt> would return
|
||||
<tt>Z_STREAM_ERROR</tt> if the flush parameter is not <tt>Z_FINISH</tt>, and do no more processing
|
||||
until the state is reinitialized.
|
||||
<p>
|
||||
Some applications of <em>zlib</em> have two loops that call <tt>deflate()</tt>
|
||||
instead of the single inner loop we have here. The first loop would call
|
||||
without flushing and feed all of the data to <tt>deflate()</tt>. The second loop would call
|
||||
<tt>deflate()</tt> with no more
|
||||
data and the <tt>Z_FINISH</tt> parameter to complete the process. As you can see from this
|
||||
example, that can be avoided by simply keeping track of the current flush state.
|
||||
<pre><b>
|
||||
} while (strm.avail_out == 0);
|
||||
assert(strm.avail_in == 0); /* all input will be used */
|
||||
</b></pre><!-- -->
|
||||
Now we check to see if we have already processed all of the input file. That information was
|
||||
saved in the <tt>flush</tt> variable, so we see if that was set to <tt>Z_FINISH</tt>. If so,
|
||||
then we're done and we fall out of the outer loop. We're guaranteed to get <tt>Z_STREAM_END</tt>
|
||||
from the last <tt>deflate()</tt> call, since we ran it until the last chunk of input was
|
||||
consumed and all of the output was generated.
|
||||
<pre><b>
|
||||
/* done when last data in file processed */
|
||||
} while (flush != Z_FINISH);
|
||||
assert(ret == Z_STREAM_END); /* stream will be complete */
|
||||
</b></pre><!-- -->
|
||||
The process is complete, but we still need to deallocate the state to avoid a memory leak
|
||||
(or rather more like a memory hemorrhage if you didn't do this). Then
|
||||
finally we can return with a happy return value.
|
||||
<pre><b>
|
||||
/* clean up and return */
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_OK;
|
||||
}
|
||||
</b></pre><!-- -->
|
||||
Now we do the same thing for decompression in the <tt>inf()</tt> routine. <tt>inf()</tt>
|
||||
decompresses what is hopefully a valid <em>zlib</em> stream from the input file and writes the
|
||||
uncompressed data to the output file. Much of the discussion above for <tt>def()</tt>
|
||||
applies to <tt>inf()</tt> as well, so the discussion here will focus on the differences between
|
||||
the two.
|
||||
<pre><b>
|
||||
/* Decompress from file source to file dest until stream ends or EOF.
|
||||
inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
|
||||
allocated for processing, Z_DATA_ERROR if the deflate data is
|
||||
invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
|
||||
the version of the library linked do not match, or Z_ERRNO if there
|
||||
is an error reading or writing the files. */
|
||||
int inf(FILE *source, FILE *dest)
|
||||
{
|
||||
</b></pre>
|
||||
The local variables have the same functionality as they do for <tt>def()</tt>. The
|
||||
only difference is that there is no <tt>flush</tt> variable, since <tt>inflate()</tt>
|
||||
can tell from the <em>zlib</em> stream itself when the stream is complete.
|
||||
<pre><b>
|
||||
int ret;
|
||||
unsigned have;
|
||||
z_stream strm;
|
||||
unsigned char in[CHUNK];
|
||||
unsigned char out[CHUNK];
|
||||
</b></pre><!-- -->
|
||||
The initialization of the state is the same, except that there is no compression level,
|
||||
of course, and two more elements of the structure are initialized. <tt>avail_in</tt>
|
||||
and <tt>next_in</tt> must be initialized before calling <tt>inflateInit()</tt>. This
|
||||
is because the application has the option to provide the start of the zlib stream in
|
||||
order for <tt>inflateInit()</tt> to have access to information about the compression
|
||||
method to aid in memory allocation. In the current implementation of <em>zlib</em>
|
||||
(up through versions 1.2.x), the method-dependent memory allocations are deferred to the first call of
|
||||
<tt>inflate()</tt> anyway. However those fields must be initialized since later versions
|
||||
of <em>zlib</em> that provide more compression methods may take advantage of this interface.
|
||||
In any case, no decompression is performed by <tt>inflateInit()</tt>, so the
|
||||
<tt>avail_out</tt> and <tt>next_out</tt> fields do not need to be initialized before calling.
|
||||
<p>
|
||||
Here <tt>avail_in</tt> is set to zero and <tt>next_in</tt> is set to <tt>Z_NULL</tt> to
|
||||
indicate that no input data is being provided.
|
||||
<pre><b>
|
||||
/* allocate inflate state */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit(&strm);
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
</b></pre><!-- -->
|
||||
The outer <tt>do</tt>-loop decompresses input until <tt>inflate()</tt> indicates
|
||||
that it has reached the end of the compressed data and has produced all of the uncompressed
|
||||
output. This is in contrast to <tt>def()</tt> which processes all of the input file.
|
||||
If end-of-file is reached before the compressed data self-terminates, then the compressed
|
||||
data is incomplete and an error is returned.
|
||||
<pre><b>
|
||||
/* decompress until deflate stream ends or end of file */
|
||||
do {
|
||||
</b></pre>
|
||||
We read input data and set the <tt>strm</tt> structure accordingly. If we've reached the
|
||||
end of the input file, then we leave the outer loop and report an error, since the
|
||||
compressed data is incomplete. Note that we may read more data than is eventually consumed
|
||||
by <tt>inflate()</tt>, if the input file continues past the <em>zlib</em> stream.
|
||||
For applications where <em>zlib</em> streams are embedded in other data, this routine would
|
||||
need to be modified to return the unused data, or at least indicate how much of the input
|
||||
data was not used, so the application would know where to pick up after the <em>zlib</em> stream.
|
||||
<pre><b>
|
||||
strm.avail_in = fread(in, 1, CHUNK, source);
|
||||
if (ferror(source)) {
|
||||
(void)inflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
if (strm.avail_in == 0)
|
||||
break;
|
||||
strm.next_in = in;
|
||||
</b></pre><!-- -->
|
||||
The inner <tt>do</tt>-loop has the same function it did in <tt>def()</tt>, which is to
|
||||
keep calling <tt>inflate()</tt> until has generated all of the output it can with the
|
||||
provided input.
|
||||
<pre><b>
|
||||
/* run inflate() on input until output buffer not full */
|
||||
do {
|
||||
</b></pre>
|
||||
Just like in <tt>def()</tt>, the same output space is provided for each call of <tt>inflate()</tt>.
|
||||
<pre><b>
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = out;
|
||||
</b></pre>
|
||||
Now we run the decompression engine itself. There is no need to adjust the flush parameter, since
|
||||
the <em>zlib</em> format is self-terminating. The main difference here is that there are
|
||||
return values that we need to pay attention to. <tt>Z_DATA_ERROR</tt>
|
||||
indicates that <tt>inflate()</tt> detected an error in the <em>zlib</em> compressed data format,
|
||||
which means that either the data is not a <em>zlib</em> stream to begin with, or that the data was
|
||||
corrupted somewhere along the way since it was compressed. The other error to be processed is
|
||||
<tt>Z_MEM_ERROR</tt>, which can occur since memory allocation is deferred until <tt>inflate()</tt>
|
||||
needs it, unlike <tt>deflate()</tt>, whose memory is allocated at the start by <tt>deflateInit()</tt>.
|
||||
<p>
|
||||
Advanced applications may use
|
||||
<tt>deflateSetDictionary()</tt> to prime <tt>deflate()</tt> with a set of likely data to improve the
|
||||
first 32K or so of compression. This is noted in the <em>zlib</em> header, so <tt>inflate()</tt>
|
||||
requests that that dictionary be provided before it can start to decompress. Without the dictionary,
|
||||
correct decompression is not possible. For this routine, we have no idea what the dictionary is,
|
||||
so the <tt>Z_NEED_DICT</tt> indication is converted to a <tt>Z_DATA_ERROR</tt>.
|
||||
<p>
|
||||
<tt>inflate()</tt> can also return <tt>Z_STREAM_ERROR</tt>, which should not be possible here,
|
||||
but could be checked for as noted above for <tt>def()</tt>. <tt>Z_BUF_ERROR</tt> does not need to be
|
||||
checked for here, for the same reasons noted for <tt>def()</tt>. <tt>Z_STREAM_END</tt> will be
|
||||
checked for later.
|
||||
<pre><b>
|
||||
ret = inflate(&strm, Z_NO_FLUSH);
|
||||
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
|
||||
switch (ret) {
|
||||
case Z_NEED_DICT:
|
||||
ret = Z_DATA_ERROR; /* and fall through */
|
||||
case Z_DATA_ERROR:
|
||||
case Z_MEM_ERROR:
|
||||
(void)inflateEnd(&strm);
|
||||
return ret;
|
||||
}
|
||||
</b></pre>
|
||||
The output of <tt>inflate()</tt> is handled identically to that of <tt>deflate()</tt>.
|
||||
<pre><b>
|
||||
have = CHUNK - strm.avail_out;
|
||||
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
|
||||
(void)inflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
</b></pre>
|
||||
The inner <tt>do</tt>-loop ends when <tt>inflate()</tt> has no more output as indicated
|
||||
by not filling the output buffer, just as for <tt>deflate()</tt>. In this case, we cannot
|
||||
assert that <tt>strm.avail_in</tt> will be zero, since the deflate stream may end before the file
|
||||
does.
|
||||
<pre><b>
|
||||
} while (strm.avail_out == 0);
|
||||
</b></pre><!-- -->
|
||||
The outer <tt>do</tt>-loop ends when <tt>inflate()</tt> reports that it has reached the
|
||||
end of the input <em>zlib</em> stream, has completed the decompression and integrity
|
||||
check, and has provided all of the output. This is indicated by the <tt>inflate()</tt>
|
||||
return value <tt>Z_STREAM_END</tt>. The inner loop is guaranteed to leave <tt>ret</tt>
|
||||
equal to <tt>Z_STREAM_END</tt> if the last chunk of the input file read contained the end
|
||||
of the <em>zlib</em> stream. So if the return value is not <tt>Z_STREAM_END</tt>, the
|
||||
loop continues to read more input.
|
||||
<pre><b>
|
||||
/* done when inflate() says it's done */
|
||||
} while (ret != Z_STREAM_END);
|
||||
</b></pre><!-- -->
|
||||
At this point, decompression successfully completed, or we broke out of the loop due to no
|
||||
more data being available from the input file. If the last <tt>inflate()</tt> return value
|
||||
is not <tt>Z_STREAM_END</tt>, then the <em>zlib</em> stream was incomplete and a data error
|
||||
is returned. Otherwise, we return with a happy return value. Of course, <tt>inflateEnd()</tt>
|
||||
is called first to avoid a memory leak.
|
||||
<pre><b>
|
||||
/* clean up and return */
|
||||
(void)inflateEnd(&strm);
|
||||
return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
|
||||
}
|
||||
</b></pre><!-- -->
|
||||
That ends the routines that directly use <em>zlib</em>. The following routines make this
|
||||
a command-line program by running data through the above routines from <tt>stdin</tt> to
|
||||
<tt>stdout</tt>, and handling any errors reported by <tt>def()</tt> or <tt>inf()</tt>.
|
||||
<p>
|
||||
<tt>zerr()</tt> is used to interpret the possible error codes from <tt>def()</tt>
|
||||
and <tt>inf()</tt>, as detailed in their comments above, and print out an error message.
|
||||
Note that these are only a subset of the possible return values from <tt>deflate()</tt>
|
||||
and <tt>inflate()</tt>.
|
||||
<pre><b>
|
||||
/* report a zlib or i/o error */
|
||||
void zerr(int ret)
|
||||
{
|
||||
fputs("zpipe: ", stderr);
|
||||
switch (ret) {
|
||||
case Z_ERRNO:
|
||||
if (ferror(stdin))
|
||||
fputs("error reading stdin\n", stderr);
|
||||
if (ferror(stdout))
|
||||
fputs("error writing stdout\n", stderr);
|
||||
break;
|
||||
case Z_STREAM_ERROR:
|
||||
fputs("invalid compression level\n", stderr);
|
||||
break;
|
||||
case Z_DATA_ERROR:
|
||||
fputs("invalid or incomplete deflate data\n", stderr);
|
||||
break;
|
||||
case Z_MEM_ERROR:
|
||||
fputs("out of memory\n", stderr);
|
||||
break;
|
||||
case Z_VERSION_ERROR:
|
||||
fputs("zlib version mismatch!\n", stderr);
|
||||
}
|
||||
}
|
||||
</b></pre><!-- -->
|
||||
Here is the <tt>main()</tt> routine used to test <tt>def()</tt> and <tt>inf()</tt>. The
|
||||
<tt>zpipe</tt> command is simply a compression pipe from <tt>stdin</tt> to <tt>stdout</tt>, if
|
||||
no arguments are given, or it is a decompression pipe if <tt>zpipe -d</tt> is used. If any other
|
||||
arguments are provided, no compression or decompression is performed. Instead a usage
|
||||
message is displayed. Examples are <tt>zpipe < foo.txt > foo.txt.z</tt> to compress, and
|
||||
<tt>zpipe -d < foo.txt.z > foo.txt</tt> to decompress.
|
||||
<pre><b>
|
||||
/* compress or decompress from stdin to stdout */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/* avoid end-of-line conversions */
|
||||
SET_BINARY_MODE(stdin);
|
||||
SET_BINARY_MODE(stdout);
|
||||
|
||||
/* do compression if no arguments */
|
||||
if (argc == 1) {
|
||||
ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
|
||||
if (ret != Z_OK)
|
||||
zerr(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* do decompression if -d specified */
|
||||
else if (argc == 2 && strcmp(argv[1], "-d") == 0) {
|
||||
ret = inf(stdin, stdout);
|
||||
if (ret != Z_OK)
|
||||
zerr(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* otherwise, report usage */
|
||||
else {
|
||||
fputs("zpipe usage: zpipe [-d] < source > dest\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
</b></pre>
|
||||
<hr>
|
||||
<i>Copyright (c) 2004, 2005 by Mark Adler<br>Last modified 11 December 2005</i>
|
||||
</body>
|
||||
</html>
|
205
external/zlib/examples/zpipe.c
vendored
205
external/zlib/examples/zpipe.c
vendored
@ -1,205 +0,0 @@
|
||||
/* zpipe.c: example of proper use of zlib's inflate() and deflate()
|
||||
Not copyrighted -- provided to the public domain
|
||||
Version 1.4 11 December 2005 Mark Adler */
|
||||
|
||||
/* Version history:
|
||||
1.0 30 Oct 2004 First version
|
||||
1.1 8 Nov 2004 Add void casting for unused return values
|
||||
Use switch statement for inflate() return values
|
||||
1.2 9 Nov 2004 Add assertions to document zlib guarantees
|
||||
1.3 6 Apr 2005 Remove incorrect assertion in inf()
|
||||
1.4 11 Dec 2005 Add hack to avoid MSDOS end-of-line conversions
|
||||
Avoid some compiler warnings for input and output buffers
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "zlib.h"
|
||||
|
||||
#if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(__CYGWIN__)
|
||||
# include <fcntl.h>
|
||||
# include <io.h>
|
||||
# define SET_BINARY_MODE(file) setmode(fileno(file), O_BINARY)
|
||||
#else
|
||||
# define SET_BINARY_MODE(file)
|
||||
#endif
|
||||
|
||||
#define CHUNK 16384
|
||||
|
||||
/* Compress from file source to file dest until EOF on source.
|
||||
def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
|
||||
allocated for processing, Z_STREAM_ERROR if an invalid compression
|
||||
level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
|
||||
version of the library linked do not match, or Z_ERRNO if there is
|
||||
an error reading or writing the files. */
|
||||
int def(FILE *source, FILE *dest, int level)
|
||||
{
|
||||
int ret, flush;
|
||||
unsigned have;
|
||||
z_stream strm;
|
||||
unsigned char in[CHUNK];
|
||||
unsigned char out[CHUNK];
|
||||
|
||||
/* allocate deflate state */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
ret = deflateInit(&strm, level);
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
|
||||
/* compress until end of file */
|
||||
do {
|
||||
strm.avail_in = fread(in, 1, CHUNK, source);
|
||||
if (ferror(source)) {
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
flush = feof(source) ? Z_FINISH : Z_NO_FLUSH;
|
||||
strm.next_in = in;
|
||||
|
||||
/* run deflate() on input until output buffer not full, finish
|
||||
compression if all of source has been read in */
|
||||
do {
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = out;
|
||||
ret = deflate(&strm, flush); /* no bad return value */
|
||||
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
|
||||
have = CHUNK - strm.avail_out;
|
||||
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
} while (strm.avail_out == 0);
|
||||
assert(strm.avail_in == 0); /* all input will be used */
|
||||
|
||||
/* done when last data in file processed */
|
||||
} while (flush != Z_FINISH);
|
||||
assert(ret == Z_STREAM_END); /* stream will be complete */
|
||||
|
||||
/* clean up and return */
|
||||
(void)deflateEnd(&strm);
|
||||
return Z_OK;
|
||||
}
|
||||
|
||||
/* Decompress from file source to file dest until stream ends or EOF.
|
||||
inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
|
||||
allocated for processing, Z_DATA_ERROR if the deflate data is
|
||||
invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
|
||||
the version of the library linked do not match, or Z_ERRNO if there
|
||||
is an error reading or writing the files. */
|
||||
int inf(FILE *source, FILE *dest)
|
||||
{
|
||||
int ret;
|
||||
unsigned have;
|
||||
z_stream strm;
|
||||
unsigned char in[CHUNK];
|
||||
unsigned char out[CHUNK];
|
||||
|
||||
/* allocate inflate state */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit(&strm);
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
|
||||
/* decompress until deflate stream ends or end of file */
|
||||
do {
|
||||
strm.avail_in = fread(in, 1, CHUNK, source);
|
||||
if (ferror(source)) {
|
||||
(void)inflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
if (strm.avail_in == 0)
|
||||
break;
|
||||
strm.next_in = in;
|
||||
|
||||
/* run inflate() on input until output buffer not full */
|
||||
do {
|
||||
strm.avail_out = CHUNK;
|
||||
strm.next_out = out;
|
||||
ret = inflate(&strm, Z_NO_FLUSH);
|
||||
assert(ret != Z_STREAM_ERROR); /* state not clobbered */
|
||||
switch (ret) {
|
||||
case Z_NEED_DICT:
|
||||
ret = Z_DATA_ERROR; /* and fall through */
|
||||
case Z_DATA_ERROR:
|
||||
case Z_MEM_ERROR:
|
||||
(void)inflateEnd(&strm);
|
||||
return ret;
|
||||
}
|
||||
have = CHUNK - strm.avail_out;
|
||||
if (fwrite(out, 1, have, dest) != have || ferror(dest)) {
|
||||
(void)inflateEnd(&strm);
|
||||
return Z_ERRNO;
|
||||
}
|
||||
} while (strm.avail_out == 0);
|
||||
|
||||
/* done when inflate() says it's done */
|
||||
} while (ret != Z_STREAM_END);
|
||||
|
||||
/* clean up and return */
|
||||
(void)inflateEnd(&strm);
|
||||
return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
|
||||
}
|
||||
|
||||
/* report a zlib or i/o error */
|
||||
void zerr(int ret)
|
||||
{
|
||||
fputs("zpipe: ", stderr);
|
||||
switch (ret) {
|
||||
case Z_ERRNO:
|
||||
if (ferror(stdin))
|
||||
fputs("error reading stdin\n", stderr);
|
||||
if (ferror(stdout))
|
||||
fputs("error writing stdout\n", stderr);
|
||||
break;
|
||||
case Z_STREAM_ERROR:
|
||||
fputs("invalid compression level\n", stderr);
|
||||
break;
|
||||
case Z_DATA_ERROR:
|
||||
fputs("invalid or incomplete deflate data\n", stderr);
|
||||
break;
|
||||
case Z_MEM_ERROR:
|
||||
fputs("out of memory\n", stderr);
|
||||
break;
|
||||
case Z_VERSION_ERROR:
|
||||
fputs("zlib version mismatch!\n", stderr);
|
||||
}
|
||||
}
|
||||
|
||||
/* compress or decompress from stdin to stdout */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/* avoid end-of-line conversions */
|
||||
SET_BINARY_MODE(stdin);
|
||||
SET_BINARY_MODE(stdout);
|
||||
|
||||
/* do compression if no arguments */
|
||||
if (argc == 1) {
|
||||
ret = def(stdin, stdout, Z_DEFAULT_COMPRESSION);
|
||||
if (ret != Z_OK)
|
||||
zerr(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* do decompression if -d specified */
|
||||
else if (argc == 2 && strcmp(argv[1], "-d") == 0) {
|
||||
ret = inf(stdin, stdout);
|
||||
if (ret != Z_OK)
|
||||
zerr(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* otherwise, report usage */
|
||||
else {
|
||||
fputs("zpipe usage: zpipe [-d] < source > dest\n", stderr);
|
||||
return 1;
|
||||
}
|
||||
}
|
409
external/zlib/examples/zran.c
vendored
409
external/zlib/examples/zran.c
vendored
@ -1,409 +0,0 @@
|
||||
/* zran.c -- example of zlib/gzip stream indexing and random access
|
||||
* Copyright (C) 2005, 2012 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
Version 1.1 29 Sep 2012 Mark Adler */
|
||||
|
||||
/* Version History:
|
||||
1.0 29 May 2005 First version
|
||||
1.1 29 Sep 2012 Fix memory reallocation error
|
||||
*/
|
||||
|
||||
/* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
|
||||
for random access of a compressed file. A file containing a zlib or gzip
|
||||
stream is provided on the command line. The compressed stream is decoded in
|
||||
its entirety, and an index built with access points about every SPAN bytes
|
||||
in the uncompressed output. The compressed file is left open, and can then
|
||||
be read randomly, having to decompress on the average SPAN/2 uncompressed
|
||||
bytes before getting to the desired block of data.
|
||||
|
||||
An access point can be created at the start of any deflate block, by saving
|
||||
the starting file offset and bit of that block, and the 32K bytes of
|
||||
uncompressed data that precede that block. Also the uncompressed offset of
|
||||
that block is saved to provide a referece for locating a desired starting
|
||||
point in the uncompressed stream. build_index() works by decompressing the
|
||||
input zlib or gzip stream a block at a time, and at the end of each block
|
||||
deciding if enough uncompressed data has gone by to justify the creation of
|
||||
a new access point. If so, that point is saved in a data structure that
|
||||
grows as needed to accommodate the points.
|
||||
|
||||
To use the index, an offset in the uncompressed data is provided, for which
|
||||
the latest accees point at or preceding that offset is located in the index.
|
||||
The input file is positioned to the specified location in the index, and if
|
||||
necessary the first few bits of the compressed data is read from the file.
|
||||
inflate is initialized with those bits and the 32K of uncompressed data, and
|
||||
the decompression then proceeds until the desired offset in the file is
|
||||
reached. Then the decompression continues to read the desired uncompressed
|
||||
data from the file.
|
||||
|
||||
Another approach would be to generate the index on demand. In that case,
|
||||
requests for random access reads from the compressed data would try to use
|
||||
the index, but if a read far enough past the end of the index is required,
|
||||
then further index entries would be generated and added.
