You've already forked mariadb-columnstore-engine
							
							
				mirror of
				https://github.com/mariadb-corporation/mariadb-columnstore-engine.git
				synced 2025-11-03 17:13:17 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			915 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			915 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*************************************************************************
 | 
						|
 *
 | 
						|
 * $Id: trionan.c 3790 2008-09-01 13:08:57Z veillard $
 | 
						|
 *
 | 
						|
 * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
 | 
						|
 *
 | 
						|
 * Permission to use, copy, modify, and distribute this software for any
 | 
						|
 * purpose with or without fee is hereby granted, provided that the above
 | 
						|
 * copyright notice and this permission notice appear in all copies.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
 | 
						|
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
 | 
						|
 * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
 | 
						|
 * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
 | 
						|
 *
 | 
						|
 ************************************************************************
 | 
						|
 *
 | 
						|
 * Functions to handle special quantities in floating-point numbers
 | 
						|
 * (that is, NaNs and infinity). They provide the capability to detect
 | 
						|
 * and fabricate special quantities.
 | 
						|
 *
 | 
						|
 * Although written to be as portable as possible, it can never be
 | 
						|
 * guaranteed to work on all platforms, as not all hardware supports
 | 
						|
 * special quantities.
 | 
						|
 *
 | 
						|
 * The approach used here (approximately) is to:
 | 
						|
 *
 | 
						|
 *   1. Use C99 functionality when available.
 | 
						|
 *   2. Use IEEE 754 bit-patterns if possible.
 | 
						|
 *   3. Use platform-specific techniques.
 | 
						|
 *
 | 
						|
 ************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
 * TODO:
 | 
						|
 *  o Put all the magic into trio_fpclassify_and_signbit(), and use this from
 | 
						|
 *    trio_isnan() etc.
 | 
						|
 */
 | 
						|
 | 
						|
/*************************************************************************
 | 
						|
 * Include files
 | 
						|
 */
 | 
						|
#include "triodef.h"
 | 
						|
#include "trionan.h"
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
#include <limits.h>
 | 
						|
#include <float.h>
 | 
						|
#if defined(TRIO_PLATFORM_UNIX)
 | 
						|
# include <signal.h>
 | 
						|
#endif
 | 
						|
#if defined(TRIO_COMPILER_DECC)
 | 
						|
#  if defined(__linux__)
 | 
						|
#   include <cpml.h>
 | 
						|
#  else
 | 
						|
#   include <fp_class.h>
 | 
						|
#  endif
 | 
						|
#endif
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
#if defined(TRIO_DOCUMENTATION)
 | 
						|
# include "doc/doc_nan.h"
 | 
						|
#endif
 | 
						|
/** @addtogroup SpecialQuantities
 | 
						|
    @{
 | 
						|
*/
 | 
						|
 | 
						|
/*************************************************************************
 | 
						|
 * Definitions
 | 
						|
 */
 | 
						|
 | 
						|
#define TRIO_TRUE (1 == 1)
 | 
						|
#define TRIO_FALSE (0 == 1)
 | 
						|
 | 
						|
/*
 | 
						|
 * We must enable IEEE floating-point on Alpha
 | 
						|
 */
 | 
						|
#if defined(__alpha) && !defined(_IEEE_FP)
 | 
						|
# if defined(TRIO_COMPILER_DECC)
 | 
						|
#  if defined(TRIO_PLATFORM_VMS)
 | 
						|
#   error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
 | 
						|
#  else
 | 
						|
#   if !defined(_CFE)
 | 
						|
#    error "Must be compiled with option -ieee"
 | 
						|
#   endif
 | 
						|
#  endif
 | 
						|
# elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
 | 
						|
#  error "Must be compiled with option -mieee"
 | 
						|
# endif
 | 
						|
#endif /* __alpha && ! _IEEE_FP */
 | 
						|
 | 
						|
/*
 | 
						|
 * In ANSI/IEEE 754-1985 64-bits double format numbers have the
 | 
						|
 * following properties (amoungst others)
 | 
						|
 *
 | 
						|
 *   o FLT_RADIX == 2: binary encoding
 | 
						|
 *   o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
 | 
						|
 *     to indicate special numbers (e.g. NaN and Infinity), so the
 | 
						|
 *     maximum exponent is 10 bits wide (2^10 == 1024).
 | 
						|
 *   o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
 | 
						|
 *     numbers are normalized the initial binary 1 is represented
 | 
						|
 *     implicitly (the so-called "hidden bit"), which leaves us with
 | 
						|
 *     the ability to represent 53 bits wide mantissa.
 | 
						|
 */
 | 
						|
#if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
 | 
						|
# define USE_IEEE_754
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*************************************************************************
 | 
						|
 * Constants
 | 
						|
 */
 | 
						|
 | 
						|
static TRIO_CONST char rcsid[] = "@(#)$Id: trionan.c 3790 2008-09-01 13:08:57Z veillard $";
 | 
						|
 | 
