1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-08-10 01:22:48 +03:00
Files
mariadb-columnstore-engine/utils/regr/regrmysql.cpp

1356 lines
34 KiB
C++

#include <my_config.h>
#include <cmath>
#include <iostream>
#include <sstream>
using namespace std;
#include "idb_mysql.h"
namespace
{
inline double cvtArgToDouble(int t, const char* v)
{
double d = 0.0;
switch (t)
{
case INT_RESULT:
d = (double)(*((long long*)v));
break;
case REAL_RESULT:
d = *((double*)v);
break;
case DECIMAL_RESULT:
case STRING_RESULT:
d = strtod(v, 0);
break;
case ROW_RESULT:
break;
}
return d;
}
inline long long cvtArgToInt(int t, const char* v)
{
long long ll = 0;
switch (t)
{
case INT_RESULT:
ll = *((long long*)v);
break;
case REAL_RESULT:
ll = (long long)(*((double*)v));
break;
case DECIMAL_RESULT:
case STRING_RESULT:
ll = strtoll(v, 0, 0);
break;
case ROW_RESULT:
break;
}
return ll;
}
inline string cvtArgToString(int t, const char* v)
{
string str;
switch (t)
{
case INT_RESULT:
{
long long ll;
ll = *((long long*)v);
ostringstream oss;
oss << ll;
str = oss.str();
break;
}
case REAL_RESULT:
{
double d;
d = *((double*)v);
ostringstream oss;
oss << d;
str = oss.str();
break;
}
case DECIMAL_RESULT:
case STRING_RESULT:
str = v;
break;
case ROW_RESULT:
break;
}
return str;
}
}
/****************************************************************************
* UDF function interface for MariaDB connector to recognize is defined in
* this section. MariaDB's UDF function creation guideline needs to be followed.
*
* Three interface need to be defined on the connector for each UDF function.
*
* XXX_init: To allocate the necessary memory for the UDF function and validate
* the input.
* XXX_deinit: To clean up the memory.
* XXX: The function implementation.
* Detailed instruction can be found at MariaDB source directory:
* ~/sql/udf_example.cc.
*
* Please note that the implementation of the function defined on the connector
* will only be called when all the input arguments are constant. e.g.,
* mcs_add(2,3). That way, the function does not run in a distributed fashion
* and could be slow. If there is a need for the UDF function to run with
* pure constant input, then one needs to put a implementation in the XXX
* body, which is very similar to the ones in getXXXval API. If there's no
* such need for a given UDF, then the XXX interface can just return a dummy
* result because this function will never be called.
*/
extern "C"
{
//=======================================================================
/**
* regr_avgx
*/
struct regr_avgx_data
{
double sumx;
int64_t cnt;
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool regr_avgx_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_avgx_data* data;
if (args->arg_count != 2)
{
strcpy(message,"regr_avgx() requires two arguments");
return 1;
}
if (!(data = (struct regr_avgx_data*) malloc(sizeof(struct regr_avgx_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->sumx = 0;
data->cnt = 0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void regr_avgx_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_avgx_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_avgx_data* data = (struct regr_avgx_data*)initid->ptr;
data->sumx = 0;
data->cnt = 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_avgx_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_avgx_data* data = (struct regr_avgx_data*)initid->ptr;
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
++data->cnt;
data->sumx += xval;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double regr_avgx(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct regr_avgx_data* data = (struct regr_avgx_data*)initid->ptr;
return data->sumx / data->cnt;
}
//=======================================================================
/**
* regr_avgy
*/
struct regr_avgy_data
{
double sumy;
int64_t cnt;
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool regr_avgy_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_avgy_data* data;
if (args->arg_count != 2)
{
strcpy(message,"regr_avgy() requires two arguments");
return 1;
}
if (!(data = (struct regr_avgy_data*) malloc(sizeof(struct regr_avgy_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->sumy = 0;
data->cnt = 0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void regr_avgy_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_avgy_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_avgy_data* data = (struct regr_avgy_data*)initid->ptr;
data->sumy = 0;
data->cnt = 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_avgy_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_avgy_data* data = (struct regr_avgy_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
++data->cnt;
data->sumy += yval;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double regr_avgy(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct regr_avgy_data* data = (struct regr_avgy_data*)initid->ptr;
return data->sumy / data->cnt;
}
//=======================================================================
/**
* regr_count
*/
struct regr_count_data
{
int64_t cnt;
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool regr_count_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_count_data* data;
if (args->arg_count != 2)
{
strcpy(message,"regr_count() requires two arguments");
return 1;
}