|
||||
|
||||
There is some fair bit of overhead to starting inflation for the random
|
||||
access, mainly copying the 32K byte dictionary. So if small pieces of the
|
||||
file are being accessed, it would make sense to implement a cache to hold
|
||||
some lookahead and avoid many calls to extract() for small lengths.
|
||||
|
||||
Another way to build an index would be to use inflateCopy(). That would
|
||||
not be constrained to have access points at block boundaries, but requires
|
||||
more memory per access point, and also cannot be saved to file due to the
|
||||
use of pointers in the state. The approach here allows for storage of the
|
||||
index in a file.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "zlib.h"
|
||||
|
||||
#define local static
|
||||
|
||||
#define SPAN 1048576L /* desired distance between access points */
|
||||
#define WINSIZE 32768U /* sliding window size */
|
||||
#define CHUNK 16384 /* file input buffer size */
|
||||
|
||||
/* access point entry */
|
||||
struct point {
|
||||
off_t out; /* corresponding offset in uncompressed data */
|
||||
off_t in; /* offset in input file of first full byte */
|
||||
int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
|
||||
unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
|
||||
};
|
||||
|
||||
/* access point list */
|
||||
struct access {
|
||||
int have; /* number of list entries filled in */
|
||||
int size; /* number of list entries allocated */
|
||||
struct point *list; /* allocated list */
|
||||
};
|
||||
|
||||
/* Deallocate an index built by build_index() */
|
||||
local void free_index(struct access *index)
|
||||
{
|
||||
if (index != NULL) {
|
||||
free(index->list);
|
||||
free(index);
|
||||
}
|
||||
}
|
||||
|
||||
/* Add an entry to the access point list. If out of memory, deallocate the
|
||||
existing list and return NULL. */
|
||||
local struct access *addpoint(struct access *index, int bits,
|
||||
off_t in, off_t out, unsigned left, unsigned char *window)
|
||||
{
|
||||
struct point *next;
|
||||
|
||||
/* if list is empty, create it (start with eight points) */
|
||||
if (index == NULL) {
|
||||
index = malloc(sizeof(struct access));
|
||||
if (index == NULL) return NULL;
|
||||
index->list = malloc(sizeof(struct point) << 3);
|
||||
if (index->list == NULL) {
|
||||
free(index);
|
||||
return NULL;
|
||||
}
|
||||
index->size = 8;
|
||||
index->have = 0;
|
||||
}
|
||||
|
||||
/* if list is full, make it bigger */
|
||||
else if (index->have == index->size) {
|
||||
index->size <<= 1;
|
||||
next = realloc(index->list, sizeof(struct point) * index->size);
|
||||
if (next == NULL) {
|
||||
free_index(index);
|
||||
return NULL;
|
||||
}
|
||||
index->list = next;
|
||||
}
|
||||
|
||||
/* fill in entry and increment how many we have */
|
||||
next = index->list + index->have;
|
||||
next->bits = bits;
|
||||
next->in = in;
|
||||
next->out = out;
|
||||
if (left)
|
||||
memcpy(next->window, window + WINSIZE - left, left);
|
||||
if (left < WINSIZE)
|
||||
memcpy(next->window + left, window, WINSIZE - left);
|
||||
index->have++;
|
||||
|
||||
/* return list, possibly reallocated */
|
||||
return index;
|
||||
}
|
||||
|
||||
/* Make one entire pass through the compressed stream and build an index, with
|
||||
access points about every span bytes of uncompressed output -- span is
|
||||
chosen to balance the speed of random access against the memory requirements
|
||||
of the list, about 32K bytes per access point. Note that data after the end
|
||||
of the first zlib or gzip stream in the file is ignored. build_index()
|
||||
returns the number of access points on success (>= 1), Z_MEM_ERROR for out
|
||||
of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
|
||||
file read error. On success, *built points to the resulting index. */
|
||||
local int build_index(FILE *in, off_t span, struct access **built)
|
||||
{
|
||||
int ret;
|
||||
off_t totin, totout; /* our own total counters to avoid 4GB limit */
|
||||
off_t last; /* totout value of last access point */
|
||||
struct access *index; /* access points being generated */
|
||||
z_stream strm;
|
||||
unsigned char input[CHUNK];
|
||||
unsigned char window[WINSIZE];
|
||||
|
||||
/* initialize inflate */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
|
||||
/* inflate the input, maintain a sliding window, and build an index -- this
|
||||
also validates the integrity of the compressed data using the check
|
||||
information at the end of the gzip or zlib stream */
|
||||
totin = totout = last = 0;
|
||||
index = NULL; /* will be allocated by first addpoint() */
|
||||
strm.avail_out = 0;
|
||||
do {
|
||||
/* get some compressed data from input file */
|
||||
strm.avail_in = fread(input, 1, CHUNK, in);
|
||||
if (ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
goto build_index_error;
|
||||
}
|
||||
if (strm.avail_in == 0) {
|
||||
ret = Z_DATA_ERROR;
|
||||
goto build_index_error;
|
||||
}
|
||||
strm.next_in = input;
|
||||
|
||||
/* process all of that, or until end of stream */
|
||||
do {
|
||||
/* reset sliding window if necessary */
|
||||
if (strm.avail_out == 0) {
|
||||
strm.avail_out = WINSIZE;
|
||||
strm.next_out = window;
|
||||
}
|
||||
|
||||
/* inflate until out of input, output, or at end of block --
|
||||
update the total input and output counters */
|
||||
totin += strm.avail_in;
|
||||
totout += strm.avail_out;
|
||||
ret = inflate(&strm, Z_BLOCK); /* return at end of block */
|
||||
totin -= strm.avail_in;
|
||||
totout -= strm.avail_out;
|
||||
if (ret == Z_NEED_DICT)
|
||||
ret = Z_DATA_ERROR;
|
||||
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
||||
goto build_index_error;
|
||||
if (ret == Z_STREAM_END)
|
||||
break;
|
||||
|
||||
/* if at end of block, consider adding an index entry (note that if
|
||||
data_type indicates an end-of-block, then all of the
|
||||
uncompressed data from that block has been delivered, and none
|
||||
of the compressed data after that block has been consumed,
|
||||
except for up to seven bits) -- the totout == 0 provides an
|
||||
entry point after the zlib or gzip header, and assures that the
|
||||
index always has at least one access point; we avoid creating an
|
||||
access point after the last block by checking bit 6 of data_type
|
||||
*/
|
||||
if ((strm.data_type & 128) && !(strm.data_type & 64) &&
|
||||
(totout == 0 || totout - last > span)) {
|
||||
index = addpoint(index, strm.data_type & 7, totin,
|
||||
totout, strm.avail_out, window);
|
||||
if (index == NULL) {
|
||||
ret = Z_MEM_ERROR;
|
||||
goto build_index_error;
|
||||
}
|
||||
last = totout;
|
||||
}
|
||||
} while (strm.avail_in != 0);
|
||||
} while (ret != Z_STREAM_END);
|
||||
|
||||
/* clean up and return index (release unused entries in list) */
|
||||
(void)inflateEnd(&strm);
|
||||
index->list = realloc(index->list, sizeof(struct point) * index->have);
|
||||
index->size = index->have;
|
||||
*built = index;
|
||||
return index->size;
|
||||
|
||||
/* return error */
|
||||
build_index_error:
|
||||
(void)inflateEnd(&strm);
|
||||
if (index != NULL)
|
||||
free_index(index);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Use the index to read len bytes from offset into buf, return bytes read or
|
||||
negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
|
||||
the end of the uncompressed data, then extract() will return a value less
|
||||
than len, indicating how much as actually read into buf. This function
|
||||
should not return a data error unless the file was modified since the index
|
||||
was generated. extract() may also return Z_ERRNO if there is an error on
|
||||
reading or seeking the input file. */
|
||||
local int extract(FILE *in, struct access *index, off_t offset,
|
||||
unsigned char *buf, int len)
|
||||
{
|
||||
int ret, skip;
|
||||
z_stream strm;
|
||||
struct point *here;
|
||||
unsigned char input[CHUNK];
|
||||
unsigned char discard[WINSIZE];
|
||||
|
||||
/* proceed only if something reasonable to do */
|
||||
if (len < 0)
|
||||
return 0;
|
||||
|
||||
/* find where in stream to start */
|
||||
here = index->list;
|
||||
ret = index->have;
|
||||
while (--ret && here[1].out <= offset)
|
||||
here++;
|
||||
|
||||
/* initialize file and inflate state to start there */
|
||||
strm.zalloc = Z_NULL;
|
||||
strm.zfree = Z_NULL;
|
||||
strm.opaque = Z_NULL;
|
||||
strm.avail_in = 0;
|
||||
strm.next_in = Z_NULL;
|
||||
ret = inflateInit2(&strm, -15); /* raw inflate */
|
||||
if (ret != Z_OK)
|
||||
return ret;
|
||||
ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
|
||||
if (ret == -1)
|
||||
goto extract_ret;
|
||||
if (here->bits) {
|
||||
ret = getc(in);
|
||||
if (ret == -1) {
|
||||
ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
|
||||
goto extract_ret;
|
||||
}
|
||||
(void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
|
||||
}
|
||||
(void)inflateSetDictionary(&strm, here->window, WINSIZE);
|
||||
|
||||
/* skip uncompressed bytes until offset reached, then satisfy request */
|
||||
offset -= here->out;
|
||||
strm.avail_in = 0;
|
||||
skip = 1; /* while skipping to offset */
|
||||
do {
|
||||
/* define where to put uncompressed data, and how much */
|
||||
if (offset == 0 && skip) { /* at offset now */
|
||||
strm.avail_out = len;
|
||||
strm.next_out = buf;
|
||||
skip = 0; /* only do this once */
|
||||
}
|
||||
if (offset > WINSIZE) { /* skip WINSIZE bytes */
|
||||
strm.avail_out = WINSIZE;
|
||||
strm.next_out = discard;
|
||||
offset -= WINSIZE;
|
||||
}
|
||||
else if (offset != 0) { /* last skip */
|
||||
strm.avail_out = (unsigned)offset;
|
||||
strm.next_out = discard;
|
||||
offset = 0;
|
||||
}
|
||||
|
||||
/* uncompress until avail_out filled, or end of stream */
|
||||
do {
|
||||
if (strm.avail_in == 0) {
|
||||
strm.avail_in = fread(input, 1, CHUNK, in);
|
||||
if (ferror(in)) {
|
||||
ret = Z_ERRNO;
|
||||
goto extract_ret;
|
||||
}
|
||||
if (strm.avail_in == 0) {
|
||||
ret = Z_DATA_ERROR;
|
||||
goto extract_ret;
|
||||
}
|
||||
strm.next_in = input;
|
||||
}
|
||||
ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
|
||||
if (ret == Z_NEED_DICT)
|
||||
ret = Z_DATA_ERROR;
|
||||
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
||||
goto extract_ret;
|
||||
if (ret == Z_STREAM_END)
|
||||
break;
|
||||
} while (strm.avail_out != 0);
|
||||
|
||||
/* if reach end of stream, then don't keep trying to get more */
|
||||
if (ret == Z_STREAM_END)
|
||||
break;
|
||||
|
||||
/* do until offset reached and requested data read, or stream ends */
|
||||
} while (skip);
|
||||
|
||||
/* compute number of uncompressed bytes read after offset */
|
||||
ret = skip ? 0 : len - strm.avail_out;
|
||||
|
||||
/* clean up and return bytes read or error */
|
||||
extract_ret:
|
||||
(void)inflateEnd(&strm);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Demonstrate the use of build_index() and extract() by processing the file
|
||||
provided on the command line, and the extracting 16K from about 2/3rds of
|
||||
the way through the uncompressed output, and writing that to stdout. */
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int len;
|
||||
off_t offset;
|
||||
FILE *in;
|
||||
struct access *index = NULL;
|
||||
unsigned char buf[CHUNK];
|
||||
|
||||
/* open input file */
|
||||
if (argc != 2) {
|
||||
fprintf(stderr, "usage: zran file.gz\n");
|
||||
return 1;
|
||||
}
|
||||
in = fopen(argv[1], "rb");
|
||||
if (in == NULL) {
|
||||
fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* build index */
|
||||
len = build_index(in, SPAN, &index);
|
||||
if (len < 0) {
|
||||
fclose(in);
|
||||
switch (len) {
|
||||
case Z_MEM_ERROR:
|
||||
fprintf(stderr, "zran: out of memory\n");
|
||||
break;
|
||||
case Z_DATA_ERROR:
|
||||
fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
|
||||
break;
|
||||
case Z_ERRNO:
|
||||
fprintf(stderr, "zran: read error on %s\n", argv[1]);
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "zran: error %d while building index\n", len);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
fprintf(stderr, "zran: built index with %d access points\n", len);
|
||||
|
||||
/* use index by reading some bytes from an arbitrary offset */
|
||||
offset = (index->list[index->have - 1].out << 1) / 3;
|
||||
len = extract(in, index, offset, buf, CHUNK);
|
||||
if (len < 0)
|
||||
fprintf(stderr, "zran: extraction failed: %s error\n",
|
||||
len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
|
||||
else {
|
||||
fwrite(buf, 1, len, stdout);
|
||||
fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
|
||||
}
|
||||
|
||||
/* clean up and exit */
|
||||
free_index(index);
|
||||
fclose(in);
|
||||
return 0;
|
||||
}
|
4
external/zlib/gzclose.c
vendored
4
external/zlib/gzclose.c
vendored
@ -8,9 +8,7 @@
|
||||
/* gzclose() is in a separate file so that it is linked in only if it is used.
|
||||
That way the other gzclose functions can be used instead to avoid linking in
|
||||
unneeded compression or decompression routines. */
|
||||
int ZEXPORT gzclose(file)
|
||||
gzFile file;
|
||||
{
|
||||
int ZEXPORT gzclose(gzFile file) {
|
||||
#ifndef NO_GZCOMPRESS
|
||||
gz_statep state;
|
||||
|
||||
|
31
external/zlib/gzguts.h
vendored
31
external/zlib/gzguts.h
vendored
@ -1,5 +1,5 @@
|
||||
/* gzguts.h -- zlib internal header definitions for gz* operations
|
||||
* Copyright (C) 2004-2019 Mark Adler
|
||||
* Copyright (C) 2004-2024 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
|
||||
@ -7,9 +7,8 @@
|
||||
# ifndef _LARGEFILE_SOURCE
|
||||
# define _LARGEFILE_SOURCE 1
|
||||
# endif
|
||||
# ifdef _FILE_OFFSET_BITS
|
||||
# undef _FILE_OFFSET_BITS
|
||||
# endif
|
||||
# undef _FILE_OFFSET_BITS
|
||||
# undef _TIME_BITS
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_HIDDEN
|
||||
@ -119,8 +118,8 @@
|
||||
|
||||
/* gz* functions always use library allocation functions */
|
||||
#ifndef STDC
|
||||
extern voidp malloc OF((uInt size));
|
||||
extern void free OF((voidpf ptr));
|
||||
extern voidp malloc(uInt size);
|
||||
extern void free(voidpf ptr);
|
||||
#endif
|
||||
|
||||
/* get errno and strerror definition */
|
||||
@ -138,10 +137,10 @@
|
||||
|
||||
/* provide prototypes for these when building zlib without LFS */
|
||||
#if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0
|
||||
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
|
||||
ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
|
||||
ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
|
||||
ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
|
||||
ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
|
||||
ZEXTERN z_off64_t ZEXPORT gzseek64(gzFile, z_off64_t, int);
|
||||
ZEXTERN z_off64_t ZEXPORT gztell64(gzFile);
|
||||
ZEXTERN z_off64_t ZEXPORT gzoffset64(gzFile);
|
||||
#endif
|
||||
|
||||
/* default memLevel */
|
||||
@ -203,17 +202,13 @@ typedef struct {
|
||||
typedef gz_state FAR *gz_statep;
|
||||
|
||||
/* shared functions */
|
||||
void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *));
|
||||
void ZLIB_INTERNAL gz_error(gz_statep, int, const char *);
|
||||
#if defined UNDER_CE
|
||||
char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error));
|
||||
char ZLIB_INTERNAL *gz_strwinerror(DWORD error);
|
||||
#endif
|
||||
|
||||
/* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t
|
||||
value -- needed when comparing unsigned to z_off64_t, which is signed
|
||||
(possible z_off64_t types off_t, off64_t, and long are all signed) */
|
||||
#ifdef INT_MAX
|
||||
# define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX)
|
||||
#else
|
||||
unsigned ZLIB_INTERNAL gz_intmax OF((void));
|
||||
# define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax())
|
||||
#endif
|
||||
unsigned ZLIB_INTERNAL gz_intmax(void);
|
||||
#define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax())
|
||||
|
113
external/zlib/gzlib.c
vendored
113
external/zlib/gzlib.c
vendored
@ -1,5 +1,5 @@
|
||||
/* gzlib.c -- zlib functions common to reading and writing gzip files
|
||||
* Copyright (C) 2004-2019 Mark Adler
|
||||
* Copyright (C) 2004-2024 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
|
||||
@ -15,10 +15,6 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Local functions */
|
||||
local void gz_reset OF((gz_statep));
|
||||
local gzFile gz_open OF((const void *, int, const char *));
|
||||
|
||||
#if defined UNDER_CE
|
||||
|
||||
/* Map the Windows error number in ERROR to a locale-dependent error message
|
||||
@ -30,9 +26,7 @@ local gzFile gz_open OF((const void *, int, const char *));
|
||||
|
||||
The gz_strwinerror function does not change the current setting of
|
||||
GetLastError. */
|
||||
char ZLIB_INTERNAL *gz_strwinerror(error)
|
||||
DWORD error;
|
||||
{
|
||||
char ZLIB_INTERNAL *gz_strwinerror(DWORD error) {
|
||||
static char buf[1024];
|
||||
|
||||
wchar_t *msgbuf;
|
||||
@ -72,9 +66,7 @@ char ZLIB_INTERNAL *gz_strwinerror(error)
|
||||
#endif /* UNDER_CE */
|
||||
|
||||
/* Reset gzip file state */
|
||||
local void gz_reset(state)
|
||||
gz_statep state;
|
||||
{
|
||||
local void gz_reset(gz_statep state) {
|
||||
state->x.have = 0; /* no output data available */
|
||||
if (state->mode == GZ_READ) { /* for reading ... */
|
||||
state->eof = 0; /* not at end of file */
|
||||
@ -90,11 +82,7 @@ local void gz_reset(state)
|
||||
}
|
||||
|
||||
/* Open a gzip file either by name or file descriptor. */
|
||||
local gzFile gz_open(path, fd, mode)
|
||||
const void *path;
|
||||
int fd;
|
||||
const char *mode;
|
||||
{
|
||||
local gzFile gz_open(const void *path, int fd, const char *mode) {
|
||||
gz_statep state;
|
||||
z_size_t len;
|
||||
int oflag;
|
||||
@ -269,26 +257,17 @@ local gzFile gz_open(path, fd, mode)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
gzFile ZEXPORT gzopen(path, mode)
|
||||
const char *path;
|
||||
const char *mode;
|
||||
{
|
||||
gzFile ZEXPORT gzopen(const char *path, const char *mode) {
|
||||
return gz_open(path, -1, mode);
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
gzFile ZEXPORT gzopen64(path, mode)
|
||||
const char *path;
|
||||
const char *mode;
|
||||
{
|
||||
gzFile ZEXPORT gzopen64(const char *path, const char *mode) {
|
||||
return gz_open(path, -1, mode);
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
gzFile ZEXPORT gzdopen(fd, mode)
|
||||
int fd;
|
||||
const char *mode;
|
||||
{
|
||||
gzFile ZEXPORT gzdopen(int fd, const char *mode) {
|
||||
char *path; /* identifier for error messages */
|
||||
gzFile gz;
|
||||
|
||||
@ -306,19 +285,13 @@ gzFile ZEXPORT gzdopen(fd, mode)
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
#ifdef WIDECHAR
|
||||
gzFile ZEXPORT gzopen_w(path, mode)
|
||||
const wchar_t *path;
|
||||
const char *mode;
|
||||
{
|
||||
gzFile ZEXPORT gzopen_w(const wchar_t *path, const char *mode) {
|
||||
return gz_open(path, -2, mode);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzbuffer(file, size)
|
||||
gzFile file;
|
||||
unsigned size;
|
||||
{
|
||||
int ZEXPORT gzbuffer(gzFile file, unsigned size) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure and check integrity */
|
||||
@ -335,16 +308,14 @@ int ZEXPORT gzbuffer(file, size)
|
||||
/* check and set requested size */
|
||||
if ((size << 1) < size)
|
||||
return -1; /* need to be able to double it */
|
||||
if (size < 2)
|
||||
size = 2; /* need two bytes to check magic header */
|
||||
if (size < 8)
|
||||
size = 8; /* needed to behave well with flushing */
|
||||
state->want = size;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzrewind(file)
|
||||
gzFile file;
|
||||
{
|
||||
int ZEXPORT gzrewind(gzFile file) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure */
|
||||
@ -365,11 +336,7 @@ int ZEXPORT gzrewind(file)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
z_off64_t ZEXPORT gzseek64(file, offset, whence)
|
||||
gzFile file;
|
||||
z_off64_t offset;
|
||||
int whence;
|
||||
{
|
||||
z_off64_t ZEXPORT gzseek64(gzFile file, z_off64_t offset, int whence) {
|
||||
unsigned n;
|
||||
z_off64_t ret;
|
||||
gz_statep state;
|
||||
@ -442,11 +409,7 @@ z_off64_t ZEXPORT gzseek64(file, offset, whence)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
z_off_t ZEXPORT gzseek(file, offset, whence)
|
||||
gzFile file;
|
||||
z_off_t offset;
|
||||
int whence;
|
||||
{
|
||||
z_off_t ZEXPORT gzseek(gzFile file, z_off_t offset, int whence) {
|
||||
z_off64_t ret;
|
||||
|
||||
ret = gzseek64(file, (z_off64_t)offset, whence);
|
||||
@ -454,9 +417,7 @@ z_off_t ZEXPORT gzseek(file, offset, whence)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
z_off64_t ZEXPORT gztell64(file)
|
||||
gzFile file;
|
||||
{
|
||||
z_off64_t ZEXPORT gztell64(gzFile file) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure and check integrity */
|
||||
@ -471,9 +432,7 @@ z_off64_t ZEXPORT gztell64(file)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
z_off_t ZEXPORT gztell(file)
|
||||
gzFile file;
|
||||
{
|
||||
z_off_t ZEXPORT gztell(gzFile file) {
|
||||
z_off64_t ret;
|
||||
|
||||
ret = gztell64(file);
|
||||
@ -481,9 +440,7 @@ z_off_t ZEXPORT gztell(file)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
z_off64_t ZEXPORT gzoffset64(file)
|
||||
gzFile file;
|
||||
{
|
||||
z_off64_t ZEXPORT gzoffset64(gzFile file) {
|
||||
z_off64_t offset;
|
||||
gz_statep state;
|
||||
|
||||
@ -504,9 +461,7 @@ z_off64_t ZEXPORT gzoffset64(file)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
z_off_t ZEXPORT gzoffset(file)
|
||||
gzFile file;
|
||||
{
|
||||
z_off_t ZEXPORT gzoffset(gzFile file) {
|
||||
z_off64_t ret;
|
||||
|
||||
ret = gzoffset64(file);
|
||||
@ -514,9 +469,7 @@ z_off_t ZEXPORT gzoffset(file)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzeof(file)
|
||||
gzFile file;
|
||||
{
|
||||
int ZEXPORT gzeof(gzFile file) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure and check integrity */
|
||||
@ -531,10 +484,7 @@ int ZEXPORT gzeof(file)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
const char * ZEXPORT gzerror(file, errnum)
|
||||
gzFile file;
|
||||
int *errnum;
|
||||
{
|
||||
const char * ZEXPORT gzerror(gzFile file, int *errnum) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure and check integrity */
|
||||
@ -552,9 +502,7 @@ const char * ZEXPORT gzerror(file, errnum)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
void ZEXPORT gzclearerr(file)
|
||||
gzFile file;
|
||||
{
|
||||
void ZEXPORT gzclearerr(gzFile file) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure and check integrity */
|
||||
@ -578,11 +526,7 @@ void ZEXPORT gzclearerr(file)
|
||||
memory). Simply save the error message as a static string. If there is an
|
||||
allocation failure constructing the error message, then convert the error to
|
||||
out of memory. */
|
||||
void ZLIB_INTERNAL gz_error(state, err, msg)
|
||||
gz_statep state;
|
||||
int err;
|
||||
const char *msg;
|
||||
{
|
||||
void ZLIB_INTERNAL gz_error(gz_statep state, int err, const char *msg) {
|
||||
/* free previously allocated message and clear */
|
||||
if (state->msg != NULL) {
|
||||
if (state->err != Z_MEM_ERROR)
|
||||
@ -619,21 +563,20 @@ void ZLIB_INTERNAL gz_error(state, err, msg)
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef INT_MAX
|
||||
/* portably return maximum value for an int (when limits.h presumed not
|
||||
available) -- we need to do this to cover cases where 2's complement not
|
||||
used, since C standard permits 1's complement and sign-bit representations,
|
||||
otherwise we could just use ((unsigned)-1) >> 1 */
|
||||
unsigned ZLIB_INTERNAL gz_intmax()
|
||||
{
|
||||
unsigned p, q;
|
||||
|
||||
p = 1;
|
||||
unsigned ZLIB_INTERNAL gz_intmax(void) {
|
||||
#ifdef INT_MAX
|
||||
return INT_MAX;
|
||||
#else
|
||||
unsigned p = 1, q;
|
||||
do {
|
||||
q = p;
|
||||
p <<= 1;
|
||||
p++;
|
||||
} while (p > q);
|
||||
return q >> 1;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
88
external/zlib/gzread.c
vendored
88
external/zlib/gzread.c
vendored
@ -5,25 +5,12 @@
|
||||
|
||||
#include "gzguts.h"
|
||||
|
||||
/* Local functions */
|
||||
local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *));
|
||||
local int gz_avail OF((gz_statep));
|
||||
local int gz_look OF((gz_statep));
|
||||
local int gz_decomp OF((gz_statep));
|
||||
local int gz_fetch OF((gz_statep));
|
||||
local int gz_skip OF((gz_statep, z_off64_t));
|
||||
local z_size_t gz_read OF((gz_statep, voidp, z_size_t));
|
||||
|
||||
/* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from
|
||||
state->fd, and update state->eof, state->err, and state->msg as appropriate.