						|
#if defined(USE_IEEE_754)
 | 
						|
 | 
						|
/*
 | 
						|
 * Endian-agnostic indexing macro.
 | 
						|
 *
 | 
						|
 * The value of internalEndianMagic, when converted into a 64-bit
 | 
						|
 * integer, becomes 0x0706050403020100 (we could have used a 64-bit
 | 
						|
 * integer value instead of a double, but not all platforms supports
 | 
						|
 * that type). The value is automatically encoded with the correct
 | 
						|
 * endianess by the compiler, which means that we can support any
 | 
						|
 * kind of endianess. The individual bytes are then used as an index
 | 
						|
 * for the IEEE 754 bit-patterns and masks.
 | 
						|
 */
 | 
						|
#define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
 | 
						|
 | 
						|
#if (defined(__BORLANDC__) && __BORLANDC__ >= 0x0590)
 | 
						|
static TRIO_CONST double internalEndianMagic = 7.949928895127362e-275;
 | 
						|
#else
 | 
						|
static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
 | 
						|
#endif
 | 
						|
 | 
						|
/* Mask for the exponent */
 | 
						|
static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
 | 
						|
  0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | 
						|
};
 | 
						|
 | 
						|
/* Mask for the mantissa */
 | 
						|
static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
 | 
						|
  0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
 | 
						|
};
 | 
						|
 | 
						|
/* Mask for the sign bit */
 | 
						|
static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
 | 
						|
  0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | 
						|
};
 | 
						|
 | 
						|
/* Bit-pattern for negative zero */
 | 
						|
static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
 | 
						|
  0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | 
						|
};
 | 
						|
 | 
						|
/* Bit-pattern for infinity */
 | 
						|
static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
 | 
						|
  0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | 
						|
};
 | 
						|
 | 
						|
/* Bit-pattern for quiet NaN */
 | 
						|
static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
 | 
						|
  0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*************************************************************************
 | 
						|
 * Functions
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * trio_make_double
 | 
						|
 */
 | 
						|
TRIO_PRIVATE double
 | 
						|
trio_make_double
 | 
						|
TRIO_ARGS1((values),
 | 
						|
	   TRIO_CONST unsigned char *values)
 | 
						|
{
 | 
						|
  TRIO_VOLATILE double result;
 | 
						|
  int i;
 | 
						|
 | 
						|
  for (i = 0; i < (int)sizeof(double); i++) {
 | 
						|
    ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * trio_is_special_quantity
 | 
						|
 */
 | 
						|
TRIO_PRIVATE int
 | 
						|
trio_is_special_quantity
 | 
						|
TRIO_ARGS2((number, has_mantissa),
 | 
						|
	   double number,
 | 
						|
	   int *has_mantissa)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
  unsigned char current;
 | 
						|
  int is_special_quantity = TRIO_TRUE;
 | 
						|
 | 
						|
  *has_mantissa = 0;
 | 
						|
 | 
						|
  for (i = 0; i < (unsigned int)sizeof(double); i++) {
 | 
						|
    current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
 | 
						|
    is_special_quantity
 | 
						|
      &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
 | 
						|
    *has_mantissa |= (current & ieee_754_mantissa_mask[i]);
 | 
						|
  }
 | 
						|
  return is_special_quantity;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * trio_is_negative
 | 
						|
 */
 | 
						|
TRIO_PRIVATE int
 | 
						|
trio_is_negative
 | 
						|
TRIO_ARGS1((number),
 | 
						|
	   double number)
 | 
						|
{
 | 
						|
  unsigned int i;
 | 
						|
  int is_negative = TRIO_FALSE;
 | 
						|
 | 
						|
  for (i = 0; i < (unsigned int)sizeof(double); i++) {
 | 
						|
    is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
 | 
						|
		    & ieee_754_sign_mask[i]);
 | 
						|
  }
 | 
						|
  return is_negative;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* USE_IEEE_754 */
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
   Generate negative zero.
 | 
						|
 | 
						|
   @return Floating-point representation of negative zero.
 | 
						|
*/
 | 
						|
TRIO_PUBLIC double
 | 
						|
trio_nzero(TRIO_NOARGS)
 | 
						|
{
 | 
						|
#if defined(USE_IEEE_754)
 | 
						|
  return trio_make_double(ieee_754_negzero_array);
 | 
						|
#else
 | 
						|
  TRIO_VOLATILE double zero = 0.0;
 | 
						|
 | 
						|
  return -zero;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
   Generate positive infinity.
 | 
						|
 | 
						|
   @return Floating-point representation of positive infinity.
 | 
						|
*/
 | 
						|
TRIO_PUBLIC double
 | 
						|
trio_pinf(TRIO_NOARGS)
 | 
						|
{
 | 
						|
  /* Cache the result */
 | 
						|
  static double result = 0.0;
 | 
						|
 | 
						|
  if (result == 0.0) {
 | 
						|
    
