You've already forked mariadb-columnstore-engine
mirror of
https://github.com/mariadb-corporation/mariadb-columnstore-engine.git
synced 2025-08-14 11:01:50 +03:00
668 lines
19 KiB
C++
668 lines
19 KiB
C++
// (C) Copyright John Maddock 2006.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_MATH_TOOLS_REMEZ_HPP
|
|
#define BOOST_MATH_TOOLS_REMEZ_HPP
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma once
|
|
#endif
|
|
|
|
#include <boost/math/tools/solve.hpp>
|
|
#include <boost/math/tools/minima.hpp>
|
|
#include <boost/math/tools/roots.hpp>
|
|
#include <boost/math/tools/polynomial.hpp>
|
|
#include <boost/function/function1.hpp>
|
|
#include <boost/scoped_array.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/math/policies/policy.hpp>
|
|
|
|
namespace boost{ namespace math{ namespace tools{
|
|
|
|
namespace detail{
|
|
|
|
//
|
|
// The error function: the difference between F(x) and
|
|
// the current approximation. This is the function
|
|
// for which we must find the extema.
|
|
//
|
|
template <class T>
|
|
struct remez_error_function
|
|
{
|
|
typedef boost::function1<T, T const &> function_type;
|
|
public:
|
|
remez_error_function(
|
|
function_type f_,
|
|
const polynomial<T>& n,
|
|
const polynomial<T>& d,
|
|
bool rel_err)
|
|
: f(f_), numerator(n), denominator(d), rel_error(rel_err) {}
|
|
|
|
T operator()(const T& z)const
|
|
{
|
|
T y = f(z);
|
|
T abs = y - (numerator.evaluate(z) / denominator.evaluate(z));
|
|
T err;
|
|
if(rel_error)
|
|
{
|
|
if(y != 0)
|
|
err = abs / fabs(y);
|
|
else if(0 == abs)
|
|
{
|
|
// we must be at a root, or it's not recoverable:
|
|
BOOST_ASSERT(0 == abs);
|
|
err = 0;
|
|
}
|
|
else
|
|
{
|
|
// We have a divide by zero!
|
|
// Lets assume that f(x) is zero as a result of
|
|
// internal cancellation error that occurs as a result
|
|
// of shifting a root at point z to the origin so that
|
|
// the approximation can be "pinned" to pass through
|
|
// the origin: in that case it really
|
|
// won't matter what our approximation calculates here
|
|
// as long as it's a small number, return the absolute error:
|
|
err = abs;
|
|
}
|
|
}
|
|
else
|
|
err = abs;
|
|
return err;
|
|
}
|
|
private:
|
|
function_type f;
|
|
polynomial<T> numerator;
|
|
polynomial<T> denominator;
|
|
bool rel_error;
|
|
};
|
|
//
|
|
// This function adapts the error function so that it's minima
|
|
// are the extema of the error function. We can find the minima
|
|
// with standard techniques.
|
|
//
|
|
template <class T>
|
|
struct remez_max_error_function
|
|
{
|
|
remez_max_error_function(const remez_error_function<T>& f)
|
|
: func(f) {}
|
|
|
|
T operator()(const T& x)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
return -fabs(func(x));
|
|
}
|
|
private:
|
|
remez_error_function<T> func;
|
|
};
|
|
|
|
} // detail
|
|
|
|
template <class T>
|
|
class remez_minimax
|
|
{
|
|
public:
|
|
typedef boost::function1<T, T const &> function_type;
|
|
typedef boost::numeric::ublas::vector<T> vector_type;
|
|
typedef boost::numeric::ublas::matrix<T> matrix_type;
|
|
|
|
remez_minimax(function_type f, unsigned oN, unsigned oD, T a, T b, bool pin = true, bool rel_err = false, int sk = 0, int bits = 0);
|
|
remez_minimax(function_type f, unsigned oN, unsigned oD, T a, T b, bool pin, bool rel_err, int sk, int bits, const vector_type& points);
|
|
|
|
void reset(unsigned oN, unsigned oD, T a, T b, bool pin = true, bool rel_err = false, int sk = 0, int bits = 0);