|
||||
This function needs to loop on read(), since read() is not guaranteed to
|
||||
read the number of bytes requested, depending on the type of descriptor. */
|
||||
local int gz_load(state, buf, len, have)
|
||||
gz_statep state;
|
||||
unsigned char *buf;
|
||||
unsigned len;
|
||||
unsigned *have;
|
||||
{
|
||||
local int gz_load(gz_statep state, unsigned char *buf, unsigned len,
|
||||
unsigned *have) {
|
||||
int ret;
|
||||
unsigned get, max = ((unsigned)-1 >> 2) + 1;
|
||||
|
||||
@ -53,9 +40,7 @@ local int gz_load(state, buf, len, have)
|
||||
If strm->avail_in != 0, then the current data is moved to the beginning of
|
||||
the input buffer, and then the remainder of the buffer is loaded with the
|
||||
available data from the input file. */
|
||||
local int gz_avail(state)
|
||||
gz_statep state;
|
||||
{
|
||||
local int gz_avail(gz_statep state) {
|
||||
unsigned got;
|
||||
z_streamp strm = &(state->strm);
|
||||
|
||||
@ -88,9 +73,7 @@ local int gz_avail(state)
|
||||
case, all further file reads will be directly to either the output buffer or
|
||||
a user buffer. If decompressing, the inflate state will be initialized.
|
||||
gz_look() will return 0 on success or -1 on failure. */
|
||||
local int gz_look(state)
|
||||
gz_statep state;
|
||||
{
|
||||
local int gz_look(gz_statep state) {
|
||||
z_streamp strm = &(state->strm);
|
||||
|
||||
/* allocate read buffers and inflate memory */
|
||||
@ -170,9 +153,7 @@ local int gz_look(state)
|
||||
data. If the gzip stream completes, state->how is reset to LOOK to look for
|
||||
the next gzip stream or raw data, once state->x.have is depleted. Returns 0
|
||||
on success, -1 on failure. */
|
||||
local int gz_decomp(state)
|
||||
gz_statep state;
|
||||
{
|
||||
local int gz_decomp(gz_statep state) {
|
||||
int ret = Z_OK;
|
||||
unsigned had;
|
||||
z_streamp strm = &(state->strm);
|
||||
@ -224,9 +205,7 @@ local int gz_decomp(state)
|
||||
looked for to determine whether to copy or decompress. Returns -1 on error,
|
||||
otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the
|
||||
end of the input file has been reached and all data has been processed. */
|
||||
local int gz_fetch(state)
|
||||
gz_statep state;
|
||||
{
|
||||
local int gz_fetch(gz_statep state) {
|
||||
z_streamp strm = &(state->strm);
|
||||
|
||||
do {
|
||||
@ -254,10 +233,7 @@ local int gz_fetch(state)
|
||||
}
|
||||
|
||||
/* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */
|
||||
local int gz_skip(state, len)
|
||||
gz_statep state;
|
||||
z_off64_t len;
|
||||
{
|
||||
local int gz_skip(gz_statep state, z_off64_t len) {
|
||||
unsigned n;
|
||||
|
||||
/* skip over len bytes or reach end-of-file, whichever comes first */
|
||||
@ -289,11 +265,7 @@ local int gz_skip(state, len)
|
||||
input. Return the number of bytes read. If zero is returned, either the
|
||||
end of file was reached, or there was an error. state->err must be
|
||||
consulted in that case to determine which. */
|
||||
local z_size_t gz_read(state, buf, len)
|
||||
gz_statep state;
|
||||
voidp buf;
|
||||
z_size_t len;
|
||||
{
|
||||
local z_size_t gz_read(gz_statep state, voidp buf, z_size_t len) {
|
||||
z_size_t got;
|
||||
unsigned n;
|
||||
|
||||
@ -370,11 +342,7 @@ local z_size_t gz_read(state, buf, len)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzread(file, buf, len)
|
||||
gzFile file;
|
||||
voidp buf;
|
||||
unsigned len;
|
||||
{
|
||||
int ZEXPORT gzread(gzFile file, voidp buf, unsigned len) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure */
|
||||
@ -406,12 +374,7 @@ int ZEXPORT gzread(file, buf, len)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
z_size_t ZEXPORT gzfread(buf, size, nitems, file)
|
||||
voidp buf;
|
||||
z_size_t size;
|
||||
z_size_t nitems;
|
||||
gzFile file;
|
||||
{
|
||||
z_size_t ZEXPORT gzfread(voidp buf, z_size_t size, z_size_t nitems, gzFile file) {
|
||||
z_size_t len;
|
||||
gz_statep state;
|
||||
|
||||
@ -442,9 +405,7 @@ z_size_t ZEXPORT gzfread(buf, size, nitems, file)
|
||||
#else
|
||||
# undef gzgetc
|
||||
#endif
|
||||
int ZEXPORT gzgetc(file)
|
||||
gzFile file;
|
||||
{
|
||||
int ZEXPORT gzgetc(gzFile file) {
|
||||
unsigned char buf[1];
|
||||
gz_statep state;
|
||||
|
||||
@ -469,17 +430,12 @@ int ZEXPORT gzgetc(file)
|
||||
return gz_read(state, buf, 1) < 1 ? -1 : buf[0];
|
||||
}
|
||||
|
||||
int ZEXPORT gzgetc_(file)
|
||||
gzFile file;
|
||||
{
|
||||
int ZEXPORT gzgetc_(gzFile file) {
|
||||
return gzgetc(file);
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzungetc(c, file)
|
||||
int c;
|
||||
gzFile file;
|
||||
{
|
||||
int ZEXPORT gzungetc(int c, gzFile file) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure */
|
||||
@ -487,6 +443,10 @@ int ZEXPORT gzungetc(c, file)
|
||||
return -1;
|
||||
state = (gz_statep)file;
|
||||
|
||||
/* in case this was just opened, set up the input buffer */
|
||||
if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0)
|
||||
(void)gz_look(state);
|
||||
|
||||
/* check that we're reading and that there's no (serious) error */
|
||||
if (state->mode != GZ_READ ||
|
||||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
|
||||
@ -536,11 +496,7 @@ int ZEXPORT gzungetc(c, file)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
char * ZEXPORT gzgets(file, buf, len)
|
||||
gzFile file;
|
||||
char *buf;
|
||||
int len;
|
||||
{
|
||||
char * ZEXPORT gzgets(gzFile file, char *buf, int len) {
|
||||
unsigned left, n;
|
||||
char *str;
|
||||
unsigned char *eol;
|
||||
@ -600,9 +556,7 @@ char * ZEXPORT gzgets(file, buf, len)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzdirect(file)
|
||||
gzFile file;
|
||||
{
|
||||
int ZEXPORT gzdirect(gzFile file) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure */
|
||||
@ -620,9 +574,7 @@ int ZEXPORT gzdirect(file)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzclose_r(file)
|
||||
gzFile file;
|
||||
{
|
||||
int ZEXPORT gzclose_r(gzFile file) {
|
||||
int ret, err;
|
||||
gz_statep state;
|
||||
|
||||
|
84
external/zlib/gzwrite.c
vendored
84
external/zlib/gzwrite.c
vendored
@ -5,18 +5,10 @@
|
||||
|
||||
#include "gzguts.h"
|
||||
|
||||
/* Local functions */
|
||||
local int gz_init OF((gz_statep));
|
||||
local int gz_comp OF((gz_statep, int));
|
||||
local int gz_zero OF((gz_statep, z_off64_t));
|
||||
local z_size_t gz_write OF((gz_statep, voidpc, z_size_t));
|
||||
|
||||
/* Initialize state for writing a gzip file. Mark initialization by setting
|
||||
state->size to non-zero. Return -1 on a memory allocation failure, or 0 on
|
||||
success. */
|
||||
local int gz_init(state)
|
||||
gz_statep state;
|
||||
{
|
||||
local int gz_init(gz_statep state) {
|
||||
int ret;
|
||||
z_streamp strm = &(state->strm);
|
||||
|
||||
@ -70,10 +62,7 @@ local int gz_init(state)
|
||||
deflate() flush value. If flush is Z_FINISH, then the deflate() state is
|
||||
reset to start a new gzip stream. If gz->direct is true, then simply write
|
||||
to the output file without compressing, and ignore flush. */
|
||||
local int gz_comp(state, flush)
|
||||
gz_statep state;
|
||||
int flush;
|
||||
{
|
||||
local int gz_comp(gz_statep state, int flush) {
|
||||
int ret, writ;
|
||||
unsigned have, put, max = ((unsigned)-1 >> 2) + 1;
|
||||
z_streamp strm = &(state->strm);
|
||||
@ -151,10 +140,7 @@ local int gz_comp(state, flush)
|
||||
|
||||
/* Compress len zeros to output. Return -1 on a write error or memory
|
||||
allocation failure by gz_comp(), or 0 on success. */
|
||||
local int gz_zero(state, len)
|
||||
gz_statep state;
|
||||
z_off64_t len;
|
||||
{
|
||||
local int gz_zero(gz_statep state, z_off64_t len) {
|
||||
int first;
|
||||
unsigned n;
|
||||
z_streamp strm = &(state->strm);
|
||||
@ -184,11 +170,7 @@ local int gz_zero(state, len)
|
||||
|
||||
/* Write len bytes from buf to file. Return the number of bytes written. If
|
||||
the returned value is less than len, then there was an error. */
|
||||
local z_size_t gz_write(state, buf, len)
|
||||
gz_statep state;
|
||||
voidpc buf;
|
||||
z_size_t len;
|
||||
{
|
||||
local z_size_t gz_write(gz_statep state, voidpc buf, z_size_t len) {
|
||||
z_size_t put = len;
|
||||
|
||||
/* if len is zero, avoid unnecessary operations */
|
||||
@ -252,11 +234,7 @@ local z_size_t gz_write(state, buf, len)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzwrite(file, buf, len)
|
||||
gzFile file;
|
||||
voidpc buf;
|
||||
unsigned len;
|
||||
{
|
||||
int ZEXPORT gzwrite(gzFile file, voidpc buf, unsigned len) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure */
|
||||
@ -280,12 +258,8 @@ int ZEXPORT gzwrite(file, buf, len)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
z_size_t ZEXPORT gzfwrite(buf, size, nitems, file)
|
||||
voidpc buf;
|
||||
z_size_t size;
|
||||
z_size_t nitems;
|
||||
gzFile file;
|
||||
{
|
||||
z_size_t ZEXPORT gzfwrite(voidpc buf, z_size_t size, z_size_t nitems,
|
||||
gzFile file) {
|
||||
z_size_t len;
|
||||
gz_statep state;
|
||||
|
||||
@ -310,10 +284,7 @@ z_size_t ZEXPORT gzfwrite(buf, size, nitems, file)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzputc(file, c)
|
||||
gzFile file;
|
||||
int c;
|
||||
{
|
||||
int ZEXPORT gzputc(gzFile file, int c) {
|
||||
unsigned have;
|
||||
unsigned char buf[1];
|
||||
gz_statep state;
|
||||
@ -358,10 +329,7 @@ int ZEXPORT gzputc(file, c)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzputs(file, s)
|
||||
gzFile file;
|
||||
const char *s;
|
||||
{
|
||||
int ZEXPORT gzputs(gzFile file, const char *s) {
|
||||
z_size_t len, put;
|
||||
gz_statep state;
|
||||
|
||||
@ -388,8 +356,7 @@ int ZEXPORT gzputs(file, s)
|
||||
#include <stdarg.h>
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va)
|
||||
{
|
||||
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) {
|
||||
int len;
|
||||
unsigned left;
|
||||
char *next;
|
||||
@ -460,8 +427,7 @@ int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va)
|
||||
return len;
|
||||
}
|
||||
|
||||
int ZEXPORTVA gzprintf(gzFile file, const char *format, ...)
|
||||
{
|
||||
int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) {
|
||||
va_list va;
|
||||
int ret;
|
||||
|
||||
@ -474,13 +440,10 @@ int ZEXPORTVA gzprintf(gzFile file, const char *format, ...)
|
||||
#else /* !STDC && !Z_HAVE_STDARG_H */
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORTVA gzprintf(file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
|
||||
a11, a12, a13, a14, a15, a16, a17, a18, a19, a20)
|
||||
gzFile file;
|
||||
const char *format;
|
||||
int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
|
||||
a11, a12, a13, a14, a15, a16, a17, a18, a19, a20;
|
||||
{
|
||||
int ZEXPORTVA gzprintf(gzFile file, const char *format, int a1, int a2, int a3,
|
||||
int a4, int a5, int a6, int a7, int a8, int a9, int a10,
|
||||
int a11, int a12, int a13, int a14, int a15, int a16,
|
||||
int a17, int a18, int a19, int a20) {
|
||||
unsigned len, left;
|
||||
char *next;
|
||||
gz_statep state;
|
||||
@ -562,10 +525,7 @@ int ZEXPORTVA gzprintf(file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,
|
||||
#endif
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzflush(file, flush)
|
||||
gzFile file;
|
||||
int flush;
|
||||
{
|
||||
int ZEXPORT gzflush(gzFile file, int flush) {
|
||||
gz_statep state;
|
||||
|
||||
/* get internal structure */
|
||||
@ -594,11 +554,7 @@ int ZEXPORT gzflush(file, flush)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzsetparams(file, level, strategy)
|
||||
gzFile file;
|
||||
int level;
|
||||
int strategy;
|
||||
{
|
||||
int ZEXPORT gzsetparams(gzFile file, int level, int strategy) {
|
||||
gz_statep state;
|
||||
z_streamp strm;
|
||||
|
||||
@ -609,7 +565,7 @@ int ZEXPORT gzsetparams(file, level, strategy)
|
||||
strm = &(state->strm);
|
||||
|
||||
/* check that we're writing and that there's no error */
|
||||
if (state->mode != GZ_WRITE || state->err != Z_OK)
|
||||
if (state->mode != GZ_WRITE || state->err != Z_OK || state->direct)
|
||||
return Z_STREAM_ERROR;
|
||||
|
||||
/* if no change is requested, then do nothing */
|
||||
@ -636,9 +592,7 @@ int ZEXPORT gzsetparams(file, level, strategy)
|
||||
}
|
||||
|
||||
/* -- see zlib.h -- */
|
||||
int ZEXPORT gzclose_w(file)
|
||||
gzFile file;
|
||||
{
|
||||
int ZEXPORT gzclose_w(gzFile file) {
|
||||
int ret = Z_OK;
|
||||
gz_statep state;
|
||||
|
||||
|
30
external/zlib/infback.c
vendored
30
external/zlib/infback.c
vendored
@ -15,9 +15,6 @@
|
||||
#include "inflate.h"
|
||||
#include "inffast.h"
|
||||
|
||||
/* function prototypes */
|
||||
local void fixedtables OF((struct inflate_state FAR *state));
|
||||
|
||||
/*
|
||||
strm provides memory allocation functions in zalloc and zfree, or
|
||||
Z_NULL to use the library memory allocation functions.
|
||||
@ -25,13 +22,9 @@ local void fixedtables OF((struct inflate_state FAR *state));
|
||||
windowBits is in the range 8..15, and window is a user-supplied
|
||||
window and output buffer that is 2**windowBits bytes.
|
||||
*/
|
||||
int ZEXPORT inflateBackInit_(strm, windowBits, window, version, stream_size)
|
||||
z_streamp strm;
|
||||
int windowBits;
|
||||
unsigned char FAR *window;
|
||||
const char *version;
|
||||
int stream_size;
|
||||
{
|
||||
int ZEXPORT inflateBackInit_(z_streamp strm, int windowBits,
|
||||
unsigned char FAR *window, const char *version,
|
||||
int stream_size) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
|
||||
@ -80,9 +73,7 @@ int stream_size;
|
||||
used for threaded applications, since the rewriting of the tables and virgin
|
||||
may not be thread-safe.
|
||||
*/
|
||||
local void fixedtables(state)
|
||||
struct inflate_state FAR *state;
|
||||
{
|
||||
local void fixedtables(struct inflate_state FAR *state) {
|
||||
#ifdef BUILDFIXED
|
||||
static int virgin = 1;
|
||||
static code *lenfix, *distfix;
|
||||
@ -248,13 +239,8 @@ struct inflate_state FAR *state;
|
||||
inflateBack() can also return Z_STREAM_ERROR if the input parameters
|
||||
are not correct, i.e. strm is Z_NULL or the state was not initialized.
|
||||
*/
|
||||
int ZEXPORT inflateBack(strm, in, in_desc, out, out_desc)
|
||||
z_streamp strm;
|
||||
in_func in;
|
||||
void FAR *in_desc;
|
||||
out_func out;
|
||||
void FAR *out_desc;
|
||||
{
|
||||
int ZEXPORT inflateBack(z_streamp strm, in_func in, void FAR *in_desc,
|
||||
out_func out, void FAR *out_desc) {
|
||||
struct inflate_state FAR *state;
|
||||
z_const unsigned char FAR *next; /* next input */
|
||||
unsigned char FAR *put; /* next output */
|
||||
@ -632,9 +618,7 @@ void FAR *out_desc;
|
||||
return ret;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateBackEnd(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT inflateBackEnd(z_streamp strm) {
|
||||
if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0)
|
||||
return Z_STREAM_ERROR;
|
||||
ZFREE(strm, strm->state);
|
||||
|
5
external/zlib/inffast.c
vendored
5
external/zlib/inffast.c
vendored
@ -47,10 +47,7 @@
|
||||
requires strm->avail_out >= 258 for each loop to avoid checking for
|
||||
output space.
|
||||
*/
|
||||
void ZLIB_INTERNAL inflate_fast(strm, start)
|
||||
z_streamp strm;
|
||||
unsigned start; /* inflate()'s starting value for strm->avail_out */
|
||||
{
|
||||
void ZLIB_INTERNAL inflate_fast(z_streamp strm, unsigned start) {
|
||||
struct inflate_state FAR *state;
|
||||
z_const unsigned char FAR *in; /* local strm->next_in */
|
||||
z_const unsigned char FAR *last; /* have enough input while in < last */
|
||||
|
2
external/zlib/inffast.h
vendored
2
external/zlib/inffast.h
vendored
@ -8,4 +8,4 @@
|
||||
subject to change. Applications should only use zlib.h.