 | 
						|
#if defined(INFINITY) && defined(__STDC_IEC_559__)
 | 
						|
    result = (double)INFINITY;
 | 
						|
 | 
						|
#elif defined(USE_IEEE_754)
 | 
						|
    result = trio_make_double(ieee_754_infinity_array);
 | 
						|
 | 
						|
#else
 | 
						|
    /*
 | 
						|
     * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
 | 
						|
     * as infinity. Otherwise we have to resort to an overflow
 | 
						|
     * operation to generate infinity.
 | 
						|
     */
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
    void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
 | 
						|
# endif
 | 
						|
 | 
						|
    result = HUGE_VAL;
 | 
						|
    if (HUGE_VAL == DBL_MAX) {
 | 
						|
      /* Force overflow */
 | 
						|
      result += HUGE_VAL;
 | 
						|
    }
 | 
						|
    
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
    signal(SIGFPE, signal_handler);
 | 
						|
# endif
 | 
						|
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
   Generate negative infinity.
 | 
						|
 | 
						|
   @return Floating-point value of negative infinity.
 | 
						|
*/
 | 
						|
TRIO_PUBLIC double
 | 
						|
trio_ninf(TRIO_NOARGS)
 | 
						|
{
 | 
						|
  static double result = 0.0;
 | 
						|
 | 
						|
  if (result == 0.0) {
 | 
						|
    /*
 | 
						|
     * Negative infinity is calculated by negating positive infinity,
 | 
						|
     * which can be done because it is legal to do calculations on
 | 
						|
     * infinity (for example,  1 / infinity == 0).
 | 
						|
     */
 | 
						|
    result = -trio_pinf();
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
   Generate NaN.
 | 
						|
 | 
						|
   @return Floating-point representation of NaN.
 | 
						|
*/
 | 
						|
TRIO_PUBLIC double
 | 
						|
trio_nan(TRIO_NOARGS)
 | 
						|
{
 | 
						|
  /* Cache the result */
 | 
						|
  static double result = 0.0;
 | 
						|
 | 
						|
  if (result == 0.0) {
 | 
						|
    
 | 
						|
#if defined(TRIO_COMPILER_SUPPORTS_C99)
 | 
						|
    result = nan("");
 | 
						|
 | 
						|
#elif defined(NAN) && defined(__STDC_IEC_559__)
 | 
						|
    result = (double)NAN;
 | 
						|
  
 | 
						|
#elif defined(USE_IEEE_754)
 | 
						|
    result = trio_make_double(ieee_754_qnan_array);
 | 
						|
 | 
						|
#else
 | 
						|
    /*
 | 
						|
     * There are several ways to generate NaN. The one used here is
 | 
						|
     * to divide infinity by infinity. I would have preferred to add
 | 
						|
     * negative infinity to positive infinity, but that yields wrong
 | 
						|
     * result (infinity) on FreeBSD.
 | 
						|
     *
 | 
						|
     * This may fail if the hardware does not support NaN, or if
 | 
						|
     * the Invalid Operation floating-point exception is unmasked.
 | 
						|
     */
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
    void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
 | 
						|
# endif
 | 
						|
    
 | 
						|
    result = trio_pinf() / trio_pinf();
 | 
						|
    
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
    signal(SIGFPE, signal_handler);
 | 
						|
# endif
 | 
						|
    
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
   Check for NaN.
 | 
						|
 | 
						|
   @param number An arbitrary floating-point number.
 | 
						|
   @return Boolean value indicating whether or not the number is a NaN.
 | 
						|
*/
 | 
						|
TRIO_PUBLIC int
 | 
						|
trio_isnan
 | 
						|
TRIO_ARGS1((number),
 | 
						|
	   double number)
 | 
						|
{
 | 
						|
#if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
 | 
						|
 || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
 | 
						|
  /*
 | 
						|
   * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
 | 
						|
   * function. This function was already present in XPG4, but this
 | 
						|
   * is a bit tricky to detect with compiler defines, so we choose
 | 
						|
   * the conservative approach and only use it for UNIX95.
 | 
						|
   */
 | 
						|
  return isnan(number);
 | 
						|
  