|
|
void reset(unsigned oN, unsigned oD, T a, T b, bool pin, bool rel_err, int sk, int bits, const vector_type& points);
|
|
|
|
void set_brake(int b)
|
|
{
|
|
BOOST_ASSERT(b < 100);
|
|
BOOST_ASSERT(b >= 0);
|
|
m_brake = b;
|
|
}
|
|
|
|
T iterate();
|
|
|
|
polynomial<T> denominator()const;
|
|
polynomial<T> numerator()const;
|
|
|
|
vector_type const& chebyshev_points()const
|
|
{
|
|
return control_points;
|
|
}
|
|
|
|
vector_type const& zero_points()const
|
|
{
|
|
return zeros;
|
|
}
|
|
|
|
T error_term()const
|
|
{
|
|
return solution[solution.size() - 1];
|
|
}
|
|
T max_error()const
|
|
{
|
|
return m_max_error;
|
|
}
|
|
T max_change()const
|
|
{
|
|
return m_max_change;
|
|
}
|
|
void rotate()
|
|
{
|
|
--orderN;
|
|
++orderD;
|
|
}
|
|
void rescale(T a, T b)
|
|
{
|
|
T scale = (b - a) / (max - min);
|
|
for(unsigned i = 0; i < control_points.size(); ++i)
|
|
{
|
|
control_points[i] = (control_points[i] - min) * scale + a;
|
|
}
|
|
min = a;
|
|
max = b;
|
|
}
|
|
private:
|
|
|
|
void init_chebyshev();
|
|
|
|
function_type func; // The function to approximate.
|
|
vector_type control_points; // Current control points to be used for the next iteration.
|
|
vector_type solution; // Solution from the last iteration contains all unknowns including the error term.
|
|
vector_type zeros; // Location of points of zero error from last iteration, plus the two end points.
|
|
vector_type maxima; // Location of maxima of the error function, actually contains the control points used for the last iteration.
|
|
T m_max_error; // Maximum error found in last approximation.
|
|
T m_max_change; // Maximum change in location of control points after last iteration.
|
|
unsigned orderN; // Order of the numerator polynomial.
|
|
unsigned orderD; // Order of the denominator polynomial.
|
|
T min, max; // End points of the range to optimise over.
|
|
bool rel_error; // If true optimise for relative not absolute error.
|
|
bool pinned; // If true the approximation is "pinned" to go through the origin.
|
|
unsigned unknowns; // Total number of unknowns.
|
|
int m_precision; // Number of bits precision to which the zeros and maxima are found.
|
|
T m_max_change_history[2]; // Past history of changes to control points.
|
|
int m_brake; // amount to break by in percentage points.
|
|
int m_skew; // amount to skew starting points by in percentage points: -100-100
|
|
};
|
|
|
|
#ifndef BRAKE
|
|
#define BRAKE 0
|
|
#endif
|
|
#ifndef SKEW
|
|
#define SKEW 0
|
|
#endif
|
|
|
|
template <class T>
|
|
void remez_minimax<T>::init_chebyshev()
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
//
|
|
// Fill in the zeros:
|
|
//
|
|
unsigned terms = pinned ? orderD + orderN : orderD + orderN + 1;
|
|
|
|
for(unsigned i = 0; i < terms; ++i)
|
|
{
|
|
T cheb = cos((2 * terms - 1 - 2 * i) * constants::pi<T>() / (2 * terms));
|
|
cheb += 1;
|
|
cheb /= 2;
|
|
if(m_skew != 0)
|
|
{
|
|
T p = static_cast<T>(200 + m_skew) / 200;
|
|
cheb = pow(cheb, p);
|
|
}
|
|
cheb *= (max - min);
|
|
cheb += min;
|
|
zeros[i+1] = cheb;
|
|
}
|
|
zeros[0] = min;
|
|
zeros[unknowns] = max;
|
|
// perform a regular interpolation fit:
|
|
matrix_type A(terms, terms);
|
|
vector_type b(terms);
|
|
// fill in the y values:
|
|
for(unsigned i = 0; i < b.size(); ++i)
|
|
{
|
|
b[i] = func(zeros[i+1]);
|
|
}
|
|
// fill in powers of x evaluated at each of the control points:
|
|
unsigned offsetN = pinned ? 0 : 1;
|
|
unsigned offsetD = offsetN + orderN;
|
|
unsigned maxorder = (std::max)(orderN, orderD);
|
|
for(unsigned i = 0; i < b.size(); ++i)
|
|
{
|
|
T x0 = zeros[i+1];
|
|
T x = x0;
|
|
if(!pinned)
|
|
A(i, 0) = 1;
|
|
for(unsigned j = 0; j < maxorder; ++j)
|
|
{
|
|
if(j < orderN)
|
|
A(i, j + offsetN) = x;
|
|
if(j < orderD)
|
|
{
|
|
A(i, j + offsetD) = -x * b[i];
|
|
}
|
|
x *= x0;
|
|
}
|
|
}
|
|
//
|
|
// Now go ahead and solve the expression to get our solution:
|
|
//
|
|
vector_type l_solution = boost::math::tools::solve(A, b);
|
|
// need to add a "fake" error term:
|
|
l_solution.resize(unknowns);
|
|
l_solution[unknowns-1] = 0;
|
|
solution = l_solution;
|
|
//
|
|
// Now find all the extrema of the error function:
|
|
//
|
|
detail::remez_error_function<T> Err(func, this->numerator(), this->denominator(), rel_error);
|
|
detail::remez_max_error_function<T> Ex(Err);
|
|
m_max_error = 0;
|
|
int max_err_location = 0;
|
|
for(unsigned i = 0; i < unknowns; ++i)
|
|
{
|
|
std::pair<T, T> r = brent_find_minima(Ex, zeros[i], zeros[i+1], m_precision);
|
|
maxima[i] = r.first;
|
|
T rel_err = fabs(r.second);
|
|
if(rel_err > m_max_error)
|
|
{
|
|
m_max_error = fabs(r.second);
|
|
max_err_location = i;
|
|
}
|
|
}
|
|
control_points = maxima;
|
|
}
|
|
|
|
template <class T>
|
|
void remez_minimax<T>::reset(
|
|
unsigned oN,
|
|
unsigned oD,
|
|
T a,
|
|
T b,
|
|
bool pin,
|
|
bool rel_err,
|
|
int sk,
|
|
int bits)
|
|
{
|
|
control_points = vector_type(oN + oD + (pin ? 1 : 2));
|
|
solution = control_points;
|
|
zeros = vector_type(oN + oD + (pin ? 2 : 3));
|
|
maxima = control_points;
|
|
orderN = oN;
|
|
orderD = oD;
|
|
rel_error = rel_err;
|
|
pinned = pin;
|
|
m_skew = sk;
|
|
min = a;
|
|
max = b;
|
|
m_max_error = 0;
|
|
unknowns = orderN + orderD + (pinned ? 1 : 2);
|
|
// guess our initial control points:
|
|
control_points[0] = min;
|
|
control_points[unknowns - 1] = max;
|
|
T interval = (max - min) / (unknowns - 1);
|
|
T spot = min + interval;
|
|
for(unsigned i = 1; i < control_points.size(); ++i)
|
|
{
|
|
control_points[i] = spot;
|
|
spot += interval;
|
|
}
|
|
solution[unknowns - 1] = 0;
|
|
m_max_error = 0;
|
|
if(bits == 0)
|
|
{
|
|
// don't bother about more than float precision:
|
|
m_precision = (std::min)(24, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
|
|
}
|
|
else
|
|
{
|
|
// can't be more accurate than half the bits of T:
|
|
m_precision = (std::min)(bits, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
|
|
}
|
|
m_max_change_history[0] = m_max_change_history[1] = 1;
|
|
init_chebyshev();
|
|
// do one iteration whatever:
|
|
//iterate();
|
|
}
|
|
|
|
template <class T>
|
|
inline remez_minimax<T>::remez_minimax(
|
|
typename remez_minimax<T>::function_type f,
|
|
unsigned oN,
|
|
unsigned oD,
|
|
T a,
|
|
T b,
|
|
bool pin,
|
|
bool rel_err,
|
|
int sk,
|
|
int bits)
|
|
: func(f)
|
|
{
|
|
m_brake = 0;
|
|
reset(oN, oD, a, b, pin, rel_err, sk, bits);
|
|
}
|
|
|
|
template <class T>
|
|
void remez_minimax<T>::reset(
|
|
unsigned oN,
|
|
unsigned oD,
|
|
T a,
|
|
T b,
|
|
bool pin,
|
|
bool rel_err,
|
|
int sk,
|
|
int bits,
|
|
const vector_type& points)
|
|
{
|
|
control_points = vector_type(oN + oD + (pin ? 1 : 2));
|
|
solution = control_points;
|
|
zeros = vector_type(oN + oD + (pin ? 2 : 3));
|
|
maxima = control_points;
|
|
orderN = oN;
|
|
orderD = oD;
|
|
rel_error = rel_err;
|
|
pinned = pin;
|
|
m_skew = sk;
|
|
min = a;
|
|
max = b;
|
|
m_max_error = 0;
|
|
unknowns = orderN + orderD + (pinned ? 1 : 2);
|
|
control_points = points;
|
|
solution[unknowns - 1] = 0;
|
|
m_max_error = 0;
|
|
if(bits == 0)
|
|
{
|
|
// don't bother about more than float precision:
|
|
m_precision = (std::min)(24, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
|
|
}
|
|
else
|
|
{
|
|
// can't be more accurate than half the bits of T:
|
|
m_precision = (std::min)(bits, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
|
|
}
|
|
m_max_change_history[0] = m_max_change_history[1] = 1;
|
|
// do one iteration whatever:
|
|
//iterate();
|
|
}
|
|
|
|
template <class T>
|
|
inline remez_minimax<T>::remez_minimax(
|
|
typename remez_minimax<T>::function_type f,
|
|
unsigned oN,
|
|
unsigned oD,
|
|
T a,
|
|
T b,
|
|
bool pin,
|
|
bool rel_err,
|
|
int sk,
|
|
int bits,
|
|
const vector_type& points)
|
|
: func(f)
|
|
{
|
|
m_brake = 0;
|
|
reset(oN, oD, a, b, pin, rel_err, sk, bits, points);
|
|
}
|
|
|
|
template <class T>
|
|
T remez_minimax<T>::iterate()
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
matrix_type A(unknowns, unknowns);
|
|
vector_type b(unknowns);
|
|
|
|
// fill in evaluation of f(x) at each of the control points:
|
|
for(unsigned i = 0; i < b.size(); ++i)
|
|
{
|
|
// take care that none of our control points are at the origin:
|
|
if(pinned && (control_points[i] == 0))
|
|
{
|
|
if(i)
|
|
control_points[i] = control_points[i-1] / 3;
|
|
else
|
|
control_points[i] = control_points[i+1] / 3;
|
|
}
|
|
b[i] = func(control_points[i]);
|
|
}
|
|
|
|
T err_err;
|
|
unsigned convergence_count = 0;
|
|
do{
|
|
// fill in powers of x evaluated at each of the control points:
|
|
int sign = 1;
|
|
unsigned offsetN = pinned ? 0 : 1;
|
|
unsigned offsetD = offsetN + orderN;
|
|
unsigned maxorder = (std::max)(orderN, orderD);
|
|
T Elast = solution[unknowns - 1];
|
|
|
|
for(unsigned i = 0; i < b.size(); ++i)
|
|
{
|
|
T x0 = control_points[i];
|
|
T x = x0;
|
|
if(!pinned)
|
|
A(i, 0) = 1;
|
|
for(unsigned j = 0; j < maxorder; ++j)
|
|
{
|
|
if(j < orderN)
|
|
A(i, j + offsetN) = x;
|
|
if(j < orderD)
|
|
{
|
|
T mult = rel_error ? T(b[i] - sign * fabs(b[i]) * Elast): T(b[i] - sign * Elast);
|
|
A(i, j + offsetD) = -x * mult;
|
|
}
|
|
x *= x0;
|
|
}
|
|
// The last variable to be solved for is the error term,
|
|
// sign changes with each control point:
|
|
T E = rel_error ? T(sign * fabs(b[i])) : T(sign);
|
|
A(i, unknowns - 1) = E;
|
|
sign = -sign;
|
|
}
|
|
|
|
#ifdef BOOST_MATH_INSTRUMENT
|
|
for(unsigned i = 0; i < b.size(); ++i)
|
|
std::cout << b[i] << " ";
|
|
std::cout << "\n\n";
|
|
for(unsigned i = 0; i < b.size(); ++i)
|
|
{
|
|
for(unsigned j = 0; j < b.size(); ++ j)
|
|
std::cout << A(i, j) << " ";
|
|
std::cout << "\n";
|
|
}
|
|
std::cout << std::endl;
|
|
#endif
|
|
//
|
|
// Now go ahead and solve the expression to get our solution:
|
|
//
|
|
solution = boost::math::tools::solve(A, b);
|
|
|
|
err_err = (Elast != 0) ? T(fabs((fabs(solution[unknowns-1]) - fabs(Elast)) / fabs(Elast))) : T(1);
|
|
}while(orderD && (convergence_count++ < 80) && (err_err > 0.001));
|
|
|
|
//
|
|
// Perform a sanity check to verify that the solution to the equations
|
|
// is not so much in error as to be useless. The matrix inversion can
|
|
// be very close to singular, so this can be a real problem.
|
|
//
|
|
vector_type sanity = prod(A, solution);
|
|
for(unsigned i = 0; i < b.size(); ++i)
|
|
{
|
|
T err = fabs((b[i] - sanity[i]) / fabs(b[i]));
|
|
if(err > sqrt(epsilon<T>()))
|
|
{
|
|
std::cerr << "Sanity check failed: more than half the digits in the found solution are in error." << std::endl;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Next comes another sanity check, we want to verify that all the control
|
|
// points do actually alternate in sign, in practice we may have
|
|
// additional roots in the error function that cause this to fail.
|
|
// Failure here is always fatal: even though this code attempts to correct
|
|
// the problem it usually only postpones the inevitable.
|
|
//
|
|
polynomial<T> num, denom;
|
|
num = this->numerator();
|
|
denom = this->denominator();
|
|
T e1 = b[0] - num.evaluate(control_points[0]) / denom.evaluate(control_points[0]);
|
|
#ifdef BOOST_MATH_INSTRUMENT
|
|
std::cout << e1;
|
|
#endif
|
|
for(unsigned i = 1; i < b.size(); ++i)
|
|
{
|
|
T e2 = b[i] - num.evaluate(control_points[i]) / denom.evaluate(control_points[i]);
|
|
#ifdef BOOST_MATH_INSTRUMENT
|
|
std::cout << " " << e2;
|
|
#endif
|
|
if(e2 * e1 > 0)
|
|
{
|
|
std::cerr << std::flush << "Basic sanity check failed: Error term does not alternate in sign, non-recoverable error may follow..." << std::endl;
|
|
T perturbation = 0.05;
|
|
do{
|
|
T point = control_points[i] * (1 - perturbation) + control_points[i-1] * perturbation;
|
|
e2 = func(point) - num.evaluate(point) / denom.evaluate(point);
|
|
if(e2 * e1 < 0)
|
|
{
|
|
control_points[i] = point;
|
|
break;
|
|
}
|
|
perturbation += 0.05;
|
|
}while(perturbation < 0.8);
|
|
|
|
if((e2 * e1 > 0) && (i + 1 < b.size()))
|
|
{
|
|
perturbation = 0.05;
|
|
do{
|
|
T point = control_points[i] * (1 - perturbation) + control_points[i+1] * perturbation;
|
|
e2 = func(point) - num.evaluate(point) / denom.evaluate(point);
|
|
if(e2 * e1 < 0)
|
|
{
|
|
control_points[i] = point;
|
|
break;
|
|
}
|
|
perturbation += 0.05;
|
|
}while(perturbation < 0.8);
|
|
}
|
|
|
|
}
|
|
e1 = e2;
|
|
}
|
|
|
|
#ifdef BOOST_MATH_INSTRUMENT
|
|
for(unsigned i = 0; i < solution.size(); ++i)
|
|
std::cout << solution[i] << " ";
|
|
std::cout << std::endl << this->numerator() << std::endl;
|
|
std::cout << this->denominator() << std::endl;
|
|
std::cout << std::endl;
|
|
#endif
|
|
|
|
//
|
|
// The next step is to find all the intervals in which our maxima
|
|
// lie:
|
|
//
|
|
detail::remez_error_function<T> Err(func, this->numerator(), this->denominator(), rel_error);
|
|
zeros[0] = min;
|
|
zeros[unknowns] = max;
|
|
for(unsigned i = 1; i < control_points.size(); ++i)
|
|
{
|
|
eps_tolerance<T> tol(m_precision);
|
|
boost::uintmax_t max_iter = 1000;
