1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-04-21 19:45:56 +03:00

572 lines
19 KiB
C++

/* Copyright (C) 2014 InfiniDB, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; version 2 of
the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
/****************************************************************************
* $Id: func_bitwise.cpp 3616 2013-03-04 14:56:29Z rdempsey $
*
*
****************************************************************************/
#include <string>
using namespace std;
#include "functor_int.h"
#include "funchelpers.h"
#include "functioncolumn.h"
#include "predicateoperator.h"
using namespace execplan;
#include "rowgroup.h"
using namespace rowgroup;
#include "errorcodes.h"
#include "idberrorinfo.h"
#include "errorids.h"
using namespace logging;
#include "mcs_int64.h"
#include "mcs_decimal.h"
#include "dataconvert.h"
#include "numericliteral.h"
using namespace dataconvert;
namespace
{
using namespace funcexp;
bool validateBitOperandTypeOrError(execplan::FunctionColumn &col,
const Func & func,
uint argno)
{
auto & type = col.functionParms()[argno]->data()->resultType();
if (type.canReturnXInt64())
return false;
func.raiseIllegalParameterDataTypeError(type);
return true;
}
template<typename T>
datatypes::TUInt64Null ConvertToBitOperand(const T &val)
{
if (val > static_cast<T>(UINT64_MAX))
return datatypes::TUInt64Null(UINT64_MAX);
if (val >= 0)
return datatypes::TUInt64Null(static_cast<uint64_t>(val));
if (val < static_cast<T>(INT64_MIN))
return datatypes::TUInt64Null(static_cast<uint64_t>(INT64_MAX)+1);
return datatypes::TUInt64Null((uint64_t) (int64_t) val);
}
static
datatypes::TUInt64Null DecimalToBitOperand(Row& row,
const execplan::SPTP& parm,
const funcexp::Func& thisFunc)
{
bool tmpIsNull = false;
datatypes::Decimal d = parm->data()->getDecimalVal(row, tmpIsNull);
if (tmpIsNull)
return datatypes::TUInt64Null();
if (parm->data()->resultType().colWidth == datatypes::MAXDECIMALWIDTH)
{
int128_t val = d.getPosNegRoundedIntegralPart(0).getValue();
return ConvertToBitOperand<int128_t>(val);
}
return datatypes::TUInt64Null((uint64_t) d.decimal64ToSInt64Round());
}
// Functions TypeHolderStd::canReturnXInt64() and GenericToBitOperand()
// should be splitted eventually to virtual methods in TypeHandler.
//
// However, TypeHandler::getBitOperand() would seem to be too specific.
// It would be nice to have a more generic functionality in TypeHandler.
//
// Let's consider having something similar to MariaDB Longlong_hybrid,
// which holds a signed/unsigned 64bit value together with a sign flag.
// Having TypeHandler::getXInt64Hybrid() would be more useful:
// it can be reused for other purposes, not only for bitwise operations.
// @bug 4703 - the actual bug was only in the DATETIME case
// part of this statement below, but instead of leaving 5 identical
// copies of this code, extracted into a single utility function
// here. This same method is potentially useful in other methods
// and could be extracted into a utility class with its own header
// if that is the case - this is left as future exercise
datatypes::TUInt64Null GenericToBitOperand(
Row& row,
const execplan::SPTP& parm,
const funcexp::Func& thisFunc,
bool temporalRounding)
{
switch (parm->data()->resultType().colDataType)
{
case execplan::CalpontSystemCatalog::BIGINT:
case execplan::CalpontSystemCatalog::INT:
case execplan::CalpontSystemCatalog::MEDINT:
case execplan::CalpontSystemCatalog::TINYINT:
case execplan::CalpontSystemCatalog::SMALLINT:
{
datatypes::TSInt64Null tmp= parm->data()->toTSInt64Null(row);
return tmp.isNull() ? datatypes::TUInt64Null() :
datatypes::TUInt64Null((uint64_t) (int64_t) tmp);
}
case execplan::CalpontSystemCatalog::DOUBLE:
case execplan::CalpontSystemCatalog::FLOAT:
case execplan::CalpontSystemCatalog::UDOUBLE:
case execplan::CalpontSystemCatalog::UFLOAT:
{
bool tmpIsNull = false;
double val = parm->data()->getDoubleVal(row, tmpIsNull);
return tmpIsNull ? datatypes::TUInt64Null() :
ConvertToBitOperand<double>(round(val));
}
case execplan::CalpontSystemCatalog::UBIGINT:
case execplan::CalpontSystemCatalog::UINT:
case execplan::CalpontSystemCatalog::UMEDINT:
case execplan::CalpontSystemCatalog::UTINYINT:
case execplan::CalpontSystemCatalog::USMALLINT:
return parm->data()->toTUInt64Null(row);
case execplan::CalpontSystemCatalog::VARCHAR:
case execplan::CalpontSystemCatalog::CHAR:
case execplan::CalpontSystemCatalog::TEXT:
{
bool tmpIsNull = false;
const string& str = parm->data()->getStrVal(row, tmpIsNull);
if (tmpIsNull)
return datatypes::TUInt64Null();
datatypes::DataCondition cnverr;
literal::Converter<literal::SignedNumericLiteral> cnv(str, cnverr);
cnv.normalize();
return cnv.negative() ?