if (!(data = (struct regr_count_data*) malloc(sizeof(struct regr_count_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void regr_count_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_count_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_count_data* data = (struct regr_count_data*)initid->ptr;
data->cnt = 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_count_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_count_data* data = (struct regr_count_data*)initid->ptr;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
long long regr_count(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct regr_count_data* data = (struct regr_count_data*)initid->ptr;
return data->cnt;
}
//=======================================================================
/**
* regr_slope
*/
struct regr_slope_data
{
int64_t cnt;
double sumx;
double sumx2; // sum of (x squared)
double sumy;
double sumxy; // sum of (x*y)
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool regr_slope_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_slope_data* data;
if (args->arg_count != 2)
{
strcpy(message,"regr_slope() requires two arguments");
return 1;
}
if (!(data = (struct regr_slope_data*) malloc(sizeof(struct regr_slope_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void regr_slope_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_slope_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_slope_data* data = (struct regr_slope_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_slope_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_slope_data* data = (struct regr_slope_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumx2 += xval*xval;
data->sumxy += xval*yval;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double regr_slope(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct regr_slope_data* data = (struct regr_slope_data*)initid->ptr;
double N = data->cnt;
if (N > 0)
{
double sumx = data->sumx;
double sumy = data->sumy;
double sumx2 = data->sumx2;
double sumxy = data->sumxy;
double variance = (N * sumx2) - (sumx * sumx);
if (variance)
{
return ((N * sumxy) - (sumx * sumy)) / variance;
}
}
*is_null = 1;
return 0;
}
//=======================================================================
/**
* regr_intercept
*/
struct regr_intercept_data
{
int64_t cnt;
double sumx;
double sumx2; // sum of (x squared)
double sumy;
double sumxy; // sum of (x*y)
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool regr_intercept_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_intercept_data* data;
if (args->arg_count != 2)
{
strcpy(message,"regr_intercept() requires two arguments");
return 1;
}
if (!(data = (struct regr_intercept_data*) malloc(sizeof(struct regr_intercept_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void regr_intercept_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_intercept_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_intercept_data* data = (struct regr_intercept_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_intercept_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_intercept_data* data = (struct regr_intercept_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumx2 += xval*xval;
data->sumxy += xval*yval;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double regr_intercept(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct regr_intercept_data* data = (struct regr_intercept_data*)initid->ptr;
double N = data->cnt;
if (N > 0)
{
double sumx = data->sumx;
double sumy = data->sumy;
double sumx2 = data->sumx2;
double sumxy = data->sumxy;
double variance = (N * sumx2) - (sumx * sumx);
if (variance)
{
double slope = ((N * sumxy) - (sumx * sumy)) / variance;
return (sumy - (slope * sumx)) / N;
}
}
*is_null = 1;
return 0;
}
//=======================================================================
/**
* regr_r2
*/
struct regr_r2_data
{
int64_t cnt;
double sumx;
double sumx2; // sum of (x squared)
double sumy;
double sumy2; // sum of (y squared)
double sumxy; // sum of (x*y)
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool regr_r2_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_r2_data* data;
if (args->arg_count != 2)
{
strcpy(message,"regr_r2() requires two arguments");
return 1;
}
if (!(data = (struct regr_r2_data*) malloc(sizeof(struct regr_r2_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumy2 = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void regr_r2_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_r2_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_r2_data* data = (struct regr_r2_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumy2 = 0.0;
data->sumxy = 0.0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_r2_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_r2_data* data = (struct regr_r2_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumx2 += xval*xval;
data->sumy2 += yval*yval;
data->sumxy += xval*yval;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double regr_r2(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct regr_r2_data* data = (struct regr_r2_data*)initid->ptr;
double N = data->cnt;
if (N > 0)
{
double sumx = data->sumx;
double sumy = data->sumy;
double sumx2 = data->sumx2;
double sumy2 = data->sumy2;
double sumxy = data->sumxy;
double var_popx = (sumx2 - (sumx * sumx / N)) / N;
if (var_popx == 0)
{
// When var_popx is 0, NULL is the result.