|
||||
*/
|
||||
|
||||
void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start));
|
||||
void ZLIB_INTERNAL inflate_fast(z_streamp strm, unsigned start);
|
||||
|
131
external/zlib/inflate.c
vendored
131
external/zlib/inflate.c
vendored
@ -91,20 +91,7 @@
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* function prototypes */
|
||||
local int inflateStateCheck OF((z_streamp strm));
|
||||
local void fixedtables OF((struct inflate_state FAR *state));
|
||||
local int updatewindow OF((z_streamp strm, const unsigned char FAR *end,
|
||||
unsigned copy));
|
||||
#ifdef BUILDFIXED
|
||||
void makefixed OF((void));
|
||||
#endif
|
||||
local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf,
|
||||
unsigned len));
|
||||
|
||||
local int inflateStateCheck(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
local int inflateStateCheck(z_streamp strm) {
|
||||
struct inflate_state FAR *state;
|
||||
if (strm == Z_NULL ||
|
||||
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
|
||||
@ -116,9 +103,7 @@ z_streamp strm;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateResetKeep(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT inflateResetKeep(z_streamp strm) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
@ -142,9 +127,7 @@ z_streamp strm;
|
||||
return Z_OK;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateReset(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT inflateReset(z_streamp strm) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
@ -155,10 +138,7 @@ z_streamp strm;
|
||||
return inflateResetKeep(strm);
|
||||
}
|
||||
|
||||
int ZEXPORT inflateReset2(strm, windowBits)
|
||||
z_streamp strm;
|
||||
int windowBits;
|
||||
{
|
||||
int ZEXPORT inflateReset2(z_streamp strm, int windowBits) {
|
||||
int wrap;
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
@ -195,12 +175,8 @@ int windowBits;
|
||||
return inflateReset(strm);
|
||||
}
|
||||
|
||||
int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size)
|
||||
z_streamp strm;
|
||||
int windowBits;
|
||||
const char *version;
|
||||
int stream_size;
|
||||
{
|
||||
int ZEXPORT inflateInit2_(z_streamp strm, int windowBits,
|
||||
const char *version, int stream_size) {
|
||||
int ret;
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
@ -239,22 +215,17 @@ int stream_size;
|
||||
return ret;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateInit_(strm, version, stream_size)
|
||||
z_streamp strm;
|
||||
const char *version;
|
||||
int stream_size;
|
||||
{
|
||||
int ZEXPORT inflateInit_(z_streamp strm, const char *version,
|
||||
int stream_size) {
|
||||
return inflateInit2_(strm, DEF_WBITS, version, stream_size);
|
||||
}
|
||||
|
||||
int ZEXPORT inflatePrime(strm, bits, value)
|
||||
z_streamp strm;
|
||||
int bits;
|
||||
int value;
|
||||
{
|
||||
int ZEXPORT inflatePrime(z_streamp strm, int bits, int value) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
if (bits == 0)
|
||||
return Z_OK;
|
||||
state = (struct inflate_state FAR *)strm->state;
|
||||
if (bits < 0) {
|
||||
state->hold = 0;
|
||||
@ -278,9 +249,7 @@ int value;
|
||||
used for threaded applications, since the rewriting of the tables and virgin
|
||||
may not be thread-safe.
|
||||
*/
|
||||
local void fixedtables(state)
|
||||
struct inflate_state FAR *state;
|
||||
{
|
||||
local void fixedtables(struct inflate_state FAR *state) {
|
||||
#ifdef BUILDFIXED
|
||||
static int virgin = 1;
|
||||
static code *lenfix, *distfix;
|
||||
@ -342,7 +311,7 @@ struct inflate_state FAR *state;
|
||||
|
||||
a.out > inffixed.h
|
||||
*/
|
||||
void makefixed()
|
||||
void makefixed(void)
|
||||
{
|
||||
unsigned low, size;
|
||||
struct inflate_state state;
|
||||
@ -396,11 +365,7 @@ void makefixed()
|
||||
output will fall in the output data, making match copies simpler and faster.
|
||||
The advantage may be dependent on the size of the processor's data caches.
|
||||
*/
|
||||
local int updatewindow(strm, end, copy)
|
||||
z_streamp strm;
|
||||
const Bytef *end;
|
||||
unsigned copy;
|
||||
{
|
||||
local int updatewindow(z_streamp strm, const Bytef *end, unsigned copy) {
|
||||
struct inflate_state FAR *state;
|
||||
unsigned dist;
|
||||
|
||||
@ -622,10 +587,7 @@ unsigned copy;
|
||||
will return Z_BUF_ERROR if it has not reached the end of the stream.
|
||||
*/
|
||||
|
||||
int ZEXPORT inflate(strm, flush)
|
||||
z_streamp strm;
|
||||
int flush;
|
||||
{
|
||||
int ZEXPORT inflate(z_streamp strm, int flush) {
|
||||
struct inflate_state FAR *state;
|
||||
z_const unsigned char FAR *next; /* next input */
|
||||
unsigned char FAR *put; /* next output */
|
||||
@ -1301,9 +1263,7 @@ int flush;
|
||||
return ret;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateEnd(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT inflateEnd(z_streamp strm) {
|
||||
struct inflate_state FAR *state;
|
||||
if (inflateStateCheck(strm))
|
||||
return Z_STREAM_ERROR;
|
||||
@ -1315,11 +1275,8 @@ z_streamp strm;
|
||||
return Z_OK;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength)
|
||||
z_streamp strm;
|
||||
Bytef *dictionary;
|
||||
uInt *dictLength;
|
||||
{
|
||||
int ZEXPORT inflateGetDictionary(z_streamp strm, Bytef *dictionary,
|
||||
uInt *dictLength) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
/* check state */
|
||||
@ -1338,11 +1295,8 @@ uInt *dictLength;
|
||||
return Z_OK;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength)
|
||||
z_streamp strm;
|
||||
const Bytef *dictionary;
|
||||
uInt dictLength;
|
||||
{
|
||||
int ZEXPORT inflateSetDictionary(z_streamp strm, const Bytef *dictionary,
|
||||
uInt dictLength) {
|
||||
struct inflate_state FAR *state;
|
||||
unsigned long dictid;
|
||||
int ret;
|
||||
@ -1373,10 +1327,7 @@ uInt dictLength;
|
||||
return Z_OK;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateGetHeader(strm, head)
|
||||
z_streamp strm;
|
||||
gz_headerp head;
|
||||
{
|
||||
int ZEXPORT inflateGetHeader(z_streamp strm, gz_headerp head) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
/* check state */
|
||||
@ -1401,11 +1352,8 @@ gz_headerp head;
|
||||
called again with more data and the *have state. *have is initialized to
|
||||
zero for the first call.
|
||||
*/
|
||||
local unsigned syncsearch(have, buf, len)
|
||||
unsigned FAR *have;
|
||||
const unsigned char FAR *buf;
|
||||
unsigned len;
|
||||
{
|
||||
local unsigned syncsearch(unsigned FAR *have, const unsigned char FAR *buf,
|
||||
unsigned len) {
|
||||
unsigned got;
|
||||
unsigned next;
|
||||
|
||||
@ -1424,9 +1372,7 @@ unsigned len;
|
||||
return next;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateSync(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT inflateSync(z_streamp strm) {
|
||||
unsigned len; /* number of bytes to look at or looked at */
|
||||
int flags; /* temporary to save header status */
|
||||
unsigned long in, out; /* temporary to save total_in and total_out */
|
||||
@ -1441,7 +1387,7 @@ z_streamp strm;
|
||||
/* if first time, start search in bit buffer */
|
||||
if (state->mode != SYNC) {
|
||||
state->mode = SYNC;
|
||||
state->hold <<= state->bits & 7;
|
||||
state->hold >>= state->bits & 7;
|
||||
state->bits -= state->bits & 7;
|
||||
len = 0;
|
||||
while (state->bits >= 8) {
|
||||
@ -1482,9 +1428,7 @@ z_streamp strm;
|
||||
block. When decompressing, PPP checks that at the end of input packet,
|
||||
inflate is waiting for these length bytes.
|
||||
*/
|
||||
int ZEXPORT inflateSyncPoint(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
int ZEXPORT inflateSyncPoint(z_streamp strm) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
@ -1492,10 +1436,7 @@ z_streamp strm;
|
||||
return state->mode == STORED && state->bits == 0;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateCopy(dest, source)
|
||||
z_streamp dest;
|
||||
z_streamp source;
|
||||
{
|
||||
int ZEXPORT inflateCopy(z_streamp dest, z_streamp source) {
|
||||
struct inflate_state FAR *state;
|
||||
struct inflate_state FAR *copy;
|
||||
unsigned char FAR *window;
|
||||
@ -1539,10 +1480,7 @@ z_streamp source;
|
||||
return Z_OK;
|
||||
}
|
||||
|
||||
int ZEXPORT inflateUndermine(strm, subvert)
|
||||
z_streamp strm;
|
||||
int subvert;
|
||||
{
|
||||
int ZEXPORT inflateUndermine(z_streamp strm, int subvert) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
@ -1557,10 +1495,7 @@ int subvert;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ZEXPORT inflateValidate(strm, check)
|
||||
z_streamp strm;
|
||||
int check;
|
||||
{
|
||||
int ZEXPORT inflateValidate(z_streamp strm, int check) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
if (inflateStateCheck(strm)) return Z_STREAM_ERROR;
|
||||
@ -1572,9 +1507,7 @@ int check;
|
||||
return Z_OK;
|
||||
}
|
||||
|
||||
long ZEXPORT inflateMark(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
long ZEXPORT inflateMark(z_streamp strm) {
|
||||
struct inflate_state FAR *state;
|
||||
|
||||
if (inflateStateCheck(strm))
|
||||
@ -1585,9 +1518,7 @@ z_streamp strm;
|
||||
(state->mode == MATCH ? state->was - state->length : 0));
|
||||
}
|
||||
|
||||
unsigned long ZEXPORT inflateCodesUsed(strm)
|
||||
z_streamp strm;
|
||||
{
|
||||
unsigned long ZEXPORT inflateCodesUsed(z_streamp strm) {
|
||||
struct inflate_state FAR *state;
|
||||
if (inflateStateCheck(strm)) return (unsigned long)-1;
|
||||
state = (struct inflate_state FAR *)strm->state;
|
||||
|
17
external/zlib/inftrees.c
vendored
17
external/zlib/inftrees.c
vendored
@ -1,5 +1,5 @@
|
||||
/* inftrees.c -- generate Huffman trees for efficient decoding
|
||||
* Copyright (C) 1995-2022 Mark Adler
|
||||
* Copyright (C) 1995-2024 Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
|
||||
@ -9,7 +9,7 @@
|
||||
#define MAXBITS 15
|
||||
|
||||
const char inflate_copyright[] =
|
||||
" inflate 1.2.13 Copyright 1995-2022 Mark Adler ";
|
||||
" inflate 1.3.1 Copyright 1995-2024 Mark Adler ";
|
||||
/*
|
||||
If you use the zlib library in a product, an acknowledgment is welcome
|
||||
in the documentation of your product. If for some reason you cannot
|
||||
@ -29,14 +29,9 @@ const char inflate_copyright[] =
|
||||
table index bits. It will differ if the request is greater than the
|
||||
longest code or if it is less than the shortest code.
|
||||
*/
|
||||
int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work)
|
||||
codetype type;
|
||||
unsigned short FAR *lens;
|
||||
unsigned codes;
|
||||
code FAR * FAR *table;
|
||||
unsigned FAR *bits;
|
||||
unsigned short FAR *work;
|
||||
{
|
||||
int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
|
||||
unsigned codes, code FAR * FAR *table,
|
||||
unsigned FAR *bits, unsigned short FAR *work) {
|
||||
unsigned len; /* a code's length in bits */
|
||||
unsigned sym; /* index of code symbols */
|
||||
unsigned min, max; /* minimum and maximum code lengths */
|
||||
@ -62,7 +57,7 @@ unsigned short FAR *work;
|
||||
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
|
||||
static const unsigned short lext[31] = { /* Length codes 257..285 extra */
|
||||
16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
|
||||
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 194, 65};
|
||||
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 203, 77};
|
||||
static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
|
||||
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
|
||||
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
|
||||
|
10
external/zlib/inftrees.h
vendored
10
external/zlib/inftrees.h
vendored
@ -41,8 +41,8 @@ typedef struct {
|
||||
examples/enough.c found in the zlib distribution. The arguments to that
|
||||
program are the number of symbols, the initial root table size, and the
|
||||
maximum bit length of a code. "enough 286 9 15" for literal/length codes
|
||||
returns returns 852, and "enough 30 6 15" for distance codes returns 592.
|
||||
The initial root table size (9 or 6) is found in the fifth argument of the
|
||||
returns 852, and "enough 30 6 15" for distance codes returns 592. The
|
||||
initial root table size (9 or 6) is found in the fifth argument of the
|
||||
inflate_table() calls in inflate.c and infback.c. If the root table size is
|
||||
changed, then these maximum sizes would be need to be recalculated and
|
||||
updated. */
|
||||
@ -57,6 +57,6 @@ typedef enum {
|
||||
DISTS
|
||||
} codetype;
|
||||
|
||||
int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens,
|
||||
unsigned codes, code FAR * FAR *table,
|
||||
unsigned FAR *bits, unsigned short FAR *work));
|
||||
int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
|
||||
unsigned codes, code FAR * FAR *table,
|
||||
unsigned FAR *bits, unsigned short FAR *work);
|
||||
|
4
external/zlib/make_vms.com
vendored
4
external/zlib/make_vms.com
vendored
@ -14,9 +14,9 @@ $! 0.02 20061008 Adapt to new Makefile.in
|
||||
$! 0.03 20091224 Add support for large file check
|
||||
$! 0.04 20100110 Add new gzclose, gzlib, gzread, gzwrite
|
||||
$! 0.05 20100221 Exchange zlibdefs.h by zconf.h.in
|
||||
$! 0.06 20120111 Fix missing amiss_err, update zconf_h.in, fix new exmples
|
||||
$! 0.06 20120111 Fix missing amiss_err, update zconf_h.in, fix new examples
|
||||
$! subdir path, update module search in makefile.in
|
||||
$! 0.07 20120115 Triggered by work done by Alexey Chupahin completly redesigned
|
||||
$! 0.07 20120115 Triggered by work done by Alexey Chupahin completely redesigned
|
||||
$! shared image creation
|
||||
$! 0.08 20120219 Make it work on VAX again, pre-load missing symbols to shared
|
||||
$! image
|
||||
|
2
external/zlib/msdos/Makefile.dj2
vendored
2
external/zlib/msdos/Makefile.dj2
vendored
@ -29,7 +29,7 @@ CC=gcc
|
||||
|
||||
#CFLAGS=-MMD -O
|
||||
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
|
||||
#CFLAGS=-MMD -g -DDEBUG
|
||||
#CFLAGS=-MMD -g -DZLIB_DEBUG
|
||||
CFLAGS=-MMD -O3 $(BUTT) -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
|
||||
-Wstrict-prototypes -Wmissing-prototypes
|
||||
|
||||
|
2
external/zlib/msdos/Makefile.emx
vendored
2
external/zlib/msdos/Makefile.emx
vendored
@ -11,7 +11,7 @@ CC=gcc
|
||||
|
||||
#CFLAGS=-MMD -O
|
||||
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
|
||||
#CFLAGS=-MMD -g -DDEBUG
|
||||
#CFLAGS=-MMD -g -DZLIB_DEBUG
|
||||
CFLAGS=-MMD -O3 $(BUTT) -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
|
||||
-Wstrict-prototypes -Wmissing-prototypes
|
||||
|
||||
|
2
external/zlib/old/Makefile.emx
vendored
2
external/zlib/old/Makefile.emx
vendored
@ -11,7 +11,7 @@ CC=gcc -Zwin32
|
||||
|
||||
#CFLAGS=-MMD -O
|
||||
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
|
||||
#CFLAGS=-MMD -g -DDEBUG
|
||||
#CFLAGS=-MMD -g -DZLIB_DEBUG
|
||||
CFLAGS=-MMD -O3 $(BUTT) -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
|
||||
-Wstrict-prototypes -Wmissing-prototypes
|
||||
|
||||
|
2
external/zlib/old/os2/Makefile.os2
vendored
2
external/zlib/old/os2/Makefile.os2
vendored
@ -14,7 +14,7 @@ CC=gcc -Zomf -s
|
||||
|
||||
CFLAGS=-O6 -Wall
|
||||
#CFLAGS=-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7
|
||||
#CFLAGS=-g -DDEBUG
|
||||
#CFLAGS=-g -DZLIB_DEBUG
|
||||
#CFLAGS=-O3 -Wall -Wwrite-strings -Wpointer-arith -Wconversion \
|
||||
# -Wstrict-prototypes -Wmissing-prototypes
|
||||
|
||||
|
2
external/zlib/old/visual-basic.txt
vendored
2
external/zlib/old/visual-basic.txt
vendored
@ -115,7 +115,7 @@ SUCCESS Then
|
||||
ReDim Preserve bytaryCpr(lngCprSiz - 1)
|
||||
Open strCprPth For Binary Access Write As #1
|
||||
Put #1, , bytaryCpr()
|
||||
Put #1, , lngOriSiz 'Add the the original size value to the end
|
||||
Put #1, , lngOriSiz 'Add the original size value to the end
|
||||
(last 4 bytes)
|
||||
Close #1
|
||||
Else
|
||||
|
10
external/zlib/qnx/package.qpg
vendored
10
external/zlib/qnx/package.qpg
vendored
@ -25,10 +25,10 @@
|
||||
<QPG:Files>
|
||||
<QPG:Add file="../zconf.h" install="/opt/include/" user="root:sys" permission="644"/>
|
||||
<QPG:Add file="../zlib.h" install="/opt/include/" user="root:sys" permission="644"/>
|
||||
<QPG:Add file="../libz.so.1.2.8" install="/opt/lib/" user="root:bin" permission="644"/>
|
||||
<QPG:Add file="libz.so" install="/opt/lib/" component="dev" filetype="symlink" linkto="libz.so.1.2.8"/>
|
||||
<QPG:Add file="libz.so.1" install="/opt/lib/" filetype="symlink" linkto="libz.so.1.2.8"/>
|
||||
<QPG:Add file="../libz.so.1.2.8" install="/opt/lib/" component="slib"/>
|
||||
<QPG:Add file="../libz.so.1.3.1" install="/opt/lib/" user="root:bin" permission="644"/>
|
||||
<QPG:Add file="libz.so" install="/opt/lib/" component="dev" filetype="symlink" linkto="libz.so.1.3.1"/>
|
||||
<QPG:Add file="libz.so.1" install="/opt/lib/" filetype="symlink" linkto="libz.so.1.3.1"/>
|
||||
<QPG:Add file="../libz.so.1.3.1" install="/opt/lib/" component="slib"/>
|
||||
</QPG:Files>
|
||||
|
||||
<QPG:PackageFilter>
|
||||
@ -63,7 +63,7 @@
|
||||
</QPM:ProductDescription>
|
||||
|
||||
<QPM:ReleaseDescription>
|
||||
<QPM:ReleaseVersion>1.2.8</QPM:ReleaseVersion>
|
||||
<QPM:ReleaseVersion>1.3.1</QPM:ReleaseVersion>
|
||||
<QPM:ReleaseUrgency>Medium</QPM:ReleaseUrgency>
|
||||
<QPM:ReleaseStability>Stable</QPM:ReleaseStability>
|
||||
<QPM:ReleaseNoteMinor></QPM:ReleaseNoteMinor>
|
||||
|
4
external/zlib/treebuild.xml
vendored
4
external/zlib/treebuild.xml
vendored
@ -1,6 +1,6 @@
|
||||
<?xml version="1.0" ?>
|
||||
<package name="zlib" version="1.2.13">
|
||||
<library name="zlib" dlversion="1.2.13" dlname="z">
|
||||
<package name="zlib" version="1.3.1">
|
||||
<library name="zlib" dlversion="1.3.1" dlname="z">
|
||||
<property name="description"> zip compression library </property>
|
||||
<property name="include-target-dir" value="$(@PACKAGE/install-includedir)" />
|
||||
|
||||
|
542
external/zlib/trees.c
vendored
542
external/zlib/trees.c
vendored
@ -1,5 +1,5 @@
|
||||
/* trees.c -- output deflated data using Huffman coding
|
||||
* Copyright (C) 1995-2021 Jean-loup Gailly
|
||||
* Copyright (C) 1995-2024 Jean-loup Gailly
|
||||
* detect_data_type() function provided freely by Cosmin Truta, 2006
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
@ -122,39 +122,116 @@ struct static_tree_desc_s {
|
||||
int max_length; /* max bit length for the codes */
|
||||
};
|
||||
|
||||
local const static_tree_desc static_l_desc =
|
||||
#ifdef NO_INIT_GLOBAL_POINTERS
|
||||
# define TCONST
|
||||
#else
|
||||
# define TCONST const
|
||||
#endif
|
||||
|
||||
local TCONST static_tree_desc static_l_desc =
|
||||
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
|
||||
|
||||
local const static_tree_desc static_d_desc =
|
||||
local TCONST static_tree_desc static_d_desc =
|
||||
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
|
||||
|
||||
local const static_tree_desc static_bl_desc =
|
||||
local TCONST static_tree_desc static_bl_desc =
|
||||
{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
|
||||
|
||||
/* ===========================================================================
|
||||
* Local (static) routines in this file.
|
||||
* Output a short LSB first on the stream.
|
||||
* IN assertion: there is enough room in pendingBuf.
|
||||
*/
|
||||
#define put_short(s, w) { \
|
||||
put_byte(s, (uch)((w) & 0xff)); \
|
||||
put_byte(s, (uch)((ush)(w) >> 8)); \
|
||||
}
|
||||
|
||||
local void tr_static_init OF((void));
|
||||
local void init_block OF((deflate_state *s));
|
||||
local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
|
||||
local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
|
||||
local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
|
||||
local void build_tree OF((deflate_state *s, tree_desc *desc));
|
||||
local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
|
||||
local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
|
||||
local int build_bl_tree OF((deflate_state *s));
|
||||
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
|
||||
int blcodes));
|
||||
local void compress_block OF((deflate_state *s, const ct_data *ltree,
|
||||
const ct_data *dtree));
|
||||
local int detect_data_type OF((deflate_state *s));
|
||||
local unsigned bi_reverse OF((unsigned code, int len));
|
||||
local void bi_windup OF((deflate_state *s));
|
||||
local void bi_flush OF((deflate_state *s));
|
||||
/* ===========================================================================
|
||||
* Reverse the first len bits of a code, using straightforward code (a faster
|
||||
* method would use a table)
|
||||
* IN assertion: 1 <= len <= 15
|
||||
*/
|
||||
local unsigned bi_reverse(unsigned code, int len) {
|
||||
register unsigned res = 0;
|
||||
do {
|
||||
res |= code & 1;
|
||||
code >>= 1, res <<= 1;
|
||||
} while (--len > 0);
|
||||
return res >> 1;
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Flush the bit buffer, keeping at most 7 bits in it.
|
||||
*/
|
||||
local void bi_flush(deflate_state *s) {
|
||||
if (s->bi_valid == 16) {
|
||||
put_short(s, s->bi_buf);
|
||||
s->bi_buf = 0;
|
||||
s->bi_valid = 0;
|
||||
} else if (s->bi_valid >= 8) {
|
||||
put_byte(s, (Byte)s->bi_buf);
|
||||
s->bi_buf >>= 8;
|
||||
s->bi_valid -= 8;
|
||||
}
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Flush the bit buffer and align the output on a byte boundary
|
||||
*/
|
||||
local void bi_windup(deflate_state *s) {
|
||||
if (s->bi_valid > 8) {
|
||||
put_short(s, s->bi_buf);
|
||||
} else if (s->bi_valid > 0) {
|
||||
put_byte(s, (Byte)s->bi_buf);
|
||||
}
|
||||
s->bi_buf = 0;
|
||||
s->bi_valid = 0;
|
||||
#ifdef ZLIB_DEBUG
|
||||
s->bits_sent = (s->bits_sent + 7) & ~7;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Generate the codes for a given tree and bit counts (which need not be
|
||||
* optimal).
|
||||
* IN assertion: the array bl_count contains the bit length statistics for
|
||||
* the given tree and the field len is set for all tree elements.