 | 
						|
#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
 | 
						|
  /*
 | 
						|
   * Microsoft Visual C++ and Borland C++ Builder have an _isnan()
 | 
						|
   * function.
 | 
						|
   */
 | 
						|
  return _isnan(number) ? TRIO_TRUE : TRIO_FALSE;
 | 
						|
 | 
						|
#elif defined(USE_IEEE_754)
 | 
						|
  /*
 | 
						|
   * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
 | 
						|
   * pattern, and a non-empty mantissa.
 | 
						|
   */
 | 
						|
  int has_mantissa;
 | 
						|
  int is_special_quantity;
 | 
						|
 | 
						|
  is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
 | 
						|
  
 | 
						|
  return (is_special_quantity && has_mantissa);
 | 
						|
  
 | 
						|
#else
 | 
						|
  /*
 | 
						|
   * Fallback solution
 | 
						|
   */
 | 
						|
  int status;
 | 
						|
  double integral, fraction;
 | 
						|
  
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
  void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
 | 
						|
# endif
 | 
						|
  
 | 
						|
  status = (/*
 | 
						|
	     * NaN is the only number which does not compare to itself
 | 
						|
	     */
 | 
						|
	    ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) ||
 | 
						|
	    /*
 | 
						|
	     * Fallback solution if NaN compares to NaN
 | 
						|
	     */
 | 
						|
	    ((number != 0.0) &&
 | 
						|
	     (fraction = modf(number, &integral),
 | 
						|
	      integral == fraction)));
 | 
						|
  
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
  signal(SIGFPE, signal_handler);
 | 
						|
# endif
 | 
						|
  
 | 
						|
  return status;
 | 
						|
  
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
   Check for infinity.
 | 
						|
 | 
						|
   @param number An arbitrary floating-point number.
 | 
						|
   @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
 | 
						|
*/
 | 
						|
TRIO_PUBLIC int
 | 
						|
trio_isinf
 | 
						|
TRIO_ARGS1((number),
 | 
						|
	   double number)
 | 
						|
{
 | 
						|
#if defined(TRIO_COMPILER_DECC) && !defined(__linux__)
 | 
						|
  /*
 | 
						|
   * DECC has an isinf() macro, but it works differently than that
 | 
						|
   * of C99, so we use the fp_class() function instead.
 | 
						|
   */
 | 
						|
  return ((fp_class(number) == FP_POS_INF)
 | 
						|
	  ? 1
 | 
						|
	  : ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
 | 
						|
 | 
						|
#elif defined(isinf)
 | 
						|
  /*
 | 
						|
   * C99 defines isinf() as a macro.
 | 
						|
   */
 | 
						|
  return isinf(number)
 | 
						|
    ? ((number > 0.0) ? 1 : -1)
 | 
						|
    : 0;
 | 
						|
  
 | 
						|
#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
 | 
						|
  /*
 | 
						|
   * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
 | 
						|
   * function that can be used to detect infinity.
 | 
						|
   */
 | 
						|
  return ((_fpclass(number) == _FPCLASS_PINF)
 | 
						|
	  ? 1
 | 
						|
	  : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
 | 
						|
 | 
						|
#elif defined(USE_IEEE_754)
 | 
						|
  /*
 | 
						|
   * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
 | 
						|
   * pattern, and an empty mantissa.
 | 
						|
   */
 | 
						|
  int has_mantissa;
 | 
						|
  int is_special_quantity;
 | 
						|
 | 
						|
  is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
 | 
						|
  
 | 
						|
  return (is_special_quantity && !has_mantissa)
 | 
						|
    ? ((number < 0.0) ? -1 : 1)
 | 
						|
    : 0;
 | 
						|
 | 
						|
#else
 | 
						|
  /*
 | 
						|
   * Fallback solution.
 | 
						|
   */
 | 
						|
  int status;
 | 
						|
  
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
  void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
 | 
						|
# endif
 | 
						|
  
 | 
						|
  double infinity = trio_pinf();
 | 
						|
  
 | 
						|
  status = ((number == infinity)
 | 
						|
	    ? 1
 | 
						|
	    : ((number == -infinity) ? -1 : 0));
 | 
						|
  