datatypes::TUInt64Null((uint64_t)cnv.toPackedSDecimal<int64_t>(0, cnverr)) :
datatypes::TUInt64Null(cnv.toPackedUDecimal<uint64_t>(0, cnverr));
}
case execplan::CalpontSystemCatalog::DECIMAL:
case execplan::CalpontSystemCatalog::UDECIMAL:
return DecimalToBitOperand(row, parm, thisFunc);
case execplan::CalpontSystemCatalog::DATE:
{
bool tmpIsNull = false;
int32_t time = parm->data()->getDateIntVal(row, tmpIsNull);
if (tmpIsNull)
return datatypes::TUInt64Null();
int64_t value = Date(time).convertToMySQLint();
return datatypes::TUInt64Null((uint64_t) value);
}
case execplan::CalpontSystemCatalog::DATETIME:
{
bool tmpIsNull = false;
int64_t time = parm->data()->getDatetimeIntVal(row, tmpIsNull);
if (tmpIsNull)
return datatypes::TUInt64Null();
// @bug 4703 - missing year when convering to int
DateTime dt(time);
int64_t value = dt.convertToMySQLint();
if (temporalRounding && dt.msecond >= 500000)
value++;
return datatypes::TUInt64Null((uint64_t) value);
}
case execplan::CalpontSystemCatalog::TIMESTAMP:
{
bool tmpIsNull = false;
int64_t time = parm->data()->getTimestampIntVal(row, tmpIsNull);
if (tmpIsNull)
return datatypes::TUInt64Null();
TimeStamp dt(time);
int64_t value = dt.convertToMySQLint(thisFunc.timeZone());
if (temporalRounding && dt.msecond >= 500000)
value++;
return datatypes::TUInt64Null((uint64_t) value);
}
case execplan::CalpontSystemCatalog::TIME:
{
bool tmpIsNull = false;
int64_t time = parm->data()->getTimeIntVal(row, tmpIsNull);
Time dt(time);
int64_t value = dt.convertToMySQLint();
if (temporalRounding && dt.msecond >= 500000)
value < 0 ? value-- : value++;
return datatypes::TUInt64Null((uint64_t) value);
}
default:
idbassert(0); // Not possible: checked during the preparation stage.
break;
}
return datatypes::TUInt64Null();
}
}
namespace funcexp
{
class BitOperandGeneric: public datatypes::TUInt64Null
{
public:
BitOperandGeneric() { }
BitOperandGeneric(Row& row,
const execplan::SPTP& parm,
const funcexp::Func& thisFunc)
:TUInt64Null(GenericToBitOperand(row, parm, thisFunc, true))
{ }
};
// The shift amount operand in MariaDB does not round temporal values
// when sql_mode=TIME_FRAC_ROUND is not set.
class BitOperandGenericShiftAmount: public datatypes::TUInt64Null
{
public:
BitOperandGenericShiftAmount() { }
BitOperandGenericShiftAmount(Row& row,
const execplan::SPTP& parm,
const funcexp::Func& thisFunc)
:TUInt64Null(GenericToBitOperand(row, parm, thisFunc, false))
{ }
};
// A functor to return NULL as a bitwise operation result.