*is_null = 1;
return 0;
}
double var_popy = (sumy2 - (sumy * sumy / N)) / N;
if (var_popy == 0)
{
// When var_popy is 0, 1 is the result
return 1;
}
double std_popx = sqrt(var_popx);
double std_popy = sqrt(var_popy);
double covar_pop = (sumxy - ((sumx * sumy) / N)) / N;
double corr = covar_pop / (std_popy * std_popx);
return corr * corr;
}
*is_null = 1;
return 0;
}
//=======================================================================
/**
* corr
*/
struct corr_data
{
int64_t cnt;
double sumx;
double sumx2; // sum of (x squared)
double sumy;
double sumy2; // sum of (y squared)
double sumxy; // sum of (x*y)
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool corr_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct corr_data* data;
if (args->arg_count != 2)
{
strcpy(message,"corr() requires two arguments");
return 1;
}
if (!(data = (struct corr_data*) malloc(sizeof(struct corr_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumy2 = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void corr_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
corr_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct corr_data* data = (struct corr_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumy2 = 0.0;
data->sumxy = 0.0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
corr_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct corr_data* data = (struct corr_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumx2 += xval*xval;
data->sumy2 += yval*yval;
data->sumxy += xval*yval;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double corr(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct corr_data* data = (struct corr_data*)initid->ptr;
double N = data->cnt;
if (N > 0)
{
double sumx = data->sumx;
double sumy = data->sumy;
double sumx2 = data->sumx2;
double sumy2 = data->sumy2;
double sumxy = data->sumxy;
double var_popx = (sumx2 - (sumx * sumx / N)) / N;
if (var_popx == 0)
{
// When var_popx is 0, NULL is the result.
*is_null = 1;
return 0;
}
double var_popy = (sumy2 - (sumy * sumy / N)) / N;
if (var_popy == 0)
{
// When var_popy is 0, 1 is the result
return 1;
}
double std_popx = sqrt(var_popx);
double std_popy = sqrt(var_popy);
double covar_pop = (sumxy - ((sumx * sumy) / N)) / N;
double corr = covar_pop / (std_popy * std_popx);
return corr;
}
*is_null = 1;
return 0;
}
//=======================================================================
/**
* regr_sxx
*/
struct regr_sxx_data
{
int64_t cnt;
double sumx;
double sumx2; // sum of (x squared)
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool regr_sxx_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_sxx_data* data;
if (args->arg_count != 2)
{
strcpy(message,"regr_sxx() requires two arguments");
return 1;
}
if (!(data = (struct regr_sxx_data*) malloc(sizeof(struct regr_sxx_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void regr_sxx_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_sxx_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_sxx_data* data = (struct regr_sxx_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_sxx_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_sxx_data* data = (struct regr_sxx_data*)initid->ptr;
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumx += xval;
data->sumx2 += xval*xval;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double regr_sxx(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct regr_sxx_data* data = (struct regr_sxx_data*)initid->ptr;
double N = data->cnt;
if (N > 0)
{
double sumx = data->sumx;
double sumx2 = data->sumx2;
double var_popx = (sumx2 - (sumx * sumx / N)) / N;
return data->cnt * var_popx;
}
*is_null = 1;
return 0;
}
//=======================================================================
/**
* regr_syy
*/
struct regr_syy_data
{
int64_t cnt;
double sumy;
double sumy2; // sum of (y squared)
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool regr_syy_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_syy_data* data;
if (args->arg_count != 2)
{
strcpy(message,"regr_syy() requires two arguments");
return 1;
}
if (!(data = (struct regr_syy_data*) malloc(sizeof(struct regr_syy_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumy = 0.0;
data->sumy2 = 0.0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void regr_syy_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_syy_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_syy_data* data = (struct regr_syy_data*)initid->ptr;
data->cnt = 0;
data->sumy = 0.0;
data->sumy2 = 0.0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_syy_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_syy_data* data = (struct regr_syy_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
data->sumy += yval;
data->sumy2 += yval*yval;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double regr_syy(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct regr_syy_data* data = (struct regr_syy_data*)initid->ptr;
double N = data->cnt;
if (N > 0)
{
double sumy = data->sumy;
double sumy2 = data->sumy2;
double var_popy = (sumy2 - (sumy * sumy / N)) / N;
return data->cnt * var_popy;
}
*is_null = 1;
return 0;
}
//=======================================================================
/**
* regr_sxy
*/
struct regr_sxy_data
{
int64_t cnt;
double sumx;
double sumy;
double sumxy; // sum of (x*y)
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool regr_sxy_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_sxy_data* data;
if (args->arg_count != 2)
{
strcpy(message,"regr_sxy() requires two arguments");
return 1;
}
if (!(data = (struct regr_sxy_data*) malloc(sizeof(struct regr_sxy_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void regr_sxy_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_sxy_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_sxy_data* data = (struct regr_sxy_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
regr_sxy_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_sxy_data* data = (struct regr_sxy_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumxy += xval*yval;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double regr_sxy(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct regr_sxy_data* data = (struct regr_sxy_data*)initid->ptr;
double N = data->cnt;
if (N > 0)
{
double sumx = data->sumx;
double sumy = data->sumy;
double sumxy = data->sumxy;
double covar_pop = (sumxy - ((sumx * sumy) / N)) / N;
return data->cnt * covar_pop;
}
*is_null = 1;
return 0;
}
//=======================================================================
/**
* covar_pop
*/
struct covar_pop_data
{
int64_t cnt;
double sumx;
double sumy;
double sumxy; // sum of (x*y)
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool covar_pop_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct covar_pop_data* data;
if (args->arg_count != 2)
{
strcpy(message,"covar_pop() requires two arguments");
return 1;
}
if (!(data = (struct covar_pop_data*) malloc(sizeof(struct covar_pop_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void covar_pop_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
covar_pop_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct covar_pop_data* data = (struct covar_pop_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
covar_pop_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct covar_pop_data* data = (struct covar_pop_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumxy += xval*yval;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double covar_pop(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct covar_pop_data* data = (struct covar_pop_data*)initid->ptr;
double N = data->cnt;
if (N > 0)
{
double sumx = data->sumx;
double sumy = data->sumy;
double sumxy = data->sumxy;
double covar_pop = (sumxy - ((sumx * sumy) / N)) / N;
return covar_pop;
}
*is_null = 1;
return 0;
}
//=======================================================================
/**
* covar_samp
*/
struct covar_samp_data
{
int64_t cnt;
double sumx;
double sumy;
double sumxy; // sum of (x*y)
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool covar_samp_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct covar_samp_data* data;
if (args->arg_count != 2)
{
strcpy(message,"covar_samp() requires two arguments");
return 1;
}
if (!(data = (struct covar_samp_data*) malloc(sizeof(struct covar_samp_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void covar_samp_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
covar_samp_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct covar_samp_data* data = (struct covar_samp_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
covar_samp_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct covar_samp_data* data = (struct covar_samp_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumxy += xval*yval;
++data->cnt;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
double covar_samp(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct covar_samp_data* data = (struct covar_samp_data*)initid->ptr;
double N = data->cnt;
if (N > 0)
{
double sumx = data->sumx;
double sumy = data->sumy;
double sumxy = data->sumxy;
double covar_samp = (sumxy - ((sumx * sumy) / N)) / (N-1);
return covar_samp;
}
*is_null = 1;
return 0;
}
}
// vim:ts=4 sw=4: