1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-11-03 17:13:17 +03:00
Files
mariadb-columnstore-engine/net-snmp/net-snmp-5.2.1.2/snmplib/int64.c
2016-01-06 14:08:59 -06:00

572 lines
13 KiB
C

/** file: test.c - test of 64-bit integer stuff
*
*
* 21-jan-1998: David Perkins <dperkins@dsperkins.com>
*
*/
#include <net-snmp/net-snmp-config.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#if HAVE_STRING_H
#include <string.h>
#else
#include <strings.h>
#endif
#if HAVE_WINSOCK_H
#include <winsock.h>
#endif
#include <net-snmp/types.h>
#include <net-snmp/library/int64.h>
#include <net-snmp/library/snmp_assert.h>
#include <net-snmp/library/snmp_debug.h>
#include <net-snmp/library/snmp_logging.h>
#define TRUE 1
#define FALSE 0
/** divBy10 - divide an unsigned 64-bit integer by 10
*
* call with:
* u64 - number to be divided
* pu64Q - location to store quotient
* puR - location to store remainder
*
*/
void
divBy10(U64 u64, U64 * pu64Q, unsigned int *puR)
{
unsigned long ulT;
unsigned long ulQ;
unsigned long ulR;
/*
* top 16 bits
*/
ulT = (u64.high >> 16) & 0x0ffff;
ulQ = ulT / 10;
ulR = ulT % 10;
pu64Q->high = ulQ << 16;
/*
* next 16
*/
ulT = (u64.high & 0x0ffff);
ulT += (ulR << 16);
ulQ = ulT / 10;
ulR = ulT % 10;
pu64Q->high = pu64Q->high | ulQ;
/*
* next 16
*/
ulT = ((u64.low >> 16) & 0x0ffff) + (ulR << 16);
ulQ = ulT / 10;
ulR = ulT % 10;
pu64Q->low = ulQ << 16;
/*
* final 16
*/
ulT = (u64.low & 0x0ffff);
ulT += (ulR << 16);
ulQ = ulT / 10;
ulR = ulT % 10;
pu64Q->low = pu64Q->low | ulQ;
*puR = (unsigned int) (ulR);
} /* divBy10 */
/** multBy10 - multiply an unsigned 64-bit integer by 10
*
* call with:
* u64 - number to be multiplied
* pu64P - location to store product
*
*/
void
multBy10(U64 u64, U64 * pu64P)
{
unsigned long ulT;
unsigned long ulP;
unsigned long ulK;
/*
* lower 16 bits
*/
ulT = u64.low & 0x0ffff;
ulP = ulT * 10;
ulK = ulP >> 16;
pu64P->low = ulP & 0x0ffff;
/*
* next 16
*/
ulT = (u64.low >> 16) & 0x0ffff;
ulP = (ulT * 10) + ulK;
ulK = ulP >> 16;
pu64P->low = (ulP & 0x0ffff) << 16 | pu64P->low;
/*
* next 16 bits
*/
ulT = u64.high & 0x0ffff;
ulP = (ulT * 10) + ulK;
ulK = ulP >> 16;
pu64P->high = ulP & 0x0ffff;
/*
* final 16
*/
ulT = (u64.high >> 16) & 0x0ffff;
ulP = (ulT * 10) + ulK;
ulK = ulP >> 16;
pu64P->high = (ulP & 0x0ffff) << 16 | pu64P->high;
} /* multBy10 */
/** incrByU16 - add an unsigned 16-bit int to an unsigned 64-bit integer
*
* call with:
* pu64 - number to be incremented
* u16 - amount to add
*
*/
void
incrByU16(U64 * pu64, unsigned int u16)
{
unsigned long ulT1;
unsigned long ulT2;
unsigned long ulR;
unsigned long ulK;
/*
* lower 16 bits
*/
ulT1 = pu64->low;
ulT2 = ulT1 & 0x0ffff;
ulR = ulT2 + u16;
ulK = ulR >> 16;
if (ulK == 0) {
pu64->low = ulT1 + u16;
return;
}
/*
* next 16 bits
*/
ulT2 = (ulT1 >> 16) & 0x0ffff;
ulR = ulT2 + 1;
ulK = ulR >> 16;
if (ulK == 0) {
pu64->low = ulT1 + u16;
return;
}
/*
* next 32 - ignore any overflow
*/
pu64->low = (ulT1 + u16) & 0x0FFFFFFFFL;
pu64->high++;
} /* incrByV16 */
void
incrByU32(U64 * pu64, unsigned int u32)
{
unsigned int tmp;
tmp = pu64->low;
pu64->low += u32;
if (pu64->low < tmp)
pu64->high++;
}
/**
* pu64out = pu64one - pu64two
*/
void
u64Subtract(const U64 * pu64one, const U64 * pu64two, U64 * pu64out)
{
if (pu64one->low < pu64two->low) {
pu64out->low = 0xffffffff - pu64two->low + pu64one->low + 1;
pu64out->high = pu64one->high - pu64two->high - 1;
} else {
pu64out->low = pu64one->low - pu64two->low;
pu64out->high = pu64one->high - pu64two->high;
}
}
/**
* pu64out += pu64one
*/
void
u64Incr(U64 * pu64out, const U64 * pu64one)
{
pu64out->high += pu64one->high;
incrByU32(pu64out, pu64one->low);
}
/**
* pu64out += (pu64one - pu64two)
*/
void
u64UpdateCounter(U64 * pu64out, const U64 * pu64one, const U64 * pu64two)
{
U64 tmp;
u64Subtract(pu64one, pu64two, &tmp);
u64Incr(pu64out, &tmp);
}
/**
* pu64one = pu64two
*/
void
u64Copy(U64 * pu64one, const U64 * pu64two)
{
pu64one->high = pu64two->high;
pu64one->low = pu64two->low;
}
/** zeroU64 - set an unsigned 64-bit number to zero
*
* call with:
* pu64 - number to be zero'ed
*
*/
void
zeroU64(U64 * pu64)
{
pu64->low = 0;
pu64->high = 0;
} /* zeroU64 */
/** isZeroU64 - check if an unsigned 64-bit number is
*
* call with:
* pu64 - number to be zero'ed
*
*/
int
isZeroU64(const U64 * pu64)
{
if ((pu64->low == 0) && (pu64->high == 0))
return (TRUE);
else
return (FALSE);
} /* isZeroU64 */
/**
* check the old and new values of a counter64 for 32bit wrapping
*
* @param adjust : set to 1 to auto-increment new_val->high
* if a 32bit wrap is detected.
*
*@Note:
* The old and new values must be be from within a time period
* which would only allow the 32bit portion of the counter to
* wrap once. i.e. if the 32bit portion of the counter could
* wrap every 60 seconds, the old and new values should be compared
* at least every 59 seconds (though I'd recommend at least every
* 50 seconds to allow for timer inaccuracies).
*
* @retval 64 : 64bit wrap
* @retval 32 : 32bit wrap
* @retval 0 : did not wrap
* @retval -1 : bad parameter
* @retval -2 : unexpected high value (changed by more than 1)
*/
int
netsnmp_c64_check_for_32bit_wrap(struct counter64 *old_val,
struct counter64 *new_val,
int adjust)
{
if( (NULL == old_val) || (NULL == new_val) )
return -1;
DEBUGMSGTL(("9:c64:check_wrap", "check wrap 0x%0x.0x%0x 0x%0x.0x%0x\n",
old_val->high, old_val->low, new_val->high, new_val->low));
/*
* check for wraps
*/
if ((new_val->low >= old_val->low) &&
(new_val->high == old_val->high)) {
DEBUGMSGTL(("9:c64:check_wrap", "no wrap\n"));
return 0;
}
/*
* low wrapped. did high change?
*/
if (new_val->high == old_val->high) {
DEBUGMSGTL(("c64:check_wrap", "32 bit wrap\n"));
if (adjust)
++new_val->high;
return 32;
}
else if ((new_val->high == (old_val->high + 1)) ||
((0 == new_val->high) && (0xffffffff == old_val->high))) {
DEBUGMSGTL(("c64:check_wrap", "64 bit wrap\n"));
return 64;
}
return -2;
}
/**
* update a 64 bit value with the difference between two (possibly) 32 bit vals
*
* @param prev_val : the 64 bit current counter
* @param old_prev_val : the (possibly 32 bit) previous value
* @param new_val : the (possible 32bit) new value
* @param need_wrap_check: pointer to integer indicating if wrap check is needed
* flag may be cleared if 64 bit counter is detected
*
*@Note:
* The old_prev_val and new_val values must be be from within a time
* period which would only allow the 32bit portion of the counter to
* wrap once. i.e. if the 32bit portion of the counter could
* wrap every 60 seconds, the old and new values should be compared
* at least every 59 seconds (though I'd recommend at least every
* 50 seconds to allow for timer inaccuracies).
*
* Suggested use:
*
* static needwrapcheck = 1;
* static counter64 current, prev_val, new_val;
*
* your_functions_to_update_new_value(&new_val);
* if (0 == needwrapcheck)
* memcpy(current, new_val, sizeof(new_val));
* else {
* netsnmp_c64_check32_and_update(&current,&new,&prev,&needwrapcheck);
* memcpy(prev_val, new_val, sizeof(new_val));
* }
*
*
* @retval 0 : success
* @retval -1 : error checking for 32 bit wrap
* @retval -2 : look like we have 64 bit values, but sums aren't consistent
*/
int
netsnmp_c64_check32_and_update(struct counter64 *prev_val, struct counter64 *new_val,
struct counter64 *old_prev_val, int *need_wrap_check)
{
int rc;
/*
* counters are 32bit or unknown (which we'll treat as 32bit).