// Used when an unexpected argument count
// is encounteded during the preparation step.
class Func_bitwise_null: public Func_BitOp
{
public:
Func_bitwise_null(): Func_BitOp("bitwise") { }
int64_t getIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& operationColType) override
{
isNull = true;
return 0;
}
};
bool Func_BitOp::validateArgCount(execplan::FunctionColumn &col, uint expected) const
{
static Func_bitwise_null return_null;
if (col.functionParms().size() == expected)
return false;
col.setFunctor(&return_null);
return true;
}
void Func_BitOp::setFunctorByParm(execplan::FunctionColumn &col,
const execplan::SPTP& parm,
Func_Int & return_uint64_from_uint64,
Func_Int & return_uint64_from_sint64,
Func_Int & return_uint64_generic) const
{
if (parm->data()->resultType().isUnsignedInteger())
col.setFunctor(&return_uint64_from_uint64);
else if (parm->data()->resultType().isSignedInteger())
col.setFunctor(&return_uint64_from_sint64);
else
col.setFunctor(&return_uint64_generic);
}
bool Func_BitOp::fixForBitShift(execplan::FunctionColumn &col,
Func_Int & return_uint64_from_uint64,
Func_Int & return_uint64_from_sint64,
Func_Int & return_uint64_generic) const
{
if (validateArgCount(col, 2))
return false;
// The functor detection is done using functionParms()[0] only.
// This is how MariaDB performs it.
setFunctorByParm(col, col.functionParms()[0],
return_uint64_from_uint64,
return_uint64_from_sint64,
return_uint64_generic);
return validateBitOperandTypeOrError(col, *this, 0) ||
validateBitOperandTypeOrError(col, *this, 1);
}
bool Func_BitOp::fixForBitOp2(execplan::FunctionColumn &col,
Func_Int & return_uint64_from_uint64_uint64,
Func_Int & return_uint64_from_sint64_sint64,
Func_Int & return_uint64_generic) const
{
if (validateArgCount(col, 2))
return false;
if (col.functionParms()[0]->data()->resultType().isUnsignedInteger() &&
col.functionParms()[1]->data()->resultType().isUnsignedInteger())
{
col.setFunctor(&return_uint64_from_uint64_uint64);
return false;
}
if (col.functionParms()[0]->data()->resultType().isSignedInteger() &&
col.functionParms()[1]->data()->resultType().isSignedInteger())
{
col.setFunctor(&return_uint64_from_sint64_sint64);
return false;
}
col.setFunctor(&return_uint64_generic);
return validateBitOperandTypeOrError(col, *this, 0) ||
validateBitOperandTypeOrError(col, *this, 1);
}
//
// BITAND
//
template<class TA, class TB>
class Func_bitand_return_uint64: public Func_bitand
{
public:
int64_t getIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& operationColType) override
{
idbassert(parm.size() == 2);
Arg2Lazy<TA, TB> args(row, parm, *this);
return (int64_t) (args.a & args.b).nullSafeValue(isNull);
}
};
bool Func_bitand::fix(execplan::FunctionColumn &col) const
{
static Func_bitand_return_uint64<ParmTUInt64, ParmTUInt64> return_uint64_from_uint64_uint64;
static Func_bitand_return_uint64<ParmTSInt64, ParmTSInt64> return_uint64_from_sint64_sint64;
static Func_bitand_return_uint64<BitOperandGeneric, BitOperandGeneric> return_uint64_generic;
return fixForBitOp2(col, return_uint64_from_uint64_uint64,
return_uint64_from_sint64_sint64,
return_uint64_generic);
}
//
// LEFT SHIFT
//
template<class TA>
class Func_leftshift_return_uint64: public Func_leftshift
{
public:
int64_t getIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& operationColType) override
{
idbassert(parm.size() == 2);
Arg2Eager<TA, BitOperandGenericShiftAmount> args(row, parm, *this);
return (int64_t) args.a.MariaDBShiftLeft(args.b).nullSafeValue(isNull);
}
};
bool Func_leftshift::fix(execplan::FunctionColumn &col) const
{
static Func_leftshift_return_uint64<ParmTUInt64> return_uint64_from_uint64;
static Func_leftshift_return_uint64<ParmTSInt64> return_uint64_from_sint64;
static Func_leftshift_return_uint64<BitOperandGeneric> return_uint64_generic;
return fixForBitShift(col, return_uint64_from_uint64,