|
||||
* OUT assertion: the field code is set for all tree elements of non
|
||||
* zero code length.
|
||||
*/
|
||||
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
|
||||
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
|
||||
unsigned code = 0; /* running code value */
|
||||
int bits; /* bit index */
|
||||
int n; /* code index */
|
||||
|
||||
/* The distribution counts are first used to generate the code values
|
||||
* without bit reversal.
|
||||
*/
|
||||
for (bits = 1; bits <= MAX_BITS; bits++) {
|
||||
code = (code + bl_count[bits - 1]) << 1;
|
||||
next_code[bits] = (ush)code;
|
||||
}
|
||||
/* Check that the bit counts in bl_count are consistent. The last code
|
||||
* must be all ones.
|
||||
*/
|
||||
Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
|
||||
"inconsistent bit counts");
|
||||
Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
|
||||
|
||||
for (n = 0; n <= max_code; n++) {
|
||||
int len = tree[n].Len;
|
||||
if (len == 0) continue;
|
||||
/* Now reverse the bits */
|
||||
tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
|
||||
|
||||
Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
|
||||
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GEN_TREES_H
|
||||
local void gen_trees_header OF((void));
|
||||
local void gen_trees_header(void);
|
||||
#endif
|
||||
|
||||
#ifndef ZLIB_DEBUG
|
||||
@ -167,27 +244,12 @@ local void gen_trees_header OF((void));
|
||||
send_bits(s, tree[c].Code, tree[c].Len); }
|
||||
#endif
|
||||
|
||||
/* ===========================================================================
|
||||
* Output a short LSB first on the stream.
|
||||
* IN assertion: there is enough room in pendingBuf.
|
||||
*/
|
||||
#define put_short(s, w) { \
|
||||
put_byte(s, (uch)((w) & 0xff)); \
|
||||
put_byte(s, (uch)((ush)(w) >> 8)); \
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Send a value on a given number of bits.
|
||||
* IN assertion: length <= 16 and value fits in length bits.
|
||||
*/
|
||||
#ifdef ZLIB_DEBUG
|
||||
local void send_bits OF((deflate_state *s, int value, int length));
|
||||
|
||||
local void send_bits(s, value, length)
|
||||
deflate_state *s;
|
||||
int value; /* value to send */
|
||||
int length; /* number of bits */
|
||||
{
|
||||
local void send_bits(deflate_state *s, int value, int length) {
|
||||
Tracevv((stderr," l %2d v %4x ", length, value));
|
||||
Assert(length > 0 && length <= 15, "invalid length");
|
||||
s->bits_sent += (ulg)length;
|
||||
@ -229,8 +291,7 @@ local void send_bits(s, value, length)
|
||||
/* ===========================================================================
|
||||
* Initialize the various 'constant' tables.
|
||||
*/
|
||||
local void tr_static_init()
|
||||
{
|
||||
local void tr_static_init(void) {
|
||||
#if defined(GEN_TREES_H) || !defined(STDC)
|
||||
static int static_init_done = 0;
|
||||
int n; /* iterates over tree elements */
|
||||
@ -323,8 +384,7 @@ local void tr_static_init()
|
||||
((i) == (last)? "\n};\n\n" : \
|
||||
((i) % (width) == (width) - 1 ? ",\n" : ", "))
|
||||
|
||||
void gen_trees_header()
|
||||
{
|
||||
void gen_trees_header(void) {
|
||||
FILE *header = fopen("trees.h", "w");
|
||||
int i;
|
||||
|
||||
@ -373,12 +433,26 @@ void gen_trees_header()
|
||||
}
|
||||
#endif /* GEN_TREES_H */
|
||||
|
||||
/* ===========================================================================
|
||||
* Initialize a new block.
|
||||
*/
|
||||
local void init_block(deflate_state *s) {
|
||||
int n; /* iterates over tree elements */
|
||||
|
||||
/* Initialize the trees. */
|
||||
for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
|
||||
for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
|
||||
for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
|
||||
|
||||
s->dyn_ltree[END_BLOCK].Freq = 1;
|
||||
s->opt_len = s->static_len = 0L;
|
||||
s->sym_next = s->matches = 0;
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Initialize the tree data structures for a new zlib stream.
|
||||
*/
|
||||
void ZLIB_INTERNAL _tr_init(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
void ZLIB_INTERNAL _tr_init(deflate_state *s) {
|
||||
tr_static_init();
|
||||
|
||||
s->l_desc.dyn_tree = s->dyn_ltree;
|
||||
@ -401,24 +475,6 @@ void ZLIB_INTERNAL _tr_init(s)
|
||||
init_block(s);
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Initialize a new block.
|
||||
*/
|
||||
local void init_block(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
int n; /* iterates over tree elements */
|
||||
|
||||
/* Initialize the trees. */
|
||||
for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
|
||||
for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
|
||||
for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
|
||||
|
||||
s->dyn_ltree[END_BLOCK].Freq = 1;
|
||||
s->opt_len = s->static_len = 0L;
|
||||
s->sym_next = s->matches = 0;
|
||||
}
|
||||
|
||||
#define SMALLEST 1
|
||||
/* Index within the heap array of least frequent node in the Huffman tree */
|
||||
|
||||
@ -448,11 +504,7 @@ local void init_block(s)
|
||||
* when the heap property is re-established (each father smaller than its
|
||||
* two sons).
|
||||
*/
|
||||
local void pqdownheap(s, tree, k)
|
||||
deflate_state *s;
|
||||
ct_data *tree; /* the tree to restore */
|
||||
int k; /* node to move down */
|
||||
{
|
||||
local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
|
||||
int v = s->heap[k];
|
||||
int j = k << 1; /* left son of k */
|
||||
while (j <= s->heap_len) {
|
||||
@ -483,10 +535,7 @@ local void pqdownheap(s, tree, k)
|
||||
* The length opt_len is updated; static_len is also updated if stree is
|
||||
* not null.
|
||||
*/
|
||||
local void gen_bitlen(s, desc)
|
||||
deflate_state *s;
|
||||
tree_desc *desc; /* the tree descriptor */
|
||||
{
|
||||
local void gen_bitlen(deflate_state *s, tree_desc *desc) {
|
||||
ct_data *tree = desc->dyn_tree;
|
||||
int max_code = desc->max_code;
|
||||
const ct_data *stree = desc->stat_desc->static_tree;
|
||||
@ -561,48 +610,9 @@ local void gen_bitlen(s, desc)
|
||||
}
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Generate the codes for a given tree and bit counts (which need not be
|
||||
* optimal).
|
||||
* IN assertion: the array bl_count contains the bit length statistics for
|
||||
* the given tree and the field len is set for all tree elements.
|
||||
* OUT assertion: the field code is set for all tree elements of non
|
||||
* zero code length.
|
||||
*/
|
||||
local void gen_codes(tree, max_code, bl_count)
|
||||
ct_data *tree; /* the tree to decorate */
|
||||
int max_code; /* largest code with non zero frequency */
|
||||
ushf *bl_count; /* number of codes at each bit length */
|
||||
{
|
||||
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
|
||||
unsigned code = 0; /* running code value */
|
||||
int bits; /* bit index */
|
||||
int n; /* code index */
|
||||
|
||||
/* The distribution counts are first used to generate the code values
|
||||
* without bit reversal.
|
||||
*/
|
||||
for (bits = 1; bits <= MAX_BITS; bits++) {
|
||||
code = (code + bl_count[bits - 1]) << 1;
|
||||
next_code[bits] = (ush)code;
|
||||
}
|
||||
/* Check that the bit counts in bl_count are consistent. The last code
|
||||
* must be all ones.
|
||||
*/
|
||||
Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
|
||||
"inconsistent bit counts");
|
||||
Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
|
||||
|
||||
for (n = 0; n <= max_code; n++) {
|
||||
int len = tree[n].Len;
|
||||
if (len == 0) continue;
|
||||
/* Now reverse the bits */
|
||||
tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
|
||||
|
||||
Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
|
||||
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
|
||||
}
|
||||
}
|
||||
#ifdef DUMP_BL_TREE
|
||||
# include <stdio.h>
|
||||
#endif
|
||||
|
||||
/* ===========================================================================
|
||||
* Construct one Huffman tree and assigns the code bit strings and lengths.
|
||||
@ -612,10 +622,7 @@ local void gen_codes(tree, max_code, bl_count)
|
||||
* and corresponding code. The length opt_len is updated; static_len is
|
||||
* also updated if stree is not null. The field max_code is set.
|
||||
*/
|
||||
local void build_tree(s, desc)
|
||||
deflate_state *s;
|
||||
tree_desc *desc; /* the tree descriptor */
|
||||
{
|
||||
local void build_tree(deflate_state *s, tree_desc *desc) {
|
||||
ct_data *tree = desc->dyn_tree;
|
||||
const ct_data *stree = desc->stat_desc->static_tree;
|
||||
int elems = desc->stat_desc->elems;
|
||||
@ -700,11 +707,7 @@ local void build_tree(s, desc)
|
||||
* Scan a literal or distance tree to determine the frequencies of the codes
|
||||
* in the bit length tree.
|
||||
*/
|
||||
local void scan_tree(s, tree, max_code)
|
||||
deflate_state *s;
|
||||
ct_data *tree; /* the tree to be scanned */
|
||||
int max_code; /* and its largest code of non zero frequency */
|
||||
{
|
||||
local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
|
||||
int n; /* iterates over all tree elements */
|
||||
int prevlen = -1; /* last emitted length */
|
||||
int curlen; /* length of current code */
|
||||
@ -745,11 +748,7 @@ local void scan_tree(s, tree, max_code)
|
||||
* Send a literal or distance tree in compressed form, using the codes in
|
||||
* bl_tree.
|
||||
*/
|
||||
local void send_tree(s, tree, max_code)
|
||||
deflate_state *s;
|
||||
ct_data *tree; /* the tree to be scanned */
|
||||
int max_code; /* and its largest code of non zero frequency */
|
||||
{
|
||||
local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
|
||||
int n; /* iterates over all tree elements */
|
||||
int prevlen = -1; /* last emitted length */
|
||||
int curlen; /* length of current code */
|
||||
@ -796,9 +795,7 @@ local void send_tree(s, tree, max_code)
|
||||
* Construct the Huffman tree for the bit lengths and return the index in
|
||||
* bl_order of the last bit length code to send.
|
||||
*/
|
||||
local int build_bl_tree(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
local int build_bl_tree(deflate_state *s) {
|
||||
int max_blindex; /* index of last bit length code of non zero freq */
|
||||
|
||||
/* Determine the bit length frequencies for literal and distance trees */
|
||||
@ -831,10 +828,8 @@ local int build_bl_tree(s)
|
||||
* lengths of the bit length codes, the literal tree and the distance tree.
|
||||
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
||||
*/
|
||||
local void send_all_trees(s, lcodes, dcodes, blcodes)
|
||||
deflate_state *s;
|
||||
int lcodes, dcodes, blcodes; /* number of codes for each tree */
|
||||
{
|
||||
local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
|
||||
int blcodes) {
|
||||
int rank; /* index in bl_order */
|
||||
|
||||
Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
|
||||
@ -860,12 +855,8 @@ local void send_all_trees(s, lcodes, dcodes, blcodes)
|
||||
/* ===========================================================================
|
||||
* Send a stored block
|
||||
*/
|
||||
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
|
||||
deflate_state *s;
|
||||
charf *buf; /* input block */
|
||||
ulg stored_len; /* length of input block */
|
||||
int last; /* one if this is the last block for a file */
|
||||
{
|
||||
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
|
||||
ulg stored_len, int last) {
|
||||
send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
|
||||
bi_windup(s); /* align on byte boundary */
|
||||
put_short(s, (ush)stored_len);
|
||||
@ -884,9 +875,7 @@ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
|
||||
/* ===========================================================================
|
||||
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
|
||||
*/
|
||||
void ZLIB_INTERNAL _tr_flush_bits(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
|
||||
bi_flush(s);
|
||||
}
|
||||
|
||||
@ -894,9 +883,7 @@ void ZLIB_INTERNAL _tr_flush_bits(s)
|
||||
* Send one empty static block to give enough lookahead for inflate.
|
||||
* This takes 10 bits, of which 7 may remain in the bit buffer.
|
||||
*/
|
||||
void ZLIB_INTERNAL _tr_align(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
void ZLIB_INTERNAL _tr_align(deflate_state *s) {
|
||||
send_bits(s, STATIC_TREES<<1, 3);
|
||||
send_code(s, END_BLOCK, static_ltree);
|
||||
#ifdef ZLIB_DEBUG
|
||||
@ -905,16 +892,108 @@ void ZLIB_INTERNAL _tr_align(s)
|
||||
bi_flush(s);
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Send the block data compressed using the given Huffman trees
|
||||
*/
|
||||
local void compress_block(deflate_state *s, const ct_data *ltree,
|
||||
const ct_data *dtree) {
|
||||
unsigned dist; /* distance of matched string */
|
||||
int lc; /* match length or unmatched char (if dist == 0) */
|
||||
unsigned sx = 0; /* running index in symbol buffers */
|
||||
unsigned code; /* the code to send */
|
||||
int extra; /* number of extra bits to send */
|
||||
|
||||
if (s->sym_next != 0) do {
|
||||
#ifdef LIT_MEM
|
||||
dist = s->d_buf[sx];
|
||||
lc = s->l_buf[sx++];
|
||||
#else
|
||||
dist = s->sym_buf[sx++] & 0xff;
|
||||
dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
|
||||
lc = s->sym_buf[sx++];
|
||||
#endif
|
||||
if (dist == 0) {
|
||||
send_code(s, lc, ltree); /* send a literal byte */
|
||||
Tracecv(isgraph(lc), (stderr," '%c' ", lc));
|
||||
} else {
|
||||
/* Here, lc is the match length - MIN_MATCH */
|
||||
code = _length_code[lc];
|
||||
send_code(s, code + LITERALS + 1, ltree); /* send length code */
|
||||
extra = extra_lbits[code];
|
||||
if (extra != 0) {
|
||||
lc -= base_length[code];
|
||||
send_bits(s, lc, extra); /* send the extra length bits */
|
||||
}
|
||||
dist--; /* dist is now the match distance - 1 */
|
||||
code = d_code(dist);
|
||||
Assert (code < D_CODES, "bad d_code");
|
||||
|
||||
send_code(s, code, dtree); /* send the distance code */
|
||||
extra = extra_dbits[code];
|
||||
if (extra != 0) {
|
||||
dist -= (unsigned)base_dist[code];
|
||||
send_bits(s, dist, extra); /* send the extra distance bits */
|
||||
}
|
||||
} /* literal or match pair ? */
|
||||
|
||||
/* Check for no overlay of pending_buf on needed symbols */
|
||||
#ifdef LIT_MEM
|
||||
Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
|
||||
#else
|
||||
Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
|
||||
#endif
|
||||
|
||||
} while (sx < s->sym_next);
|
||||
|
||||
send_code(s, END_BLOCK, ltree);
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Check if the data type is TEXT or BINARY, using the following algorithm:
|
||||
* - TEXT if the two conditions below are satisfied:
|
||||
* a) There are no non-portable control characters belonging to the
|
||||
* "block list" (0..6, 14..25, 28..31).
|
||||
* b) There is at least one printable character belonging to the
|
||||
* "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
|
||||
* - BINARY otherwise.
|
||||
* - The following partially-portable control characters form a
|
||||
* "gray list" that is ignored in this detection algorithm:
|
||||
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
|
||||
* IN assertion: the fields Freq of dyn_ltree are set.
|
||||
*/
|
||||
local int detect_data_type(deflate_state *s) {
|
||||
/* block_mask is the bit mask of block-listed bytes
|
||||
* set bits 0..6, 14..25, and 28..31
|
||||
* 0xf3ffc07f = binary 11110011111111111100000001111111
|
||||
*/
|
||||
unsigned long block_mask = 0xf3ffc07fUL;
|
||||
int n;
|
||||
|
||||
/* Check for non-textual ("block-listed") bytes. */
|
||||
for (n = 0; n <= 31; n++, block_mask >>= 1)
|
||||
if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
|
||||
return Z_BINARY;
|
||||
|
||||
/* Check for textual ("allow-listed") bytes. */
|
||||
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
|
||||
|| s->dyn_ltree[13].Freq != 0)
|
||||
return Z_TEXT;
|
||||
for (n = 32; n < LITERALS; n++)
|
||||
if (s->dyn_ltree[n].Freq != 0)
|
||||
return Z_TEXT;
|
||||
|
||||
/* There are no "block-listed" or "allow-listed" bytes:
|
||||
* this stream either is empty or has tolerated ("gray-listed") bytes only.
|
||||
*/
|
||||
return Z_BINARY;
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Determine the best encoding for the current block: dynamic trees, static
|
||||
* trees or store, and write out the encoded block.
|
||||
*/
|
||||
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
|
||||
deflate_state *s;
|
||||
charf *buf; /* input block, or NULL if too old */
|
||||
ulg stored_len; /* length of input block */
|
||||
int last; /* one if this is the last block for a file */
|
||||
{
|
||||
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
|
||||
ulg stored_len, int last) {
|
||||
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
|
||||
int max_blindex = 0; /* index of last bit length code of non zero freq */
|
||||
|
||||
@ -1011,14 +1090,15 @@ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
|
||||
* Save the match info and tally the frequency counts. Return true if
|
||||
* the current block must be flushed.
|
||||
*/
|
||||
int ZLIB_INTERNAL _tr_tally(s, dist, lc)
|
||||
deflate_state *s;
|
||||
unsigned dist; /* distance of matched string */
|
||||
unsigned lc; /* match length - MIN_MATCH or unmatched char (dist==0) */
|
||||
{
|
||||
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
|
||||
#ifdef LIT_MEM
|
||||
s->d_buf[s->sym_next] = (ush)dist;
|
||||
s->l_buf[s->sym_next++] = (uch)lc;
|
||||
#else
|
||||
s->sym_buf[s->sym_next++] = (uch)dist;
|
||||
s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
|
||||
s->sym_buf[s->sym_next++] = (uch)lc;
|
||||
#endif
|
||||
if (dist == 0) {
|
||||
/* lc is the unmatched char */
|
||||
s->dyn_ltree[lc].Freq++;
|
||||
@ -1035,147 +1115,3 @@ int ZLIB_INTERNAL _tr_tally(s, dist, lc)
|
||||
}
|
||||
return (s->sym_next == s->sym_end);
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Send the block data compressed using the given Huffman trees
|
||||
*/
|
||||
local void compress_block(s, ltree, dtree)
|
||||
deflate_state *s;
|
||||
const ct_data *ltree; /* literal tree */
|
||||
const ct_data *dtree; /* distance tree */
|
||||
{
|
||||
unsigned dist; /* distance of matched string */
|
||||
int lc; /* match length or unmatched char (if dist == 0) */
|
||||
unsigned sx = 0; /* running index in sym_buf */
|
||||
unsigned code; /* the code to send */
|
||||
int extra; /* number of extra bits to send */
|
||||
|
||||
if (s->sym_next != 0) do {
|
||||
dist = s->sym_buf[sx++] & 0xff;
|
||||
dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
|
||||
lc = s->sym_buf[sx++];
|
||||
if (dist == 0) {
|
||||
send_code(s, lc, ltree); /* send a literal byte */
|
||||
Tracecv(isgraph(lc), (stderr," '%c' ", lc));
|
||||
} else {
|
||||
/* Here, lc is the match length - MIN_MATCH */
|
||||
code = _length_code[lc];
|
||||
send_code(s, code + LITERALS + 1, ltree); /* send length code */
|
||||
extra = extra_lbits[code];
|
||||
if (extra != 0) {
|
||||
lc -= base_length[code];
|
||||
send_bits(s, lc, extra); /* send the extra length bits */
|
||||
}
|
||||
dist--; /* dist is now the match distance - 1 */
|
||||
code = d_code(dist);
|
||||
Assert (code < D_CODES, "bad d_code");
|
||||
|
||||
send_code(s, code, dtree); /* send the distance code */
|
||||
extra = extra_dbits[code];
|
||||
if (extra != 0) {
|
||||
dist -= (unsigned)base_dist[code];
|
||||
send_bits(s, dist, extra); /* send the extra distance bits */
|
||||
}
|
||||
} /* literal or match pair ? */
|
||||
|
||||
/* Check that the overlay between pending_buf and sym_buf is ok: */
|
||||
Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
|
||||
|
||||
} while (sx < s->sym_next);
|
||||
|
||||
send_code(s, END_BLOCK, ltree);
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Check if the data type is TEXT or BINARY, using the following algorithm:
|
||||
* - TEXT if the two conditions below are satisfied:
|
||||
* a) There are no non-portable control characters belonging to the
|
||||
* "block list" (0..6, 14..25, 28..31).
|
||||
* b) There is at least one printable character belonging to the
|
||||
* "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
|
||||
* - BINARY otherwise.
|
||||
* - The following partially-portable control characters form a
|
||||
* "gray list" that is ignored in this detection algorithm:
|
||||
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
|
||||
* IN assertion: the fields Freq of dyn_ltree are set.
|
||||
*/
|
||||
local int detect_data_type(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
/* block_mask is the bit mask of block-listed bytes
|
||||
* set bits 0..6, 14..25, and 28..31
|
||||
* 0xf3ffc07f = binary 11110011111111111100000001111111
|
||||
*/
|
||||
unsigned long block_mask = 0xf3ffc07fUL;
|
||||
int n;
|
||||
|
||||
/* Check for non-textual ("block-listed") bytes. */
|
||||
for (n = 0; n <= 31; n++, block_mask >>= 1)
|
||||
if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
|
||||
return Z_BINARY;
|
||||
|
||||
/* Check for textual ("allow-listed") bytes. */
|
||||
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
|
||||
|| s->dyn_ltree[13].Freq != 0)
|
||||
return Z_TEXT;
|
||||
for (n = 32; n < LITERALS; n++)
|
||||
if (s->dyn_ltree[n].Freq != 0)
|
||||
return Z_TEXT;
|
||||
|
||||
/* There are no "block-listed" or "allow-listed" bytes:
|
||||
* this stream either is empty or has tolerated ("gray-listed") bytes only.
|
||||
*/
|
||||
return Z_BINARY;
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Reverse the first len bits of a code, using straightforward code (a faster
|
||||
* method would use a table)
|
||||
* IN assertion: 1 <= len <= 15
|
||||
*/
|
||||
local unsigned bi_reverse(code, len)
|
||||
unsigned code; /* the value to invert */
|
||||
int len; /* its bit length */
|
||||
{
|
||||
register unsigned res = 0;
|
||||
do {
|
||||
res |= code & 1;
|
||||
code >>= 1, res <<= 1;
|
||||
} while (--len > 0);
|
||||
return res >> 1;
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Flush the bit buffer, keeping at most 7 bits in it.