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
  signal(SIGFPE, signal_handler);
 | 
						|
# endif
 | 
						|
  
 | 
						|
  return status;
 | 
						|
  
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
	/* Temporary fix - this routine is not used anywhere */
 | 
						|
/**
 | 
						|
   Check for finity.
 | 
						|
 | 
						|
   @param number An arbitrary floating-point number.
 | 
						|
   @return Boolean value indicating whether or not the number is a finite.
 | 
						|
*/
 | 
						|
TRIO_PUBLIC int
 | 
						|
trio_isfinite
 | 
						|
TRIO_ARGS1((number),
 | 
						|
	   double number)
 | 
						|
{
 | 
						|
#if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
 | 
						|
  /*
 | 
						|
   * C99 defines isfinite() as a macro.
 | 
						|
   */
 | 
						|
  return isfinite(number);
 | 
						|
  
 | 
						|
#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
 | 
						|
  /*
 | 
						|
   * Microsoft Visual C++ and Borland C++ Builder use _finite().
 | 
						|
   */
 | 
						|
  return _finite(number);
 | 
						|
 | 
						|
#elif defined(USE_IEEE_754)
 | 
						|
  /*
 | 
						|
   * Examine IEEE 754 bit-pattern. For finity we do not care about the
 | 
						|
   * mantissa.
 | 
						|
   */
 | 
						|
  int dummy;
 | 
						|
 | 
						|
  return (! trio_is_special_quantity(number, &dummy));
 | 
						|
 | 
						|
#else
 | 
						|
  /*
 | 
						|
   * Fallback solution.
 | 
						|
   */
 | 
						|
  return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
 | 
						|
  
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * The sign of NaN is always false
 | 
						|
 */
 | 
						|
TRIO_PUBLIC int
 | 
						|
trio_fpclassify_and_signbit
 | 
						|
TRIO_ARGS2((number, is_negative),
 | 
						|
	   double number,
 | 
						|
	   int *is_negative)
 | 
						|
{
 | 
						|
#if defined(fpclassify) && defined(signbit)
 | 
						|
  /*
 | 
						|
   * C99 defines fpclassify() and signbit() as a macros
 | 
						|
   */
 | 
						|
  *is_negative = signbit(number);
 | 
						|
  switch (fpclassify(number)) {
 | 
						|
  case FP_NAN:
 | 
						|
    return TRIO_FP_NAN;
 | 
						|
  case FP_INFINITE:
 | 
						|
    return TRIO_FP_INFINITE;
 | 
						|
  case FP_SUBNORMAL:
 | 
						|
    return TRIO_FP_SUBNORMAL;
 | 
						|
  case FP_ZERO:
 | 
						|
    return TRIO_FP_ZERO;
 | 
						|
  default:
 | 
						|
    return TRIO_FP_NORMAL;
 | 
						|
  }
 | 
						|
 | 
						|
#else
 | 
						|
# if defined(TRIO_COMPILER_DECC)
 | 
						|
  /*
 | 
						|
   * DECC has an fp_class() function.
 | 
						|
   */
 | 
						|
#  define TRIO_FPCLASSIFY(n) fp_class(n)
 | 
						|
#  define TRIO_QUIET_NAN FP_QNAN
 | 
						|
#  define TRIO_SIGNALLING_NAN FP_SNAN
 | 
						|
#  define TRIO_POSITIVE_INFINITY FP_POS_INF
 | 
						|
#  define TRIO_NEGATIVE_INFINITY FP_NEG_INF
 | 
						|
#  define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
 | 
						|
#  define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
 | 
						|
#  define TRIO_POSITIVE_ZERO FP_POS_ZERO
 | 
						|
#  define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
 | 
						|
#  define TRIO_POSITIVE_NORMAL FP_POS_NORM
 | 
						|
#  define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
 | 
						|
  
 | 
						|
# elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
 | 
						|
  /*
 | 
						|
   * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
 | 
						|
   * function.
 | 
						|
   */
 | 
						|
#  define TRIO_FPCLASSIFY(n) _fpclass(n)
 | 
						|
#  define TRIO_QUIET_NAN _FPCLASS_QNAN
 | 
						|
#  define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
 | 
						|
#  define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
 | 
						|
#  define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
 | 
						|
#  define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
 | 
						|
#  define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
 | 
						|
#  define TRIO_POSITIVE_ZERO _FPCLASS_PZ
 | 
						|
#  define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
 | 
						|
#  define TRIO_POSITIVE_NORMAL _FPCLASS_PN
 | 
						|
#  define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
 | 
						|
  