|
|
std::pair<T, T> p = toms748_solve(
|
|
Err,
|
|
control_points[i-1],
|
|
control_points[i],
|
|
tol,
|
|
max_iter);
|
|
zeros[i] = (p.first + p.second) / 2;
|
|
//zeros[i] = bisect(Err, control_points[i-1], control_points[i], m_precision);
|
|
}
|
|
//
|
|
// Now find all the extrema of the error function:
|
|
//
|
|
detail::remez_max_error_function<T> Ex(Err);
|
|
m_max_error = 0;
|
|
int max_err_location = 0;
|
|
for(unsigned i = 0; i < unknowns; ++i)
|
|
{
|
|
std::pair<T, T> r = brent_find_minima(Ex, zeros[i], zeros[i+1], m_precision);
|
|
maxima[i] = r.first;
|
|
T rel_err = fabs(r.second);
|
|
if(rel_err > m_max_error)
|
|
{
|
|
m_max_error = fabs(r.second);
|
|
max_err_location = i;
|
|
}
|
|
}
|
|
//
|
|
// Almost done now! we just need to set our control points
|
|
// to the extrema, and calculate how much each point has changed
|
|
// (this will be our termination condition):
|
|
//
|
|
swap(control_points, maxima);
|
|
m_max_change = 0;
|
|
int max_change_location = 0;
|
|
for(unsigned i = 0; i < unknowns; ++i)
|
|
{
|
|
control_points[i] = (control_points[i] * (100 - m_brake) + maxima[i] * m_brake) / 100;
|
|
T change = fabs((control_points[i] - maxima[i]) / control_points[i]);
|
|
#if 0
|
|
if(change > m_max_change_history[1])
|
|
{
|
|
// divergence!!! try capping the change:
|
|
std::cerr << "Possible divergent step, change will be capped!!" << std::endl;
|
|
change = m_max_change_history[1];
|
|
if(control_points[i] < maxima[i])
|
|
control_points[i] = maxima[i] - change * maxima[i];
|
|
else
|
|
control_points[i] = maxima[i] + change * maxima[i];
|
|
}
|
|
#endif
|
|
if(change > m_max_change)
|
|
{
|
|
m_max_change = change;
|
|
max_change_location = i;
|
|
}
|
|
}
|
|
//
|
|
// store max change information:
|
|
//
|
|
m_max_change_history[0] = m_max_change_history[1];
|
|
m_max_change_history[1] = fabs(m_max_change);
|
|
|
|
return m_max_change;
|
|
}
|
|
|
|
template <class T>
|
|
polynomial<T> remez_minimax<T>::numerator()const
|
|
{
|
|
boost::scoped_array<T> a(new T[orderN + 1]);
|
|
if(pinned)
|
|
a[0] = 0;
|
|
unsigned terms = pinned ? orderN : orderN + 1;
|
|
for(unsigned i = 0; i < terms; ++i)
|
|
a[pinned ? i+1 : i] = solution[i];
|
|
return boost::math::tools::polynomial<T>(&a[0], orderN);
|
|
}
|
|
|
|
template <class T>
|
|
polynomial<T> remez_minimax<T>::denominator()const
|
|
{
|
|
unsigned terms = orderD + 1;
|
|
unsigned offsetD = pinned ? orderN : (orderN + 1);
|
|
boost::scoped_array<T> a(new T[terms]);
|
|
a[0] = 1;
|
|
for(unsigned i = 0; i < orderD; ++i)
|
|
a[i+1] = solution[i + offsetD];
|
|
return boost::math::tools::polynomial<T>(&a[0], orderD);
|
|
}
|
|
|
|
|
|
}}} // namespaces
|
|
|
|
#endif // BOOST_MATH_TOOLS_REMEZ_HPP
|
|
|
|
|
|
|