|
||||
*/
|
||||
local void bi_flush(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
if (s->bi_valid == 16) {
|
||||
put_short(s, s->bi_buf);
|
||||
s->bi_buf = 0;
|
||||
s->bi_valid = 0;
|
||||
} else if (s->bi_valid >= 8) {
|
||||
put_byte(s, (Byte)s->bi_buf);
|
||||
s->bi_buf >>= 8;
|
||||
s->bi_valid -= 8;
|
||||
}
|
||||
}
|
||||
|
||||
/* ===========================================================================
|
||||
* Flush the bit buffer and align the output on a byte boundary
|
||||
*/
|
||||
local void bi_windup(s)
|
||||
deflate_state *s;
|
||||
{
|
||||
if (s->bi_valid > 8) {
|
||||
put_short(s, s->bi_buf);
|
||||
} else if (s->bi_valid > 0) {
|
||||
put_byte(s, (Byte)s->bi_buf);
|
||||
}
|
||||
s->bi_buf = 0;
|
||||
s->bi_valid = 0;
|
||||
#ifdef ZLIB_DEBUG
|
||||
s->bits_sent = (s->bits_sent + 7) & ~7;
|
||||
#endif
|
||||
}
|
||||
|
16
external/zlib/uncompr.c
vendored
16
external/zlib/uncompr.c
vendored
@ -24,12 +24,8 @@
|
||||
Z_DATA_ERROR if the input data was corrupted, including if the input data is
|
||||
an incomplete zlib stream.
|
||||
*/
|
||||
int ZEXPORT uncompress2(dest, destLen, source, sourceLen)
|
||||
Bytef *dest;
|
||||
uLongf *destLen;
|
||||
const Bytef *source;
|
||||
uLong *sourceLen;
|
||||
{
|
||||
int ZEXPORT uncompress2(Bytef *dest, uLongf *destLen, const Bytef *source,
|
||||
uLong *sourceLen) {
|
||||
z_stream stream;
|
||||
int err;
|
||||
const uInt max = (uInt)-1;
|
||||
@ -83,11 +79,7 @@ int ZEXPORT uncompress2(dest, destLen, source, sourceLen)
|
||||
err;
|
||||
}
|
||||
|
||||
int ZEXPORT uncompress(dest, destLen, source, sourceLen)
|
||||
Bytef *dest;
|
||||
uLongf *destLen;
|
||||
const Bytef *source;
|
||||
uLong sourceLen;
|
||||
{
|
||||
int ZEXPORT uncompress(Bytef *dest, uLongf *destLen, const Bytef *source,
|
||||
uLong sourceLen) {
|
||||
return uncompress2(dest, destLen, source, &sourceLen);
|
||||
}
|
||||
|
20
external/zlib/win32/DLL_FAQ.txt
vendored
20
external/zlib/win32/DLL_FAQ.txt
vendored
@ -3,7 +3,7 @@
|
||||
|
||||
|
||||
This document describes the design, the rationale, and the usage
|
||||
of the official DLL build of zlib, named ZLIB1.DLL. If you have
|
||||
of the common DLL build of zlib, named ZLIB1.DLL. If you have
|
||||
general questions about zlib, you should see the file "FAQ" found
|
||||
in the zlib distribution, or at the following location:
|
||||
http://www.gzip.org/zlib/zlib_faq.html
|
||||
@ -11,13 +11,9 @@ in the zlib distribution, or at the following location:
|
||||
|
||||
1. What is ZLIB1.DLL, and how can I get it?
|
||||
|
||||
- ZLIB1.DLL is the official build of zlib as a DLL.
|
||||
- ZLIB1.DLL is the common build of zlib as a DLL.
|
||||
(Please remark the character '1' in the name.)
|
||||
|
||||
Pointers to a precompiled ZLIB1.DLL can be found in the zlib
|
||||
web site at:
|
||||
http://www.zlib.net/
|
||||
|
||||
Applications that link to ZLIB1.DLL can rely on the following
|
||||
specification:
|
||||
|
||||
@ -379,18 +375,6 @@ in the zlib distribution, or at the following location:
|
||||
code. But you can make your own private DLL build, under a
|
||||
different file name, as suggested in the previous answer.
|
||||
|
||||
|
||||
17. I made my own ZLIB1.DLL build. Can I test it for compliance?
|
||||
|
||||
- We prefer that you download the official DLL from the zlib
|
||||
web site. If you need something peculiar from this DLL, you
|
||||
can send your suggestion to the zlib mailing list.
|
||||
|
||||
However, in case you do rebuild the DLL yourself, you can run
|
||||
it with the test programs found in the DLL distribution.
|
||||
Running these test programs is not a guarantee of compliance,
|
||||
but a failure can imply a detected problem.
|
||||
|
||||
**
|
||||
|
||||
This document is written and maintained by
|
||||
|
1
external/zlib/win32/Makefile.bor
vendored
1
external/zlib/win32/Makefile.bor
vendored
@ -3,7 +3,6 @@
|
||||
#
|
||||
# Usage:
|
||||
# make -f win32/Makefile.bor
|
||||
# make -f win32/Makefile.bor LOCAL_ZLIB=-DASMV OBJA=match.obj OBJPA=+match.obj
|
||||
|
||||
# ------------ Borland C++ ------------
|
||||
|
||||
|
7
external/zlib/win32/Makefile.gcc
vendored
7
external/zlib/win32/Makefile.gcc
vendored
@ -11,10 +11,6 @@
|
||||
#
|
||||
# make -fwin32/Makefile.gcc; make test testdll -fwin32/Makefile.gcc
|
||||
#
|
||||
# To use the asm code, type:
|
||||
# cp contrib/asm?86/match.S ./match.S
|
||||
# make LOC=-DASMV OBJA=match.o -fwin32/Makefile.gcc
|
||||
#
|
||||
# To install libz.a, zconf.h and zlib.h in the system directories, type:
|
||||
#
|
||||
# make install -fwin32/Makefile.gcc
|
||||
@ -38,8 +34,7 @@ IMPLIB = libz.dll.a
|
||||
#
|
||||
SHARED_MODE=0
|
||||
|
||||
#LOC = -DASMV
|
||||
#LOC = -DDEBUG -g
|
||||
#LOC = -DZLIB_DEBUG -g
|
||||
|
||||
PREFIX =
|
||||
CC = $(PREFIX)gcc
|
||||
|
8
external/zlib/win32/Makefile.msc
vendored
8
external/zlib/win32/Makefile.msc
vendored
@ -4,10 +4,6 @@
|
||||
# Usage:
|
||||
# nmake -f win32/Makefile.msc (standard build)
|
||||
# nmake -f win32/Makefile.msc LOC=-DFOO (nonstandard build)
|
||||
# nmake -f win32/Makefile.msc LOC="-DASMV -DASMINF" \
|
||||
# OBJA="inffas32.obj match686.obj" (use ASM code, x86)
|
||||
# nmake -f win32/Makefile.msc AS=ml64 LOC="-DASMV -DASMINF -I." \
|
||||
# OBJA="inffasx64.obj gvmat64.obj inffas8664.obj" (use ASM code, x64)
|
||||
|
||||
# The toplevel directory of the source tree.
|
||||
#
|
||||
@ -27,13 +23,13 @@ LD = link
|
||||
AR = lib
|
||||
RC = rc
|
||||
CFLAGS = -nologo -MD -W3 -O2 -Oy- -Zi -Fd"zlib" $(LOC)
|
||||
WFLAGS = -DHAS_PCLMUL -D_CRT_SECURE_NO_DEPRECATE -D_CRT_NONSTDC_NO_DEPRECATE
|
||||
WFLAGS = -D_CRT_SECURE_NO_DEPRECATE -D_CRT_NONSTDC_NO_DEPRECATE
|
||||
ASFLAGS = -coff -Zi $(LOC)
|
||||
LDFLAGS = -nologo -debug -incremental:no -opt:ref
|
||||
ARFLAGS = -nologo
|
||||
RCFLAGS = /dWIN32 /r
|
||||
|
||||
OBJS = adler32.obj compress.obj crc32_simd.obj crc32.obj deflate.obj gzclose.obj gzlib.obj gzread.obj \
|
||||
OBJS = adler32.obj compress.obj crc32.obj deflate.obj gzclose.obj gzlib.obj gzread.obj \
|
||||
gzwrite.obj infback.obj inflate.obj inftrees.obj inffast.obj trees.obj uncompr.obj zutil.obj
|
||||
OBJA =
|
||||
|
||||
|
10
external/zlib/win32/README-WIN32.txt
vendored
10
external/zlib/win32/README-WIN32.txt
vendored
@ -1,6 +1,6 @@
|
||||
ZLIB DATA COMPRESSION LIBRARY
|
||||
|
||||
zlib 1.2.8 is a general purpose data compression library. All the code is
|
||||
zlib 1.3.1 is a general purpose data compression library. All the code is
|
||||
thread safe. The data format used by the zlib library is described by RFCs
|
||||
(Request for Comments) 1950 to 1952 in the files
|
||||
http://www.ietf.org/rfc/rfc1950.txt (zlib format), rfc1951.txt (deflate format)
|
||||
@ -16,13 +16,13 @@ is http://zlib.net/ . Before reporting a problem, please check this site to
|
||||
verify that you have the latest version of zlib; otherwise get the latest
|
||||
version and check whether the problem still exists or not.
|
||||
|
||||
PLEASE read DLL_FAQ.txt, and the the zlib FAQ http://zlib.net/zlib_faq.html
|
||||
before asking for help.
|
||||
PLEASE read DLL_FAQ.txt, and the zlib FAQ http://zlib.net/zlib_faq.html before
|
||||
asking for help.
|
||||
|
||||
|
||||
Manifest:
|
||||
|
||||
The package zlib-1.2.8-win32-x86.zip will contain the following files:
|
||||
The package zlib-1.3.1-win32-x86.zip will contain the following files:
|
||||
|
||||
README-WIN32.txt This document
|
||||
ChangeLog Changes since previous zlib packages
|
||||
@ -72,7 +72,7 @@ are too numerous to cite here.
|
||||
|
||||
Copyright notice:
|
||||
|
||||
(C) 1995-2012 Jean-loup Gailly and Mark Adler
|
||||
(C) 1995-2017 Jean-loup Gailly and Mark Adler
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
|
2
external/zlib/win32/VisualC.txt
vendored
2
external/zlib/win32/VisualC.txt
vendored
@ -1,3 +1,3 @@
|
||||
|
||||
To build zlib using the Microsoft Visual C++ environment,
|
||||
use the appropriate project from the projects/ directory.
|
||||
use the appropriate project from the contrib/vstudio/ directory.
|
||||
|
11
external/zlib/win32/zlib.def
vendored
11
external/zlib/win32/zlib.def
vendored
@ -8,6 +8,7 @@ EXPORTS
|
||||
inflateEnd
|
||||
; advanced functions
|
||||
deflateSetDictionary
|
||||
deflateGetDictionary
|
||||
deflateCopy
|
||||
deflateReset
|
||||
deflateParams
|
||||
@ -33,12 +34,15 @@ EXPORTS
|
||||
compress2
|
||||
compressBound
|
||||
uncompress
|
||||
uncompress2
|
||||
gzopen
|
||||
gzdopen
|
||||
gzbuffer
|
||||
gzsetparams
|
||||
gzread
|
||||
gzfread
|
||||
gzwrite
|
||||
gzfwrite
|
||||
gzprintf
|
||||
gzvprintf
|
||||
gzputs
|
||||
@ -65,11 +69,16 @@ EXPORTS
|
||||
gzoffset64
|
||||
adler32_combine64
|
||||
crc32_combine64
|
||||
crc32_combine_gen64
|
||||
; checksum functions
|
||||
adler32
|
||||
adler32_z
|
||||
crc32
|
||||
crc32_z
|
||||
adler32_combine
|
||||
crc32_combine
|
||||
crc32_combine_gen
|
||||
crc32_combine_op
|
||||
; various hacks, don't look :)
|
||||
deflateInit_
|
||||
deflateInit2_
|
||||
@ -81,6 +90,8 @@ EXPORTS
|
||||
inflateSyncPoint
|
||||
get_crc_table
|
||||
inflateUndermine
|
||||
inflateValidate
|
||||
inflateCodesUsed
|
||||
inflateResetKeep
|
||||
deflateResetKeep
|
||||
gzopen_w
|
||||
|
2
external/zlib/win32/zlib1.rc
vendored
2
external/zlib/win32/zlib1.rc
vendored
@ -26,7 +26,7 @@ BEGIN
|
||||
VALUE "FileDescription", "zlib data compression library\0"
|
||||
VALUE "FileVersion", ZLIB_VERSION "\0"
|
||||
VALUE "InternalName", "zlib1.dll\0"
|
||||
VALUE "LegalCopyright", "(C) 1995-2013 Jean-loup Gailly & Mark Adler\0"
|
||||
VALUE "LegalCopyright", "(C) 1995-2022 Jean-loup Gailly & Mark Adler\0"
|
||||
VALUE "OriginalFilename", "zlib1.dll\0"
|
||||
VALUE "ProductName", "zlib\0"
|
||||
VALUE "ProductVersion", ZLIB_VERSION "\0"
|
||||
|
18
external/zlib/zconf.h.cmakein
vendored
18
external/zlib/zconf.h.cmakein
vendored
@ -1,5 +1,5 @@
|
||||
/* zconf.h -- configuration of the zlib compression library
|
||||
* Copyright (C) 1995-2016 Jean-loup Gailly, Mark Adler
|
||||
* Copyright (C) 1995-2024 Jean-loup Gailly, Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
|
||||
@ -243,7 +243,11 @@
|
||||
#endif
|
||||
|
||||
#ifdef Z_SOLO
|
||||
typedef unsigned long z_size_t;
|
||||
# ifdef _WIN64
|
||||
typedef unsigned long long z_size_t;
|
||||
# else
|
||||
typedef unsigned long z_size_t;
|
||||
# endif
|
||||
#else
|
||||
# define z_longlong long long
|
||||
# if defined(NO_SIZE_T)
|
||||
@ -298,14 +302,6 @@
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef Z_ARG /* function prototypes for stdarg */
|
||||
# if defined(STDC) || defined(Z_HAVE_STDARG_H)
|
||||
# define Z_ARG(args) args
|
||||
# else
|
||||
# define Z_ARG(args) ()
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* The following definitions for FAR are needed only for MSDOS mixed
|
||||
* model programming (small or medium model with some far allocations).
|
||||
* This was tested only with MSC; for other MSDOS compilers you may have
|
||||
@ -522,7 +518,7 @@ typedef uLong FAR uLongf;
|
||||
#if !defined(_WIN32) && defined(Z_LARGE64)
|
||||
# define z_off64_t off64_t
|
||||
#else
|
||||
# if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO)
|
||||
# if defined(_WIN32) && !defined(__GNUC__)
|
||||
# define z_off64_t __int64
|
||||
# else
|
||||
# define z_off64_t z_off_t
|
||||
|
70
external/zlib/zlib.3
vendored
70
external/zlib/zlib.3
vendored
@ -1,4 +1,4 @@
|
||||
.TH ZLIB 3 "28 Apr 2013"
|
||||
.TH ZLIB 3 "22 Jan 2024"
|
||||
.SH NAME
|
||||
zlib \- compression/decompression library
|
||||
.SH SYNOPSIS
|
||||
@ -48,32 +48,10 @@ Changes to this version are documented in the file
|
||||
that accompanies the source.
|
||||
.LP
|
||||
.I zlib
|
||||
is available in Java using the java.util.zip package:
|
||||
.IP
|
||||
http://java.sun.com/developer/technicalArticles/Programming/compression/
|
||||
is built in to many languages and operating systems, including but not limited to
|
||||
Java, Python, .NET, PHP, Perl, Ruby, Swift, and Go.
|
||||
.LP
|
||||
A Perl interface to
|
||||
.IR zlib ,
|
||||
written by Paul Marquess (pmqs@cpan.org),
|
||||
is available at CPAN (Comprehensive Perl Archive Network) sites,
|
||||
including:
|
||||
.IP
|
||||
http://search.cpan.org/~pmqs/IO-Compress-Zlib/
|
||||
.LP
|
||||
A Python interface to
|
||||
.IR zlib ,
|
||||
written by A.M. Kuchling (amk@magnet.com),
|
||||
is available in Python 1.5 and later versions:
|
||||
.IP
|
||||
http://docs.python.org/library/zlib.html
|
||||
.LP
|
||||
.I zlib
|
||||
is built into
|
||||
.IR tcl:
|
||||
.IP
|
||||
http://wiki.tcl.tk/4610
|
||||
.LP
|
||||
An experimental package to read and write files in .zip format,
|
||||
An experimental package to read and write files in the .zip format,
|
||||
written on top of
|
||||
.I zlib
|
||||
by Gilles Vollant (info@winimage.com),
|
||||
@ -92,7 +70,9 @@ web site can be found at:
|
||||
.IP
|
||||
http://zlib.net/
|
||||
.LP
|
||||
The data format used by the zlib library is described by RFC
|
||||
The data format used by the
|
||||
.I zlib
|
||||
library is described by RFC
|
||||
(Request for Comments) 1950 to 1952 in the files:
|
||||
.IP
|
||||
http://tools.ietf.org/html/rfc1950 (for the zlib header and trailer format)
|
||||
@ -124,17 +104,35 @@ http://zlib.net/zlib_faq.html
|
||||
before asking for help.
|
||||
Send questions and/or comments to zlib@gzip.org,
|
||||
or (for the Windows DLL version) to Gilles Vollant (info@winimage.com).
|
||||
.SH AUTHORS
|
||||
Version 1.2.8
|
||||
Copyright (C) 1995-2013 Jean-loup Gailly (jloup@gzip.org)
|
||||
and Mark Adler (madler@alumni.caltech.edu).
|
||||
.SH AUTHORS AND LICENSE
|
||||
Version 1.3.1
|
||||
.LP
|
||||
This software is provided "as-is,"
|
||||
without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages
|
||||
Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
|
||||
.LP
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
See the distribution directory with respect to requirements
|
||||
governing redistribution.
|
||||
.LP
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
.LP
|
||||
.nr step 1 1
|
||||
.IP \n[step]. 3
|
||||
The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
.IP \n+[step].
|
||||
Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
.IP \n+[step].
|
||||
This notice may not be removed or altered from any source distribution.
|
||||
.LP
|
||||
Jean-loup Gailly Mark Adler
|
||||
.br
|
||||
jloup@gzip.org madler@alumni.caltech.edu
|
||||
.LP
|
||||
The deflate format used by
|
||||
.I zlib
|
||||
was defined by Phil Katz.
|
||||
|
BIN
external/zlib/zlib.3.pdf
vendored
BIN
external/zlib/zlib.3.pdf
vendored
Binary file not shown.
391
external/zlib/zlib.h
vendored
391
external/zlib/zlib.h
vendored
@ -1,7 +1,7 @@
|
||||
/* zlib.h -- interface of the 'zlib' general purpose compression library
|
||||
version 1.2.13, October 13th, 2022
|
||||
version 1.3.1, January 22nd, 2024
|
||||
|
||||
Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
|
||||
Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
@ -37,11 +37,11 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ZLIB_VERSION "1.2.13"
|
||||
#define ZLIB_VERNUM 0x12d0
|
||||
#define ZLIB_VERSION "1.3.1"
|
||||
#define ZLIB_VERNUM 0x1310
|
||||
#define ZLIB_VER_MAJOR 1
|
||||
#define ZLIB_VER_MINOR 2
|
||||
#define ZLIB_VER_REVISION 13
|
||||
#define ZLIB_VER_MINOR 3
|
||||
#define ZLIB_VER_REVISION 1
|
||||
#define ZLIB_VER_SUBREVISION 0
|
||||
|
||||
/*
|
||||
@ -78,8 +78,8 @@ extern "C" {
|
||||
even in the case of corrupted input.
|
||||
*/
|
||||
|
||||
typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
|
||||
typedef void (*free_func) OF((voidpf opaque, voidpf address));
|
||||
typedef voidpf (*alloc_func)(voidpf opaque, uInt items, uInt size);
|
||||
typedef void (*free_func)(voidpf opaque, voidpf address);
|
||||
|
||||
struct internal_state;
|
||||
|
||||
@ -217,7 +217,7 @@ typedef gz_header FAR *gz_headerp;
|
||||
|
||||
/* basic functions */
|
||||
|
||||
ZEXTERN const char * ZEXPORT zlibVersion OF((void));
|
||||
ZEXTERN const char * ZEXPORT zlibVersion(void);
|
||||
/* The application can compare zlibVersion and ZLIB_VERSION for consistency.
|
||||
If the first character differs, the library code actually used is not
|
||||
compatible with the zlib.h header file used by the application. This check
|
||||
@ -225,12 +225,12 @@ ZEXTERN const char * ZEXPORT zlibVersion OF((void));
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
|
||||
ZEXTERN int ZEXPORT deflateInit(z_streamp strm, int level);
|
||||
|
||||
Initializes the internal stream state for compression. The fields
|
||||
zalloc, zfree and opaque must be initialized before by the caller. If
|
||||
zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
|
||||
allocation functions.
|
||||
allocation functions. total_in, total_out, adler, and msg are initialized.
|
||||
|
||||
The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
|
||||
1 gives best speed, 9 gives best compression, 0 gives no compression at all
|
||||
@ -247,7 +247,7 @@ ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
|
||||
*/
|
||||
|
||||
|
||||
ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
|
||||
ZEXTERN int ZEXPORT deflate(z_streamp strm, int flush);
|
||||
/*
|
||||
deflate compresses as much data as possible, and stops when the input
|
||||
buffer becomes empty or the output buffer becomes full. It may introduce
|
||||
@ -320,8 +320,8 @@ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
|
||||
with the same value of the flush parameter and more output space (updated
|
||||
avail_out), until the flush is complete (deflate returns with non-zero
|
||||
avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
|
||||
avail_out is greater than six to avoid repeated flush markers due to
|
||||
avail_out == 0 on return.
|
||||
avail_out is greater than six when the flush marker begins, in order to avoid
|
||||
repeated flush markers upon calling deflate() again when avail_out == 0.
|
||||
|
||||
If the parameter flush is set to Z_FINISH, pending input is processed,
|
||||
pending output is flushed and deflate returns with Z_STREAM_END if there was
|
||||
@ -360,7 +360,7 @@ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
|
||||
*/
|
||||
|
||||
|
||||
ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
|
||||
ZEXTERN int ZEXPORT deflateEnd(z_streamp strm);
|
||||
/*
|
||||
All dynamically allocated data structures for this stream are freed.
|
||||
This function discards any unprocessed input and does not flush any pending
|
||||
@ -375,7 +375,7 @@ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
|
||||
|
||||
|
||||
/*
|
||||
ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
|
||||
ZEXTERN int ZEXPORT inflateInit(z_streamp strm);
|
||||
|
||||
Initializes the internal stream state for decompression. The fields
|
||||
next_in, avail_in, zalloc, zfree and opaque must be initialized before by
|
||||
@ -383,7 +383,8 @@ ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
|
||||
read or consumed. The allocation of a sliding window will be deferred to
|
||||
the first call of inflate (if the decompression does not complete on the
|
||||
first call). If zalloc and zfree are set to Z_NULL, inflateInit updates
|
||||
them to use default allocation functions.
|
||||
them to use default allocation functions. total_in, total_out, adler, and
|
||||
msg are initialized.
|
||||
|
||||
inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
||||
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
|
||||
@ -397,7 +398,7 @@ ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
|
||||
*/
|
||||
|
||||
|
||||
ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
|
||||
ZEXTERN int ZEXPORT inflate(z_streamp strm, int flush);
|
||||
/*
|
||||
inflate decompresses as much data as possible, and stops when the input
|
||||
buffer becomes empty or the output buffer becomes full. It may introduce
|
||||
@ -517,7 +518,7 @@ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
|
||||
*/
|
||||
|
||||
|
||||
ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
|
||||
ZEXTERN int ZEXPORT inflateEnd(z_streamp strm);
|
||||
/*
|
||||
All dynamically allocated data structures for this stream are freed.
|
||||
This function discards any unprocessed input and does not flush any pending
|
||||
@ -535,12 +536,12 @@ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
|
||||
int level,
|
||||
int method,
|
||||
int windowBits,
|
||||
int memLevel,
|
||||
int strategy));
|
||||
ZEXTERN int ZEXPORT deflateInit2(z_streamp strm,
|
||||
int level,
|
||||
int method,
|
||||
int windowBits,
|
||||
int memLevel,
|
||||
int strategy);
|
||||
|
||||
This is another version of deflateInit with more compression options. The
|
||||
fields zalloc, zfree and opaque must be initialized before by the caller.
|
||||
@ -607,9 +608,9 @@ ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
|
||||
compression: this will be done by deflate().