 | 
						|
# elif defined(FP_PLUS_NORM)
 | 
						|
  /*
 | 
						|
   * HP-UX 9.x and 10.x have an fpclassify() function, that is different
 | 
						|
   * from the C99 fpclassify() macro supported on HP-UX 11.x.
 | 
						|
   *
 | 
						|
   * AIX has class() for C, and _class() for C++, which returns the
 | 
						|
   * same values as the HP-UX fpclassify() function.
 | 
						|
   */
 | 
						|
#  if defined(TRIO_PLATFORM_AIX)
 | 
						|
#   if defined(__cplusplus)
 | 
						|
#    define TRIO_FPCLASSIFY(n) _class(n)
 | 
						|
#   else
 | 
						|
#    define TRIO_FPCLASSIFY(n) class(n)
 | 
						|
#   endif
 | 
						|
#  else
 | 
						|
#   define TRIO_FPCLASSIFY(n) fpclassify(n)
 | 
						|
#  endif
 | 
						|
#  define TRIO_QUIET_NAN FP_QNAN
 | 
						|
#  define TRIO_SIGNALLING_NAN FP_SNAN
 | 
						|
#  define TRIO_POSITIVE_INFINITY FP_PLUS_INF
 | 
						|
#  define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
 | 
						|
#  define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
 | 
						|
#  define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
 | 
						|
#  define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
 | 
						|
#  define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
 | 
						|
#  define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
 | 
						|
#  define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
 | 
						|
# endif
 | 
						|
 | 
						|
# if defined(TRIO_FPCLASSIFY)
 | 
						|
  switch (TRIO_FPCLASSIFY(number)) {
 | 
						|
  case TRIO_QUIET_NAN:
 | 
						|
  case TRIO_SIGNALLING_NAN:
 | 
						|
    *is_negative = TRIO_FALSE; /* NaN has no sign */
 | 
						|
    return TRIO_FP_NAN;
 | 
						|
  case TRIO_POSITIVE_INFINITY:
 | 
						|
    *is_negative = TRIO_FALSE;
 | 
						|
    return TRIO_FP_INFINITE;
 | 
						|
  case TRIO_NEGATIVE_INFINITY:
 | 
						|
    *is_negative = TRIO_TRUE;
 | 
						|
    return TRIO_FP_INFINITE;
 | 
						|
  case TRIO_POSITIVE_SUBNORMAL:
 | 
						|
    *is_negative = TRIO_FALSE;
 | 
						|
    return TRIO_FP_SUBNORMAL;
 | 
						|
  case TRIO_NEGATIVE_SUBNORMAL:
 | 
						|
    *is_negative = TRIO_TRUE;
 | 
						|
    return TRIO_FP_SUBNORMAL;
 | 
						|
  case TRIO_POSITIVE_ZERO:
 | 
						|
    *is_negative = TRIO_FALSE;
 | 
						|
    return TRIO_FP_ZERO;
 | 
						|
  case TRIO_NEGATIVE_ZERO:
 | 
						|
    *is_negative = TRIO_TRUE;
 | 
						|
    return TRIO_FP_ZERO;
 | 
						|
  case TRIO_POSITIVE_NORMAL:
 | 
						|
    *is_negative = TRIO_FALSE;
 | 
						|
    return TRIO_FP_NORMAL;
 | 
						|
  case TRIO_NEGATIVE_NORMAL:
 | 
						|
    *is_negative = TRIO_TRUE;
 | 
						|
    return TRIO_FP_NORMAL;
 | 
						|
  default:
 | 
						|
    /* Just in case... */
 | 
						|
    *is_negative = (number < 0.0);
 | 
						|
    return TRIO_FP_NORMAL;
 | 
						|
  }
 | 
						|
  
 | 
						|
# else
 | 
						|
  /*
 | 
						|
   * Fallback solution.
 | 
						|
   */
 | 
						|
  int rc;
 | 
						|
  
 | 
						|
  if (number == 0.0) {
 | 
						|
    /*
 | 
						|
     * In IEEE 754 the sign of zero is ignored in comparisons, so we
 | 
						|
     * have to handle this as a special case by examining the sign bit
 | 
						|
     * directly.
 | 
						|
     */
 | 
						|
#  if defined(USE_IEEE_754)
 | 
						|
    *is_negative = trio_is_negative(number);
 | 
						|
#  else
 | 
						|
    *is_negative = TRIO_FALSE; /* FIXME */
 | 
						|
#  endif
 | 
						|
    return TRIO_FP_ZERO;
 | 
						|
  }
 | 
						|
  if (trio_isnan(number)) {
 | 
						|
    *is_negative = TRIO_FALSE;
 | 
						|
    return TRIO_FP_NAN;
 | 
						|
  }
 | 
						|
  if ((rc = trio_isinf(number))) {
 | 
						|
    *is_negative = (rc == -1);
 | 
						|
    return TRIO_FP_INFINITE;
 | 
						|
  }
 | 
						|
  if ((number > 0.0) && (number < DBL_MIN)) {
 | 
						|
    *is_negative = TRIO_FALSE;
 | 
						|
    return TRIO_FP_SUBNORMAL;
 | 
						|
  }
 | 
						|
  if ((number < 0.0) && (number > -DBL_MIN)) {
 | 
						|
    *is_negative = TRIO_TRUE;
 | 
						|
    return TRIO_FP_SUBNORMAL;
 | 
						|
  }
 | 
						|
  *is_negative = (number < 0.0);
 | 
						|
  return TRIO_FP_NORMAL;
 | 
						|
  
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
   Examine the sign of a number.
 | 
						|
 | 
						|
   @param number An arbitrary floating-point number.
 | 
						|
   @return Boolean value indicating whether or not the number has the
 | 
						|
   sign bit set (i.e. is negative).
 | 
						|
*/
 | 
						|
TRIO_PUBLIC int
 | 
						|
trio_signbit
 | 
						|
TRIO_ARGS1((number),
 | 
						|
	   double number)
 | 
						|
{
 | 
						|
  int is_negative;
 | 
						|
  
 | 
						|
  (void)trio_fpclassify_and_signbit(number, &is_negative);
 | 
						|
  return is_negative;
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
	/* Temporary fix - this routine is not used in libxml */
 | 
						|
/**
 | 
						|
   Examine the class of a number.
 | 
						|
 | 
						|
   @param number An arbitrary floating-point number.
 | 
						|
   @return Enumerable value indicating the class of @p number
 | 
						|
*/
 | 
						|
TRIO_PUBLIC int
 | 
						|
trio_fpclassify
 | 
						|
TRIO_ARGS1((number),
 | 
						|
	   double number)
 | 
						|
{
 | 
						|
  int dummy;
 | 
						|
  
 | 
						|
  return trio_fpclassify_and_signbit(number, &dummy);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/** @} SpecialQuantities */
 | 
						|
 | 
						|
/*************************************************************************
 | 
						|
 * For test purposes.
 | 
						|
 *
 | 
						|
 * Add the following compiler option to include this test code.
 | 
						|
 *
 | 
						|
 *  Unix : -DSTANDALONE
 | 
						|
 *  VMS  : /DEFINE=(STANDALONE)
 | 
						|
 */
 | 
						|
#if defined(STANDALONE)
 | 
						|
# include <stdio.h>
 | 
						|
 | 
						|
static TRIO_CONST char *
 | 
						|
getClassification
 | 
						|
TRIO_ARGS1((type),
 | 
						|
	   int type)
 | 
						|
{
 | 
						|
  switch (type) {
 | 
						|
  case TRIO_FP_INFINITE:
 | 
						|
    return "FP_INFINITE";
 | 
						|
  case TRIO_FP_NAN:
 | 
						|
    return "FP_NAN";
 | 
						|
  case TRIO_FP_NORMAL:
 | 
						|
    return "FP_NORMAL";
 | 
						|
  case TRIO_FP_SUBNORMAL:
 | 
						|
    return "FP_SUBNORMAL";
 | 
						|
  case TRIO_FP_ZERO:
 | 
						|
    return "FP_ZERO";
 | 
						|
  default:
 | 
						|
    return "FP_UNKNOWN";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
print_class
 | 
						|
TRIO_ARGS2((prefix, number),
 | 
						|
	   TRIO_CONST char *prefix,
 | 
						|
	   double number)
 | 
						|
{
 | 
						|
  printf("%-6s: %s %-15s %g\n",
 | 
						|
	 prefix,
 | 
						|
	 trio_signbit(number) ? "-" : "+",
 | 
						|
	 getClassification(TRIO_FPCLASSIFY(number)),
 | 
						|
	 number);
 | 
						|
}
 | 
						|
 | 
						|
int main(TRIO_NOARGS)
 | 
						|
{
 | 
						|
  double my_nan;
 | 
						|
  double my_pinf;
 | 
						|
  double my_ninf;
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
  void (*signal_handler) TRIO_PROTO((int));
 | 
						|
# endif
 | 
						|
 | 
						|
  my_nan = trio_nan();
 | 
						|
  my_pinf = trio_pinf();
 | 
						|
  my_ninf = trio_ninf();
 | 
						|
 | 
						|
  print_class("Nan", my_nan);
 | 
						|
  print_class("PInf", my_pinf);
 | 
						|
  print_class("NInf", my_ninf);
 | 
						|
  print_class("PZero", 0.0);
 | 
						|
  print_class("NZero", -0.0);
 | 
						|
  print_class("PNorm", 1.0);
 | 
						|
  print_class("NNorm", -1.0);
 | 
						|
  print_class("PSub", 1.01e-307 - 1.00e-307);
 | 
						|
  print_class("NSub", 1.00e-307 - 1.01e-307);
 | 
						|
  
 | 
						|
  printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | 
						|
	 my_nan,
 | 
						|
	 ((unsigned char *)&my_nan)[0],
 | 
						|
	 ((unsigned char *)&my_nan)[1],
 | 
						|
	 ((unsigned char *)&my_nan)[2],
 | 
						|
	 ((unsigned char *)&my_nan)[3],
 | 
						|
	 ((unsigned char *)&my_nan)[4],
 | 
						|
	 ((unsigned char *)&my_nan)[5],
 | 
						|
	 ((unsigned char *)&my_nan)[6],
 | 
						|
	 ((unsigned char *)&my_nan)[7],
 | 
						|
	 trio_isnan(my_nan), trio_isinf(my_nan));
 | 
						|
  printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | 
						|
	 my_pinf,
 | 
						|
	 ((unsigned char *)&my_pinf)[0],
 | 
						|
	 ((unsigned char *)&my_pinf)[1],
 | 
						|
	 ((unsigned char *)&my_pinf)[2],
 | 
						|
	 ((unsigned char *)&my_pinf)[3],
 | 
						|
	 ((unsigned char *)&my_pinf)[4],
 | 
						|
	 ((unsigned char *)&my_pinf)[5],
 | 
						|
	 ((unsigned char *)&my_pinf)[6],
 | 
						|
	 ((unsigned char *)&my_pinf)[7],
 | 
						|
	 trio_isnan(my_pinf), trio_isinf(my_pinf));
 | 
						|
  printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | 
						|
	 my_ninf,
 | 
						|
	 ((unsigned char *)&my_ninf)[0],
 | 
						|
	 ((unsigned char *)&my_ninf)[1],
 | 
						|
	 ((unsigned char *)&my_ninf)[2],
 | 
						|
	 ((unsigned char *)&my_ninf)[3],
 | 
						|
	 ((unsigned char *)&my_ninf)[4],
 | 
						|
	 ((unsigned char *)&my_ninf)[5],
 | 
						|
	 ((unsigned char *)&my_ninf)[6],
 | 
						|
	 ((unsigned char *)&my_ninf)[7],
 | 
						|
	 trio_isnan(my_ninf), trio_isinf(my_ninf));
 | 
						|
  
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
  signal_handler = signal(SIGFPE, SIG_IGN);
 | 
						|
# endif
 | 
						|
  
 | 
						|
  my_pinf = DBL_MAX + DBL_MAX;
 | 
						|
  my_ninf = -my_pinf;
 | 
						|
  my_nan = my_pinf / my_pinf;
 | 
						|
 | 
						|
# if defined(TRIO_PLATFORM_UNIX)
 | 
						|
  signal(SIGFPE, signal_handler);
 | 
						|
# endif
 | 
						|
  
 | 
						|
  printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | 
						|
	 my_nan,
 | 
						|
	 ((unsigned char *)&my_nan)[0],
 | 
						|
	 ((unsigned char *)&my_nan)[1],
 | 
						|
	 ((unsigned char *)&my_nan)[2],
 | 
						|
	 ((unsigned char *)&my_nan)[3],
 | 
						|
	 ((unsigned char *)&my_nan)[4],
 | 
						|
	 ((unsigned char *)&my_nan)[5],
 | 
						|
	 ((unsigned char *)&my_nan)[6],
 | 
						|
	 ((unsigned char *)&my_nan)[7],
 | 
						|
	 trio_isnan(my_nan), trio_isinf(my_nan));
 | 
						|
  printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | 
						|
	 my_pinf,
 | 
						|
	 ((unsigned char *)&my_pinf)[0],
 | 
						|
	 ((unsigned char *)&my_pinf)[1],
 | 
						|
	 ((unsigned char *)&my_pinf)[2],
 | 
						|
	 ((unsigned char *)&my_pinf)[3],
 | 
						|
	 ((unsigned char *)&my_pinf)[4],
 | 
						|
	 ((unsigned char *)&my_pinf)[5],
 | 
						|
	 ((unsigned char *)&my_pinf)[6],
 | 
						|
	 ((unsigned char *)&my_pinf)[7],
 | 
						|
	 trio_isnan(my_pinf), trio_isinf(my_pinf));
 | 
						|
  printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
 | 
						|
	 my_ninf,
 | 
						|
	 ((unsigned char *)&my_ninf)[0],
 | 
						|
	 ((unsigned char *)&my_ninf)[1],
 | 
						|
	 ((unsigned char *)&my_ninf)[2],
 | 
						|
	 ((unsigned char *)&my_ninf)[3],
 | 
						|
	 ((unsigned char *)&my_ninf)[4],
 | 
						|
	 ((unsigned char *)&my_ninf)[5],
 | 
						|
	 ((unsigned char *)&my_ninf)[6],
 | 
						|
	 ((unsigned char *)&my_ninf)[7],
 | 
						|
	 trio_isnan(my_ninf), trio_isinf(my_ninf));
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
#endif
 |