* update the prev values with the difference between the
* new stats and the prev old_stats:
* prev->stats += (new->stats - prev->old_stats)
*/
if ((NULL == need_wrap_check) || (0 != *need_wrap_check)) {
rc = netsnmp_c64_check_for_32bit_wrap(old_prev_val,new_val, 1);
if (rc < 0) {
snmp_log(LOG_ERR,"c64 32 bit check failed\n");
return -1;
}
}
else
rc = 0;
/*
* update previous values
*/
(void) u64UpdateCounter(prev_val, new_val, old_prev_val);
/*
* if wrap check was 32 bit, undo adjust, now that prev is updated
*/
if (32 == rc) {
/*
* check wrap incremented high, so reset it. (Because having
* high set for a 32 bit counter will confuse us in the next update).
*/
netsnmp_assert(1 == new_val->high);
new_val->high = 0;
}
else if (64 == rc) {
/*
* if we really have 64 bit counters, the summing we've been
* doing for prev values should be equal to the new values.
*/
if ((prev_val->low != new_val->low) ||
(prev_val->high != new_val->high)) {
snmp_log(LOG_ERR, "looks like a 64bit wrap, but prev!=new\n");
return -2;
}
else if (NULL != need_wrap_check)
*need_wrap_check = 0;
}
return 0;
}
void
printU64(char *buf, /* char [I64CHARSZ+1]; */
const U64 * pu64) {
U64 u64a;
U64 u64b;
char aRes[I64CHARSZ + 1];
unsigned int u;
int j;
u64a.high = pu64->high;
u64a.low = pu64->low;
aRes[I64CHARSZ] = 0;
for (j = 0; j < I64CHARSZ; j++) {
divBy10(u64a, &u64b, &u);
aRes[(I64CHARSZ - 1) - j] = (char) ('0' + u);
u64a.high = u64b.high;
u64a.low = u64b.low;
if (isZeroU64(&u64a))
break;
}
strcpy(buf, &aRes[(I64CHARSZ - 1) - j]);
}
void
printI64(char *buf, /* char [I64CHARSZ+1]; */
const U64 * pu64) {
U64 u64a;
U64 u64b;
char aRes[I64CHARSZ + 1];
unsigned int u;
int j, sign = 0;
if (pu64->high & 0x80000000) {
u64a.high = ~pu64->high;
u64a.low = ~pu64->low;
sign = 1;
incrByU32(&u64a, 1); /* bit invert and incr by 1 to print 2s complement */
} else {
u64a.high = pu64->high;
u64a.low = pu64->low;
}
aRes[I64CHARSZ] = 0;
for (j = 0; j < I64CHARSZ; j++) {
divBy10(u64a, &u64b, &u);
aRes[(I64CHARSZ - 1) - j] = (char) ('0' + u);
u64a.high = u64b.high;
u64a.low = u64b.low;
if (isZeroU64(&u64a))
break;
}
if (sign == 1) {
aRes[(I64CHARSZ - 1) - j - 1] = '-';
strcpy(buf, &aRes[(I64CHARSZ - 1) - j - 1]);
return;
}
strcpy(buf, &aRes[(I64CHARSZ - 1) - j]);
}
int
read64(U64 * i64, const char *string)
{
U64 i64p;
unsigned int u;
int sign = 0;
int ok = 0;
zeroU64(i64);
if (*string == '-') {
sign = 1;
string++;
}
while (*string && isdigit(*string)) {
ok = 1;
u = *string - '0';
multBy10(*i64, &i64p);
memcpy(i64, &i64p, sizeof(i64p));
incrByU16(i64, u);
string++;
}
if (sign) {
i64->high = ~i64->high;
i64->low = ~i64->low;
incrByU16(i64, 1);
}
return ok;
}
#ifdef TESTING
void
main(int argc, char *argv[])
{
int i;
int j;
int l;
unsigned int u;
U64 u64a;
U64 u64b;
#define MXSZ 20
char aRes[MXSZ + 1];
if (argc < 2) {
printf("This program takes numbers from the command line\n"
"and prints them out.\n" "Usage: test <unsignedInt>...\n");
exit(1);
}
aRes[MXSZ] = 0;
for (i = 1; i < argc; i++) {
l = strlen(argv[i]);
zeroU64(&u64a);
for (j = 0; j < l; j++) {
if (!isdigit(argv[i][j])) {
printf("Argument is not a number \"%s\"\n", argv[i]);
exit(1);
}
u = argv[i][j] - '0';
multBy10(u64a, &u64b);
u64a = u64b;
incrByU16(&u64a, u);
}
printf("number \"%s\" in hex is '%08x%08x'h\n",
argv[i], u64a.high, u64a.low);
printf("number is \"%s\"\n", printU64(&u64a));
for (j = 0; j < MXSZ; j++) {
divBy10(u64a, &u64b, &u);
aRes[(MXSZ - 1) - j] = (char) ('0' + u);
u64a = u64b;
if (isZeroU64(&u64a))
break;
}
printf("number is \"%s\"\n", &aRes[(MXSZ - 1) - j]);
}
exit(0);
} /* main */
#endif /* TESTING */
/*
* file: test.c
*/