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
|
||||
const Bytef *dictionary,
|
||||
uInt dictLength));
|
||||
ZEXTERN int ZEXPORT deflateSetDictionary(z_streamp strm,
|
||||
const Bytef *dictionary,
|
||||
uInt dictLength);
|
||||
/*
|
||||
Initializes the compression dictionary from the given byte sequence
|
||||
without producing any compressed output. When using the zlib format, this
|
||||
@ -651,9 +652,9 @@ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
|
||||
not perform any compression: this will be done by deflate().
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateGetDictionary OF((z_streamp strm,
|
||||
Bytef *dictionary,
|
||||
uInt *dictLength));
|
||||
ZEXTERN int ZEXPORT deflateGetDictionary(z_streamp strm,
|
||||
Bytef *dictionary,
|
||||
uInt *dictLength);
|
||||
/*
|
||||
Returns the sliding dictionary being maintained by deflate. dictLength is
|
||||
set to the number of bytes in the dictionary, and that many bytes are copied
|
||||
@ -673,8 +674,8 @@ ZEXTERN int ZEXPORT deflateGetDictionary OF((z_streamp strm,
|
||||
stream state is inconsistent.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
|
||||
z_streamp source));
|
||||
ZEXTERN int ZEXPORT deflateCopy(z_streamp dest,
|
||||
z_streamp source);
|
||||
/*
|
||||
Sets the destination stream as a complete copy of the source stream.
|
||||
|
||||
@ -691,20 +692,20 @@ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
|
||||
destination.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
|
||||
ZEXTERN int ZEXPORT deflateReset(z_streamp strm);
|
||||
/*
|
||||
This function is equivalent to deflateEnd followed by deflateInit, but
|
||||
does not free and reallocate the internal compression state. The stream
|
||||
will leave the compression level and any other attributes that may have been
|
||||
set unchanged.
|
||||
set unchanged. total_in, total_out, adler, and msg are initialized.
|
||||
|
||||
deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
|
||||
stream state was inconsistent (such as zalloc or state being Z_NULL).
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
|
||||
int level,
|
||||
int strategy));
|
||||
ZEXTERN int ZEXPORT deflateParams(z_streamp strm,
|
||||
int level,
|
||||
int strategy);
|
||||
/*
|
||||
Dynamically update the compression level and compression strategy. The
|
||||
interpretation of level and strategy is as in deflateInit2(). This can be
|
||||
@ -729,7 +730,7 @@ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
|
||||
Then no more input data should be provided before the deflateParams() call.
|
||||
If this is done, the old level and strategy will be applied to the data
|
||||
compressed before deflateParams(), and the new level and strategy will be
|
||||
applied to the the data compressed after deflateParams().
|
||||
applied to the data compressed after deflateParams().
|
||||
|
||||
deflateParams returns Z_OK on success, Z_STREAM_ERROR if the source stream
|
||||
state was inconsistent or if a parameter was invalid, or Z_BUF_ERROR if
|
||||
@ -740,11 +741,11 @@ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
|
||||
retried with more output space.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
|
||||
int good_length,
|
||||
int max_lazy,
|
||||
int nice_length,
|
||||
int max_chain));
|
||||
ZEXTERN int ZEXPORT deflateTune(z_streamp strm,
|
||||
int good_length,
|
||||
int max_lazy,
|
||||
int nice_length,
|
||||
int max_chain);
|
||||
/*
|
||||
Fine tune deflate's internal compression parameters. This should only be
|
||||
used by someone who understands the algorithm used by zlib's deflate for
|
||||
@ -757,8 +758,8 @@ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
|
||||
returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
|
||||
uLong sourceLen));
|
||||
ZEXTERN uLong ZEXPORT deflateBound(z_streamp strm,
|
||||
uLong sourceLen);
|
||||
/*
|
||||
deflateBound() returns an upper bound on the compressed size after
|
||||
deflation of sourceLen bytes. It must be called after deflateInit() or
|
||||
@ -772,9 +773,9 @@ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
|
||||
than Z_FINISH or Z_NO_FLUSH are used.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm,
|
||||
unsigned *pending,
|
||||
int *bits));
|
||||
ZEXTERN int ZEXPORT deflatePending(z_streamp strm,
|
||||
unsigned *pending,
|
||||
int *bits);
|
||||
/*
|
||||
deflatePending() returns the number of bytes and bits of output that have
|
||||
been generated, but not yet provided in the available output. The bytes not
|
||||
@ -787,9 +788,9 @@ ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm,
|
||||
stream state was inconsistent.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
|
||||
int bits,
|
||||
int value));
|
||||
ZEXTERN int ZEXPORT deflatePrime(z_streamp strm,
|
||||
int bits,
|
||||
int value);
|
||||
/*
|
||||
deflatePrime() inserts bits in the deflate output stream. The intent
|
||||
is that this function is used to start off the deflate output with the bits
|
||||
@ -804,8 +805,8 @@ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
|
||||
source stream state was inconsistent.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
|
||||
gz_headerp head));
|
||||
ZEXTERN int ZEXPORT deflateSetHeader(z_streamp strm,
|
||||
gz_headerp head);
|
||||
/*
|
||||
deflateSetHeader() provides gzip header information for when a gzip
|
||||
stream is requested by deflateInit2(). deflateSetHeader() may be called
|
||||
@ -821,16 +822,17 @@ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
|
||||
gzip file" and give up.
|
||||
|
||||
If deflateSetHeader is not used, the default gzip header has text false,
|
||||
the time set to zero, and os set to 255, with no extra, name, or comment
|
||||
fields. The gzip header is returned to the default state by deflateReset().
|
||||
the time set to zero, and os set to the current operating system, with no
|
||||
extra, name, or comment fields. The gzip header is returned to the default
|
||||
state by deflateReset().
|
||||
|
||||
deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
|
||||
stream state was inconsistent.
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
|
||||
int windowBits));
|
||||
ZEXTERN int ZEXPORT inflateInit2(z_streamp strm,
|
||||
int windowBits);
|
||||
|
||||
This is another version of inflateInit with an extra parameter. The
|
||||
fields next_in, avail_in, zalloc, zfree and opaque must be initialized
|
||||
@ -883,9 +885,9 @@ ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
|
||||
deferred until inflate() is called.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
|
||||
const Bytef *dictionary,
|
||||
uInt dictLength));
|
||||
ZEXTERN int ZEXPORT inflateSetDictionary(z_streamp strm,
|
||||
const Bytef *dictionary,
|
||||
uInt dictLength);
|
||||
/*
|
||||
Initializes the decompression dictionary from the given uncompressed byte
|
||||
sequence. This function must be called immediately after a call of inflate,
|
||||
@ -906,9 +908,9 @@ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
|
||||
inflate().
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm,
|
||||
Bytef *dictionary,
|
||||
uInt *dictLength));
|
||||
ZEXTERN int ZEXPORT inflateGetDictionary(z_streamp strm,
|
||||
Bytef *dictionary,
|
||||
uInt *dictLength);
|
||||
/*
|
||||
Returns the sliding dictionary being maintained by inflate. dictLength is
|
||||
set to the number of bytes in the dictionary, and that many bytes are copied
|
||||
@ -921,7 +923,7 @@ ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm,
|
||||
stream state is inconsistent.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
|
||||
ZEXTERN int ZEXPORT inflateSync(z_streamp strm);
|
||||
/*
|
||||
Skips invalid compressed data until a possible full flush point (see above
|
||||
for the description of deflate with Z_FULL_FLUSH) can be found, or until all
|
||||
@ -934,14 +936,14 @@ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
|
||||
inflateSync returns Z_OK if a possible full flush point has been found,
|
||||
Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point
|
||||
has been found, or Z_STREAM_ERROR if the stream structure was inconsistent.
|
||||
In the success case, the application may save the current current value of
|
||||
total_in which indicates where valid compressed data was found. In the
|
||||
error case, the application may repeatedly call inflateSync, providing more
|
||||
input each time, until success or end of the input data.
|
||||
In the success case, the application may save the current value of total_in
|
||||
which indicates where valid compressed data was found. In the error case,
|
||||
the application may repeatedly call inflateSync, providing more input each
|
||||
time, until success or end of the input data.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
|
||||
z_streamp source));
|
||||
ZEXTERN int ZEXPORT inflateCopy(z_streamp dest,
|
||||
z_streamp source);
|
||||
/*
|
||||
Sets the destination stream as a complete copy of the source stream.
|
||||
|
||||
@ -956,18 +958,19 @@ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
|
||||
destination.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
|
||||
ZEXTERN int ZEXPORT inflateReset(z_streamp strm);
|
||||
/*
|
||||
This function is equivalent to inflateEnd followed by inflateInit,
|
||||
but does not free and reallocate the internal decompression state. The
|
||||
stream will keep attributes that may have been set by inflateInit2.
|
||||
total_in, total_out, adler, and msg are initialized.
|
||||
|
||||
inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
|
||||
stream state was inconsistent (such as zalloc or state being Z_NULL).
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm,
|
||||
int windowBits));
|
||||
ZEXTERN int ZEXPORT inflateReset2(z_streamp strm,
|
||||
int windowBits);
|
||||
/*
|
||||
This function is the same as inflateReset, but it also permits changing
|
||||
the wrap and window size requests. The windowBits parameter is interpreted
|
||||
@ -980,9 +983,9 @@ ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm,
|
||||
the windowBits parameter is invalid.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
|
||||
int bits,
|
||||
int value));
|
||||
ZEXTERN int ZEXPORT inflatePrime(z_streamp strm,
|
||||
int bits,
|
||||
int value);
|
||||
/*
|
||||
This function inserts bits in the inflate input stream. The intent is
|
||||
that this function is used to start inflating at a bit position in the
|
||||
@ -1001,7 +1004,7 @@ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
|
||||
stream state was inconsistent.
|
||||
*/
|
||||
|
||||
ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm));
|
||||
ZEXTERN long ZEXPORT inflateMark(z_streamp strm);
|
||||
/*
|
||||
This function returns two values, one in the lower 16 bits of the return
|
||||
value, and the other in the remaining upper bits, obtained by shifting the
|
||||
@ -1029,8 +1032,8 @@ ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm));
|
||||
source stream state was inconsistent.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
|
||||
gz_headerp head));
|
||||
ZEXTERN int ZEXPORT inflateGetHeader(z_streamp strm,
|
||||
gz_headerp head);
|
||||
/*
|
||||
inflateGetHeader() requests that gzip header information be stored in the
|
||||
provided gz_header structure. inflateGetHeader() may be called after
|
||||
@ -1070,8 +1073,8 @@ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
|
||||
unsigned char FAR *window));
|
||||
ZEXTERN int ZEXPORT inflateBackInit(z_streamp strm, int windowBits,
|
||||
unsigned char FAR *window);
|
||||
|
||||
Initialize the internal stream state for decompression using inflateBack()
|
||||
calls. The fields zalloc, zfree and opaque in strm must be initialized
|
||||
@ -1091,13 +1094,13 @@ ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
|
||||
the version of the header file.
|
||||
*/
|
||||
|
||||
typedef unsigned (*in_func) OF((void FAR *,
|
||||
z_const unsigned char FAR * FAR *));
|
||||
typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));
|
||||
typedef unsigned (*in_func)(void FAR *,
|
||||
z_const unsigned char FAR * FAR *);
|
||||
typedef int (*out_func)(void FAR *, unsigned char FAR *, unsigned);
|
||||
|
||||
ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
|
||||
in_func in, void FAR *in_desc,
|
||||
out_func out, void FAR *out_desc));
|
||||
ZEXTERN int ZEXPORT inflateBack(z_streamp strm,
|
||||
in_func in, void FAR *in_desc,
|
||||
out_func out, void FAR *out_desc);
|
||||
/*
|
||||
inflateBack() does a raw inflate with a single call using a call-back
|
||||
interface for input and output. This is potentially more efficient than
|
||||
@ -1165,7 +1168,7 @@ ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
|
||||
cannot return Z_OK.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
|
||||
ZEXTERN int ZEXPORT inflateBackEnd(z_streamp strm);
|
||||
/*
|
||||
All memory allocated by inflateBackInit() is freed.
|
||||
|
||||
@ -1173,7 +1176,7 @@ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
|
||||
state was inconsistent.
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
|
||||
ZEXTERN uLong ZEXPORT zlibCompileFlags(void);
|
||||
/* Return flags indicating compile-time options.
|
||||
|
||||
Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
|
||||
@ -1226,8 +1229,8 @@ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
|
||||
you need special options.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong sourceLen));
|
||||
ZEXTERN int ZEXPORT compress(Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong sourceLen);
|
||||
/*
|
||||
Compresses the source buffer into the destination buffer. sourceLen is
|
||||
the byte length of the source buffer. Upon entry, destLen is the total size
|
||||
@ -1241,9 +1244,9 @@ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen,
|
||||
buffer.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong sourceLen,
|
||||
int level));
|
||||
ZEXTERN int ZEXPORT compress2(Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong sourceLen,
|
||||
int level);
|
||||
/*
|
||||
Compresses the source buffer into the destination buffer. The level
|
||||
parameter has the same meaning as in deflateInit. sourceLen is the byte
|
||||
@ -1257,15 +1260,15 @@ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen,
|
||||
Z_STREAM_ERROR if the level parameter is invalid.
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen));
|
||||
ZEXTERN uLong ZEXPORT compressBound(uLong sourceLen);
|
||||
/*
|
||||
compressBound() returns an upper bound on the compressed size after
|
||||
compress() or compress2() on sourceLen bytes. It would be used before a
|
||||
compress() or compress2() call to allocate the destination buffer.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong sourceLen));
|
||||
ZEXTERN int ZEXPORT uncompress(Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong sourceLen);
|
||||
/*
|
||||
Decompresses the source buffer into the destination buffer. sourceLen is
|
||||
the byte length of the source buffer. Upon entry, destLen is the total size
|
||||
@ -1282,8 +1285,8 @@ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen,
|
||||
buffer with the uncompressed data up to that point.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT uncompress2 OF((Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong *sourceLen));
|
||||
ZEXTERN int ZEXPORT uncompress2(Bytef *dest, uLongf *destLen,
|
||||
const Bytef *source, uLong *sourceLen);
|
||||
/*
|
||||
Same as uncompress, except that sourceLen is a pointer, where the
|
||||
length of the source is *sourceLen. On return, *sourceLen is the number of
|
||||
@ -1302,7 +1305,7 @@ ZEXTERN int ZEXPORT uncompress2 OF((Bytef *dest, uLongf *destLen,
|
||||
typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */
|
||||
|
||||
/*
|
||||
ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
|
||||
ZEXTERN gzFile ZEXPORT gzopen(const char *path, const char *mode);
|
||||
|
||||
Open the gzip (.gz) file at path for reading and decompressing, or
|
||||
compressing and writing. The mode parameter is as in fopen ("rb" or "wb")
|
||||
@ -1339,7 +1342,7 @@ ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
|
||||
file could not be opened.
|
||||
*/
|
||||
|
||||
ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
|
||||
ZEXTERN gzFile ZEXPORT gzdopen(int fd, const char *mode);
|
||||
/*
|
||||
Associate a gzFile with the file descriptor fd. File descriptors are
|
||||
obtained from calls like open, dup, creat, pipe or fileno (if the file has
|
||||
@ -1362,7 +1365,7 @@ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
|
||||
will not detect if fd is invalid (unless fd is -1).
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
|
||||
ZEXTERN int ZEXPORT gzbuffer(gzFile file, unsigned size);
|
||||
/*
|
||||
Set the internal buffer size used by this library's functions for file to
|
||||
size. The default buffer size is 8192 bytes. This function must be called
|
||||
@ -1378,7 +1381,7 @@ ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
|
||||
too late.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
|
||||
ZEXTERN int ZEXPORT gzsetparams(gzFile file, int level, int strategy);
|
||||
/*
|
||||
Dynamically update the compression level and strategy for file. See the
|
||||
description of deflateInit2 for the meaning of these parameters. Previously
|
||||
@ -1389,7 +1392,7 @@ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
|
||||
or Z_MEM_ERROR if there is a memory allocation error.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
|
||||
ZEXTERN int ZEXPORT gzread(gzFile file, voidp buf, unsigned len);
|
||||
/*
|
||||
Read and decompress up to len uncompressed bytes from file into buf. If
|
||||
the input file is not in gzip format, gzread copies the given number of
|
||||
@ -1419,8 +1422,8 @@ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
|
||||
Z_STREAM_ERROR.
|
||||
*/
|
||||
|
||||
ZEXTERN z_size_t ZEXPORT gzfread OF((voidp buf, z_size_t size, z_size_t nitems,
|
||||
gzFile file));
|
||||
ZEXTERN z_size_t ZEXPORT gzfread(voidp buf, z_size_t size, z_size_t nitems,
|
||||
gzFile file);
|
||||
/*
|
||||
Read and decompress up to nitems items of size size from file into buf,
|
||||
otherwise operating as gzread() does. This duplicates the interface of
|
||||
@ -1445,14 +1448,14 @@ ZEXTERN z_size_t ZEXPORT gzfread OF((voidp buf, z_size_t size, z_size_t nitems,
|
||||
file, resetting and retrying on end-of-file, when size is not 1.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len));
|
||||
ZEXTERN int ZEXPORT gzwrite(gzFile file, voidpc buf, unsigned len);
|
||||
/*
|
||||
Compress and write the len uncompressed bytes at buf to file. gzwrite
|
||||
returns the number of uncompressed bytes written or 0 in case of error.
|
||||
*/
|
||||
|
||||
ZEXTERN z_size_t ZEXPORT gzfwrite OF((voidpc buf, z_size_t size,
|
||||
z_size_t nitems, gzFile file));
|
||||
ZEXTERN z_size_t ZEXPORT gzfwrite(voidpc buf, z_size_t size,
|
||||
z_size_t nitems, gzFile file);
|
||||
/*
|
||||
Compress and write nitems items of size size from buf to file, duplicating
|
||||
the interface of stdio's fwrite(), with size_t request and return types. If
|
||||
@ -1465,7 +1468,7 @@ ZEXTERN z_size_t ZEXPORT gzfwrite OF((voidpc buf, z_size_t size,
|
||||
is returned, and the error state is set to Z_STREAM_ERROR.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...));
|
||||
ZEXTERN int ZEXPORTVA gzprintf(gzFile file, const char *format, ...);
|
||||
/*
|
||||
Convert, format, compress, and write the arguments (...) to file under
|
||||
control of the string format, as in fprintf. gzprintf returns the number of
|
||||
@ -1480,7 +1483,7 @@ ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...));
|
||||
This can be determined using zlibCompileFlags().
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
|
||||
ZEXTERN int ZEXPORT gzputs(gzFile file, const char *s);
|
||||
/*
|
||||
Compress and write the given null-terminated string s to file, excluding
|
||||
the terminating null character.
|
||||
@ -1488,7 +1491,7 @@ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
|
||||
gzputs returns the number of characters written, or -1 in case of error.
|
||||
*/
|
||||
|
||||
ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
|
||||
ZEXTERN char * ZEXPORT gzgets(gzFile file, char *buf, int len);
|
||||
/*
|
||||
Read and decompress bytes from file into buf, until len-1 characters are
|
||||
read, or until a newline character is read and transferred to buf, or an
|
||||
@ -1502,13 +1505,13 @@ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
|
||||
buf are indeterminate.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
|
||||
ZEXTERN int ZEXPORT gzputc(gzFile file, int c);
|
||||
/*
|
||||
Compress and write c, converted to an unsigned char, into file. gzputc
|
||||
returns the value that was written, or -1 in case of error.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
|
||||
ZEXTERN int ZEXPORT gzgetc(gzFile file);
|
||||
/*
|
||||
Read and decompress one byte from file. gzgetc returns this byte or -1
|
||||
in case of end of file or error. This is implemented as a macro for speed.
|
||||
@ -1517,7 +1520,7 @@ ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
|
||||
points to has been clobbered or not.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
|
||||
ZEXTERN int ZEXPORT gzungetc(int c, gzFile file);
|
||||
/*
|
||||
Push c back onto the stream for file to be read as the first character on
|
||||
the next read. At least one character of push-back is always allowed.
|
||||
@ -1529,7 +1532,7 @@ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
|
||||
gzseek() or gzrewind().
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
|
||||
ZEXTERN int ZEXPORT gzflush(gzFile file, int flush);
|
||||
/*
|
||||
Flush all pending output to file. The parameter flush is as in the
|
||||
deflate() function. The return value is the zlib error number (see function
|
||||
@ -1545,8 +1548,8 @@ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
|
||||
z_off_t offset, int whence));
|
||||
ZEXTERN z_off_t ZEXPORT gzseek(gzFile file,
|
||||
z_off_t offset, int whence);
|
||||
|
||||
Set the starting position to offset relative to whence for the next gzread
|
||||
or gzwrite on file. The offset represents a number of bytes in the
|
||||
@ -1564,7 +1567,7 @@ ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
|
||||
would be before the current position.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzrewind OF((gzFile file));
|
||||
ZEXTERN int ZEXPORT gzrewind(gzFile file);
|
||||
/*
|
||||
Rewind file. This function is supported only for reading.
|
||||
|
||||
@ -1572,7 +1575,7 @@ ZEXTERN int ZEXPORT gzrewind OF((gzFile file));
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file));
|
||||
ZEXTERN z_off_t ZEXPORT gztell(gzFile file);
|
||||
|
||||
Return the starting position for the next gzread or gzwrite on file.
|
||||
This position represents a number of bytes in the uncompressed data stream,
|
||||
@ -1583,7 +1586,7 @@ ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file));
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file));
|
||||
ZEXTERN z_off_t ZEXPORT gzoffset(gzFile file);
|
||||
|
||||
Return the current compressed (actual) read or write offset of file. This
|
||||
offset includes the count of bytes that precede the gzip stream, for example
|
||||
@ -1592,7 +1595,7 @@ ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file));
|
||||
be used for a progress indicator. On error, gzoffset() returns -1.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzeof OF((gzFile file));
|
||||
ZEXTERN int ZEXPORT gzeof(gzFile file);
|
||||
/*
|
||||
Return true (1) if the end-of-file indicator for file has been set while
|
||||
reading, false (0) otherwise. Note that the end-of-file indicator is set
|
||||
@ -1607,7 +1610,7 @@ ZEXTERN int ZEXPORT gzeof OF((gzFile file));
|
||||
has grown since the previous end of file was detected.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
|
||||
ZEXTERN int ZEXPORT gzdirect(gzFile file);
|
||||
/*
|
||||
Return true (1) if file is being copied directly while reading, or false
|
||||
(0) if file is a gzip stream being decompressed.
|
||||
@ -1628,7 +1631,7 @@ ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
|
||||
gzip file reading and decompression, which may not be desired.)
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzclose OF((gzFile file));
|
||||
ZEXTERN int ZEXPORT gzclose(gzFile file);
|
||||
/*
|
||||
Flush all pending output for file, if necessary, close file and
|
||||
deallocate the (de)compression state. Note that once file is closed, you
|
||||
@ -1641,8 +1644,8 @@ ZEXTERN int ZEXPORT gzclose OF((gzFile file));
|
||||
last read ended in the middle of a gzip stream, or Z_OK on success.
|
||||
*/
|
||||
|
||||
ZEXTERN int ZEXPORT gzclose_r OF((gzFile file));
|
||||
ZEXTERN int ZEXPORT gzclose_w OF((gzFile file));
|
||||
ZEXTERN int ZEXPORT gzclose_r(gzFile file);
|
||||
ZEXTERN int ZEXPORT gzclose_w(gzFile file);
|
||||
/*
|
||||
Same as gzclose(), but gzclose_r() is only for use when reading, and
|
||||
gzclose_w() is only for use when writing or appending. The advantage to
|
||||
@ -1653,7 +1656,7 @@ ZEXTERN int ZEXPORT gzclose_w OF((gzFile file));
|
||||
zlib library.
|
||||
*/
|
||||
|
||||
ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
|
||||
ZEXTERN const char * ZEXPORT gzerror(gzFile file, int *errnum);
|
||||
/*
|
||||
Return the error message for the last error which occurred on file.
|
||||
errnum is set to zlib error number. If an error occurred in the file system
|
||||
@ -1669,7 +1672,7 @@ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
|
||||
functions above that do not distinguish those cases in their return values.
|
||||
*/
|
||||
|
||||
ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
|
||||
ZEXTERN void ZEXPORT gzclearerr(gzFile file);
|
||||
/*
|
||||
Clear the error and end-of-file flags for file. This is analogous to the
|
||||
clearerr() function in stdio. This is useful for continuing to read a gzip
|
||||
@ -1686,7 +1689,7 @@ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
|
||||
library.
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
|
||||
ZEXTERN uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len);
|
||||
/*
|
||||
Update a running Adler-32 checksum with the bytes buf[0..len-1] and
|
||||
return the updated checksum. An Adler-32 value is in the range of a 32-bit
|
||||
@ -1706,15 +1709,15 @@ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
|
||||
if (adler != original_adler) error();
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT adler32_z OF((uLong adler, const Bytef *buf,
|
||||
z_size_t len));
|
||||
ZEXTERN uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf,
|
||||
z_size_t len);
|
||||
/*
|
||||
Same as adler32(), but with a size_t length.
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
|
||||
z_off_t len2));
|
||||
ZEXTERN uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2,
|
||||
z_off_t len2);
|
||||
|
||||
Combine two Adler-32 checksums into one. For two sequences of bytes, seq1
|
||||
and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
|
||||
@ -1724,7 +1727,7 @@ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
|
||||
negative, the result has no meaning or utility.
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
|
||||
ZEXTERN uLong ZEXPORT crc32(uLong crc, const Bytef *buf, uInt len);
|
||||
/*
|
||||
Update a running CRC-32 with the bytes buf[0..len-1] and return the
|
||||
updated CRC-32. A CRC-32 value is in the range of a 32-bit unsigned integer.
|
||||
@ -1742,30 +1745,30 @@ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
|
||||
if (crc != original_crc) error();
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT crc32_z OF((uLong crc, const Bytef *buf,
|
||||
z_size_t len));
|
||||
ZEXTERN uLong ZEXPORT crc32_z(uLong crc, const Bytef *buf,
|
||||
z_size_t len);
|
||||
/*
|
||||
Same as crc32(), but with a size_t length.
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2);
|
||||
|
||||
Combine two CRC-32 check values into one. For two sequences of bytes,
|
||||
seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
|
||||
calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32
|
||||
check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
|
||||
len2.
|
||||
len2. len2 must be non-negative.
|
||||
*/
|
||||
|
||||
/*
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen OF((z_off_t len2));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen(z_off_t len2);
|
||||
|
||||
Return the operator corresponding to length len2, to be used with
|
||||
crc32_combine_op().
|
||||
crc32_combine_op(). len2 must be non-negative.
|
||||
*/
|
||||
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_op OF((uLong crc1, uLong crc2, uLong op));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op);
|
||||
/*
|
||||
Give the same result as crc32_combine(), using op in place of len2. op is
|
||||
is generated from len2 by crc32_combine_gen(). This will be faster than
|
||||
@ -1778,20 +1781,20 @@ ZEXTERN uLong ZEXPORT crc32_combine_op OF((uLong crc1, uLong crc2, uLong op));
|
||||
/* deflateInit and inflateInit are macros to allow checking the zlib version
|
||||
* and the compiler's view of z_stream:
|
||||
*/
|
||||
ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level,
|
||||
const char *version, int stream_size));
|
||||
ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm,
|
||||
const char *version, int stream_size));
|
||||
ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method,
|
||||
int windowBits, int memLevel,
|
||||
int strategy, const char *version,
|
||||
int stream_size));
|
||||
ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits,
|
||||
const char *version, int stream_size));
|
||||
ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits,
|
||||
unsigned char FAR *window,
|
||||
const char *version,
|
||||
int stream_size));
|
||||
ZEXTERN int ZEXPORT deflateInit_(z_streamp strm, int level,
|
||||
const char *version, int stream_size);
|
||||
ZEXTERN int ZEXPORT inflateInit_(z_streamp strm,
|
||||
const char *version, int stream_size);
|
||||
ZEXTERN int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
|
||||
int windowBits, int memLevel,
|
||||
int strategy, const char *version,
|
||||
int stream_size);
|
||||
ZEXTERN int ZEXPORT inflateInit2_(z_streamp strm, int windowBits,
|
||||
const char *version, int stream_size);
|
||||
ZEXTERN int ZEXPORT inflateBackInit_(z_streamp strm, int windowBits,
|
||||
unsigned char FAR *window,
|
||||
const char *version,
|
||||
int stream_size);
|
||||
#ifdef Z_PREFIX_SET
|
||||
# define z_deflateInit(strm, level) \
|
||||
deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
|
||||
@ -1836,7 +1839,7 @@ struct gzFile_s {
|
||||
unsigned char *next;
|
||||
z_off64_t pos;
|
||||
};
|
||||
ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */
|
||||
ZEXTERN int ZEXPORT gzgetc_(gzFile file); /* backward compatibility */
|
||||
#ifdef Z_PREFIX_SET
|
||||
# undef z_gzgetc
|
||||
# define z_gzgetc(g) \
|
||||
@ -1853,13 +1856,13 @@ ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */
|
||||
* without large file support, _LFS64_LARGEFILE must also be true
|
||||
*/
|
||||
#ifdef Z_LARGE64
|
||||
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
|
||||
ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
|
||||
ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
|
||||
ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
|
||||
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen64 OF((z_off64_t));
|
||||
ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
|
||||
ZEXTERN z_off64_t ZEXPORT gzseek64(gzFile, z_off64_t, int);
|
||||
ZEXTERN z_off64_t ZEXPORT gztell64(gzFile);
|
||||
ZEXTERN z_off64_t ZEXPORT gzoffset64(gzFile);
|
||||
ZEXTERN uLong ZEXPORT adler32_combine64(uLong, uLong, z_off64_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine64(uLong, uLong, z_off64_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen64(z_off64_t);
|
||||
#endif
|
||||
|
||||
#if !defined(ZLIB_INTERNAL) && defined(Z_WANT64)
|
||||
@ -1881,50 +1884,50 @@ ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */
|
||||
# define crc32_combine_gen crc32_combine_gen64
|
||||
# endif
|
||||
# ifndef Z_LARGE64
|
||||
ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
|
||||
ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int));
|
||||
ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile));
|
||||
ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile));
|
||||
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen64 OF((z_off_t));
|
||||
ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
|
||||
ZEXTERN z_off_t ZEXPORT gzseek64(gzFile, z_off_t, int);
|
||||
ZEXTERN z_off_t ZEXPORT gztell64(gzFile);
|
||||
ZEXTERN z_off_t ZEXPORT gzoffset64(gzFile);
|
||||
ZEXTERN uLong ZEXPORT adler32_combine64(uLong, uLong, z_off_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine64(uLong, uLong, z_off_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen64(z_off_t);
|
||||
# endif
|
||||
#else
|
||||
ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *));
|
||||
ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int));
|
||||
ZEXTERN z_off_t ZEXPORT gztell OF((gzFile));
|
||||
ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile));
|
||||
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen OF((z_off_t));
|
||||
ZEXTERN gzFile ZEXPORT gzopen(const char *, const char *);
|
||||
ZEXTERN z_off_t ZEXPORT gzseek(gzFile, z_off_t, int);
|
||||
ZEXTERN z_off_t ZEXPORT gztell(gzFile);
|
||||
ZEXTERN z_off_t ZEXPORT gzoffset(gzFile);
|
||||
ZEXTERN uLong ZEXPORT adler32_combine(uLong, uLong, z_off_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine(uLong, uLong, z_off_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen(z_off_t);
|
||||
#endif
|
||||
|
||||
#else /* Z_SOLO */
|
||||
|
||||
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen OF((z_off_t));
|
||||
ZEXTERN uLong ZEXPORT adler32_combine(uLong, uLong, z_off_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine(uLong, uLong, z_off_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen(z_off_t);
|
||||
|
||||
#endif /* !Z_SOLO */
|
||||
|
||||
/* undocumented functions */
|
||||
ZEXTERN const char * ZEXPORT zError OF((int));
|
||||
ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp));
|
||||
ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void));
|
||||
ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int));
|
||||
ZEXTERN int ZEXPORT inflateValidate OF((z_streamp, int));
|
||||
ZEXTERN unsigned long ZEXPORT inflateCodesUsed OF((z_streamp));
|
||||
ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp));
|
||||
ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp));
|
||||
ZEXTERN const char * ZEXPORT zError(int);
|
||||
ZEXTERN int ZEXPORT inflateSyncPoint(z_streamp);
|
||||
ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table(void);
|
||||
ZEXTERN int ZEXPORT inflateUndermine(z_streamp, int);
|
||||
ZEXTERN int ZEXPORT inflateValidate(z_streamp, int);
|
||||
ZEXTERN unsigned long ZEXPORT inflateCodesUsed(z_streamp);
|
||||
ZEXTERN int ZEXPORT inflateResetKeep(z_streamp);
|
||||
ZEXTERN int ZEXPORT deflateResetKeep(z_streamp);
|
||||
#if defined(_WIN32) && !defined(Z_SOLO)
|
||||
ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path,
|
||||
const char *mode));
|
||||
ZEXTERN gzFile ZEXPORT gzopen_w(const wchar_t *path,
|
||||
const char *mode);
|
||||
#endif
|
||||
#if defined(STDC) || defined(Z_HAVE_STDARG_H)
|
||||
# ifndef Z_SOLO
|
||||
ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file,
|
||||
const char *format,
|
||||
va_list va));
|
||||
ZEXTERN int ZEXPORTVA gzvprintf(gzFile file,
|
||||
const char *format,
|
||||
va_list va);
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
10
external/zlib/zlib.pc.cmakein
vendored
10
external/zlib/zlib.pc.cmakein
vendored
@ -1,12 +1,12 @@
|
||||
prefix=@CMAKE_INSTALL_PREFIX@
|
||||
exec_prefix=@CMAKE_INSTALL_PREFIX@/bin
|
||||
libdir=@CMAKE_INSTALL_PREFIX@/lib
|
||||
sharedlibdir=@CMAKE_INSTALL_PREFIX@/lib
|
||||
includedir=@CMAKE_INSTALL_PREFIX@/include
|
||||
exec_prefix=@CMAKE_INSTALL_PREFIX@
|
||||
libdir=@INSTALL_LIB_DIR@
|
||||
sharedlibdir=@INSTALL_LIB_DIR@
|
||||
includedir=@INSTALL_INC_DIR@
|
||||
|
||||
Name: zlib
|
||||
Description: zlib compression library
|
||||
Version: @ZLIB_VERSION@
|
||||
Version: @VERSION@
|
||||
|
||||
Requires:
|
||||
Libs: -L${libdir} -L${sharedlibdir} -lz
|
||||
|
60
external/zlib/zutil.c
vendored
60
external/zlib/zutil.c
vendored
@ -24,13 +24,11 @@ z_const char * const z_errmsg[10] = {
|
||||
};
|
||||
|
||||
|
||||
const char * ZEXPORT zlibVersion()
|
||||
{
|
||||
const char * ZEXPORT zlibVersion(void) {
|
||||
return ZLIB_VERSION;
|
||||
}
|
||||
|
||||
uLong ZEXPORT zlibCompileFlags()
|
||||
{
|
||||
uLong ZEXPORT zlibCompileFlags(void) {
|
||||
uLong flags;
|
||||
|
||||
flags = 0;
|
||||
@ -121,9 +119,7 @@ uLong ZEXPORT zlibCompileFlags()
|
||||
# endif
|
||||
int ZLIB_INTERNAL z_verbose = verbose;
|
||||
|
||||
void ZLIB_INTERNAL z_error(m)
|
||||
char *m;
|
||||
{
|
||||
void ZLIB_INTERNAL z_error(char *m) {
|
||||
fprintf(stderr, "%s\n", m);
|
||||
exit(1);
|
||||
}
|
||||
@ -132,9 +128,7 @@ void ZLIB_INTERNAL z_error(m)
|
||||
/* exported to allow conversion of error code to string for compress() and
|
||||
* uncompress()
|
||||
*/
|
||||
const char * ZEXPORT zError(err)
|
||||
int err;
|
||||
{
|
||||
const char * ZEXPORT zError(int err) {
|
||||
return ERR_MSG(err);
|
||||
}
|
||||
|
||||
@ -148,22 +142,14 @@ const char * ZEXPORT zError(err)
|
||||
|
||||
#ifndef HAVE_MEMCPY
|
||||
|
||||
void ZLIB_INTERNAL zmemcpy(dest, source, len)
|
||||
Bytef* dest;
|
||||
const Bytef* source;
|
||||
uInt len;
|
||||
{
|
||||
void ZLIB_INTERNAL zmemcpy(Bytef* dest, const Bytef* source, uInt len) {
|
||||
if (len == 0) return;
|
||||
do {
|
||||
*dest++ = *source++; /* ??? to be unrolled */
|
||||
} while (--len != 0);
|
||||
}
|
||||
|
||||
int ZLIB_INTERNAL zmemcmp(s1, s2, len)
|
||||
const Bytef* s1;
|
||||
const Bytef* s2;
|
||||
uInt len;
|
||||
{
|
||||
int ZLIB_INTERNAL zmemcmp(const Bytef* s1, const Bytef* s2, uInt len) {
|
||||
uInt j;
|
||||
|
||||
for (j = 0; j < len; j++) {
|
||||
@ -172,10 +158,7 @@ int ZLIB_INTERNAL zmemcmp(s1, s2, len)
|
||||
return 0;
|
||||
}
|
||||
|
||||
void ZLIB_INTERNAL zmemzero(dest, len)
|
||||
Bytef* dest;
|
||||
uInt len;
|
||||
{
|
||||
void ZLIB_INTERNAL zmemzero(Bytef* dest, uInt len) {
|
||||
if (len == 0) return;
|
||||
do {
|
||||
*dest++ = 0; /* ??? to be unrolled */
|
||||
@ -216,8 +199,7 @@ local ptr_table table[MAX_PTR];
|
||||
* a protected system like OS/2. Use Microsoft C instead.
|
||||
*/
|
||||
|
||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size)
|
||||
{
|
||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size) {
|
||||
voidpf buf;
|
||||
ulg bsize = (ulg)items*size;
|
||||
|
||||
@ -242,8 +224,7 @@ voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size)
|
||||
return buf;
|
||||
}
|
||||
|
||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr)
|
||||
{
|
||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr) {
|
||||
int n;
|
||||
|
||||
(void)opaque;
|
||||
@ -279,14 +260,12 @@ void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr)
|
||||
# define _hfree hfree
|
||||
#endif
|
||||
|
||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, uInt items, uInt size)
|
||||
{
|
||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, uInt items, uInt size) {
|
||||
(void)opaque;
|
||||
return _halloc((long)items, size);
|
||||
}
|
||||
|
||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr)
|
||||
{
|
||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr) {
|
||||
(void)opaque;
|
||||
_hfree(ptr);
|
||||
}
|
||||
@ -299,25 +278,18 @@ void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr)
|
||||
#ifndef MY_ZCALLOC /* Any system without a special alloc function */
|
||||
|
||||
#ifndef STDC
|
||||
extern voidp malloc OF((uInt size));
|
||||
extern voidp calloc OF((uInt items, uInt size));
|
||||
extern void free OF((voidpf ptr));
|
||||
extern voidp malloc(uInt size);
|
||||
extern voidp calloc(uInt items, uInt size);
|
||||
extern void free(voidpf ptr);
|
||||
#endif
|
||||
|
||||
voidpf ZLIB_INTERNAL zcalloc(opaque, items, size)
|
||||
voidpf opaque;
|
||||
unsigned items;
|
||||
unsigned size;
|
||||
{
|
||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size) {
|
||||
(void)opaque;
|
||||
return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) :
|
||||
(voidpf)calloc(items, size);
|
||||
}
|
||||
|
||||
void ZLIB_INTERNAL zcfree(opaque, ptr)
|
||||
voidpf opaque;
|
||||
voidpf ptr;
|
||||
{
|
||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr) {
|
||||
(void)opaque;
|
||||
free(ptr);
|
||||
}
|
||||
|
47
external/zlib/zutil.h
vendored
47
external/zlib/zutil.h
vendored
@ -1,5 +1,5 @@
|
||||
/* zutil.h -- internal interface and configuration of the compression library
|
||||
* Copyright (C) 1995-2022 Jean-loup Gailly, Mark Adler
|
||||
* Copyright (C) 1995-2024 Jean-loup Gailly, Mark Adler
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
|
||||
@ -56,7 +56,7 @@ typedef unsigned long ulg;
|
||||
extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
|
||||
/* (size given to avoid silly warnings with Visual C++) */
|
||||
|
||||
#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
|
||||
#define ERR_MSG(err) z_errmsg[(err) < -6 || (err) > 2 ? 9 : 2 - (err)]
|
||||
|
||||
#define ERR_RETURN(strm,err) \
|
||||
return (strm->msg = ERR_MSG(err), (err))
|
||||
@ -137,17 +137,8 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(MACOS) || defined(TARGET_OS_MAC)
|
||||
#if defined(MACOS)
|
||||
# define OS_CODE 7
|
||||
# ifndef Z_SOLO
|
||||
# if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
|
||||
# include <unix.h> /* for fdopen */
|
||||
# else
|
||||
# ifndef fdopen
|
||||
# define fdopen(fd,mode) NULL /* No fdopen() */
|
||||
# endif
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifdef __acorn
|
||||
@ -170,18 +161,6 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
|
||||
# define OS_CODE 19
|
||||
#endif
|
||||
|
||||
#if defined(_BEOS_) || defined(RISCOS)
|
||||
# define fdopen(fd,mode) NULL /* No fdopen() */
|
||||
#endif
|
||||
|
||||
#if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX
|
||||
# if defined(_WIN32_WCE)
|
||||
# define fdopen(fd,mode) NULL /* No fdopen() */
|
||||
# else
|
||||
# define fdopen(fd,type) _fdopen(fd,type)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(__BORLANDC__) && !defined(MSDOS)
|
||||
#pragma warn -8004
|
||||
#pragma warn -8008
|
||||
@ -191,9 +170,9 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
|
||||
/* provide prototypes for these when building zlib without LFS */
|
||||
#if !defined(_WIN32) && \
|
||||
(!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0)
|
||||
ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen64 OF((z_off_t));
|
||||
ZEXTERN uLong ZEXPORT adler32_combine64(uLong, uLong, z_off_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine64(uLong, uLong, z_off_t);
|
||||
ZEXTERN uLong ZEXPORT crc32_combine_gen64(z_off_t);
|
||||
#endif
|
||||
|
||||
/* common defaults */
|
||||
@ -232,16 +211,16 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
|
||||
# define zmemzero(dest, len) memset(dest, 0, len)
|
||||
# endif
|
||||
#else
|
||||
void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len));
|
||||
int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len));
|
||||
void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len));
|
||||
void ZLIB_INTERNAL zmemcpy(Bytef* dest, const Bytef* source, uInt len);
|
||||
int ZLIB_INTERNAL zmemcmp(const Bytef* s1, const Bytef* s2, uInt len);
|
||||
void ZLIB_INTERNAL zmemzero(Bytef* dest, uInt len);
|
||||
#endif
|
||||
|
||||
/* Diagnostic functions */
|
||||
#ifdef ZLIB_DEBUG
|
||||
# include <stdio.h>
|
||||
extern int ZLIB_INTERNAL z_verbose;
|
||||
extern void ZLIB_INTERNAL z_error OF((char *m));
|
||||
extern void ZLIB_INTERNAL z_error(char *m);
|
||||
# define Assert(cond,msg) {if(!(cond)) z_error(msg);}
|
||||
# define Trace(x) {if (z_verbose>=0) fprintf x ;}
|
||||
# define Tracev(x) {if (z_verbose>0) fprintf x ;}
|
||||
@ -258,9 +237,9 @@ extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
|
||||
#endif
|
||||
|
||||
#ifndef Z_SOLO
|
||||
voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items,
|
||||
unsigned size));
|
||||
void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr));
|
||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items,
|
||||
unsigned size);
|
||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr);
|
||||
#endif
|
||||
|
||||
#define ZALLOC(strm, items, size) \
|
||||
|
@ -172,6 +172,8 @@ void *ma_multi_malloc(myf myFlags, ...)
|
||||
size_t tot_length,length;
|
||||
|
||||
va_start(args,myFlags);
|
||||
/* keep gcc15 happy */
|
||||
(void)myFlags;
|
||||
tot_length=0;
|
||||
while ((ptr=va_arg(args, char **)))
|
||||
{
|
||||
|
Reference in New Issue
Block a user