return_uint64_from_sint64,
return_uint64_generic);
}
//
// RIGHT SHIFT
//
template<class TA>
class Func_rightshift_return_uint64: public Func_rightshift
{
public:
int64_t getIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& operationColType) override
{
idbassert(parm.size() == 2);
Arg2Eager<TA, BitOperandGenericShiftAmount> args(row, parm, *this);
return (int64_t) args.a.MariaDBShiftRight(args.b).nullSafeValue(isNull);
}
};
bool Func_rightshift::fix(execplan::FunctionColumn &col) const
{
static Func_rightshift_return_uint64<ParmTUInt64> return_uint64_from_uint64;
static Func_rightshift_return_uint64<ParmTSInt64> return_uint64_from_sint64;
static Func_rightshift_return_uint64<BitOperandGeneric> return_uint64_generic;
return fixForBitShift(col, return_uint64_from_uint64,
return_uint64_from_sint64,
return_uint64_generic);
}
//
// BIT OR
//
uint64_t Func_bitor::getUintVal(rowgroup::Row& row,
FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct)
{
return static_cast<uint64_t>(getIntVal(row, fp, isNull, op_ct));
}
template<class TA, class TB>
class Func_bitor_return_uint64: public Func_bitor
{
public:
int64_t getIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& operationColType) override
{
idbassert(parm.size() == 2);
Arg2Lazy<TA, TB> args(row, parm, *this);
return (int64_t) (args.a | args.b).nullSafeValue(isNull);
}
};
bool Func_bitor::fix(execplan::FunctionColumn &col) const
{
static Func_bitor_return_uint64<ParmTUInt64, ParmTUInt64> return_uint64_from_uint64_uint64;
static Func_bitor_return_uint64<ParmTSInt64, ParmTSInt64> return_uint64_from_sint64_sint64;
static Func_bitor_return_uint64<BitOperandGeneric, BitOperandGeneric> return_uint64_generic;
return fixForBitOp2(col, return_uint64_from_uint64_uint64,
return_uint64_from_sint64_sint64,
return_uint64_generic);
}
//
// BIT XOR
//
template<class TA, class TB>
class Func_bitxor_return_uint64: public Func_bitxor
{
public:
int64_t getIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& operationColType) override
{
idbassert(parm.size() == 2);
Arg2Eager<TA, TB> args(row, parm, *this);
return (int64_t) (args.a ^ args.b).nullSafeValue(isNull);
}
};
bool Func_bitxor::fix(execplan::FunctionColumn &col) const
{
static Func_bitxor_return_uint64<ParmTUInt64, ParmTUInt64> return_uint64_from_uint64_uint64;
static Func_bitxor_return_uint64<ParmTSInt64, ParmTSInt64> return_uint64_from_sint64_sint64;
static Func_bitxor_return_uint64<BitOperandGeneric, BitOperandGeneric> return_uint64_generic;
return fixForBitOp2(col, return_uint64_from_uint64_uint64,
return_uint64_from_sint64_sint64,
return_uint64_generic);
}
//
// BIT COUNT
//
inline int64_t bitCount(uint64_t val)
{
// Refer to Hacker's Delight Chapter 5
// for the bit counting algo used here
val = val - ((val >> 1) & 0x5555555555555555);
val = (val & 0x3333333333333333) + ((val >> 2) & 0x3333333333333333);
val = (val + (val >> 4)) & 0x0F0F0F0F0F0F0F0F;
val = val + (val >> 8);
val = val + (val >> 16);
val = val + (val >> 32);
return (int64_t)(val & 0x000000000000007F);
}
template<class TA>
class Func_bit_count_return_uint64: public Func_bit_count
{
public:
int64_t getIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& operationColType) override
{
idbassert(parm.size() == 1);
return bitCount((uint64_t) TA(row, parm[0], *this).nullSafeValue(isNull));
}
};
bool Func_bit_count::fix(execplan::FunctionColumn &col) const
{
static Func_bit_count_return_uint64<ParmTUInt64> return_uint64_from_uint64;
static Func_bit_count_return_uint64<ParmTSInt64> return_uint64_from_sint64;
static Func_bit_count_return_uint64<BitOperandGeneric> return_uint64_generic;
if (validateArgCount(col, 1))
return false;
setFunctorByParm(col, col.functionParms()[0],
return_uint64_from_uint64,
return_uint64_from_sint64,
return_uint64_generic);
return validateBitOperandTypeOrError(col, *this, 0);
}
} // namespace funcexp
// vim:ts=4 sw=4: