1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-04-21 19:45:56 +03:00
2023-03-02 15:59:42 +00:00

430 lines
11 KiB
C++

#include <my_config.h>
#include <cmath>
#include <iostream>
#include <sstream>
using namespace std;
#include "idb_mysql.h"
namespace
{
inline double cvtArgToDouble(int t, const char* v)
{
double d = 0.0;
switch (t)
{
case INT_RESULT: d = (double)(*((long long*)v)); break;
case REAL_RESULT: d = *((double*)v); break;
case DECIMAL_RESULT:
case STRING_RESULT: d = strtod(v, 0); break;
case ROW_RESULT: break;
}
return d;
}
} // namespace
/****************************************************************************
* UDF function interface for MariaDB connector to recognize is defined in
* this section. MariaDB's UDF function creation guideline needs to be followed.
*
* Three interface need to be defined on the connector for each UDF function.
*
* XXX_init: To allocate the necessary memory for the UDF function and validate
* the input.
* XXX_deinit: To clean up the memory.
* XXX: The function implementation.
* Detailed instruction can be found at MariaDB source directory:
* ~/sql/udf_example.cc.
*
* Please note that the implementation of the function defined on the connector
* will only be called when all the input arguments are constant. e.g.,
* mcs_add(2,3). That way, the function does not run in a distributed fashion
* and could be slow. If there is a need for the UDF function to run with
* pure constant input, then one needs to put a implementation in the XXX
* body, which is very similar to the ones in getXXXval API. If there's no
* such need for a given UDF, then the XXX interface can just return a dummy
* result because this function will never be called.
*/
extern "C"
{
/**
* MCS_ADD connector stub
*/
my_bool mcs_add_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 2)
{
strcpy(message, "mcs_add() requires two argument");
return 1;
}
return 0;
}
void mcs_add_deinit(UDF_INIT* initid)
{
}
double mcs_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* error)
{
double op1, op2;
op1 = cvtArgToDouble(args->arg_type[0], args->args[0]);
op2 = cvtArgToDouble(args->arg_type[1], args->args[1]);
return op1 + op2;
}
/**
* MCS_ISNULL connector stub
*/
my_bool mcs_isnull_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message, "mcs_isnull() requires one argument");
return 1;
}
return 0;
}
void mcs_isnull_deinit(UDF_INIT* initid)
{
}
long long mcs_isnull(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* error)
{
return 0;
}
/**
* ALLNULL connector stub
*/
struct allnull_data
{
ulonglong totalQuantity;
ulonglong totalNulls;
};
my_bool allnull_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct allnull_data* data;
// if (args->arg_count != 1)
// {
// strcpy(message,"allnull() requires one argument");
// return 1;
// }
if (!(data = (struct allnull_data*)malloc(sizeof(struct allnull_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->totalQuantity = 0;
data->totalNulls = 0;
initid->ptr = (char*)data;
return 0;
}
void allnull_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
long long allnull(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct allnull_data* data = (struct allnull_data*)initid->ptr;
return data->totalQuantity > 0 && data->totalNulls == data->totalQuantity;
}
void allnull_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct allnull_data* data = (struct allnull_data*)initid->ptr;
data->totalQuantity = 0;
data->totalNulls = 0;
}
void allnull_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused)))
{
struct allnull_data* data = (struct allnull_data*)initid->ptr;
const char* word = args->args[0];
data->totalQuantity++;
if (!word)
{
data->totalNulls++;
}
}
/**
* SSQ connector stub
*/
struct ssq_data
{
double sumsq;
};
my_bool ssq_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct ssq_data* data;
if (args->arg_count != 1)
{
strcpy(message, "ssq() requires one argument");
return 1;
}
if (!(data = (struct ssq_data*)malloc(sizeof(struct ssq_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->sumsq = 0;
initid->ptr = (char*)data;
return 0;
}
void ssq_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void ssq_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct ssq_data* data = (struct ssq_data*)initid->ptr;
data->sumsq = 0;
}
void ssq_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused)))
{
struct ssq_data* data = (struct ssq_data*)initid->ptr;
double val = cvtArgToDouble(args->arg_type[0], args->args[0]);
data->sumsq = val * val;
}
long long ssq(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct ssq_data* data = (struct ssq_data*)initid->ptr;
return data->sumsq;
}
//=======================================================================
/**
* MEDIAN connector stub
*/
my_bool median_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message, "median() requires one argument");
return 1;
}
/*
if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->sumsq = 0;
initid->ptr = (char*)data;
*/
return 0;
}
void median_deinit(UDF_INIT* initid)
{
// free(initid->ptr);
}
void median_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// data->sumsq = 0;
}
void median_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// double val = cvtArgToDouble(args->arg_type[0], args->args[0]);
// data->sumsq = val*val;
}
long long median(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// return data->sumsq;
return 0;
}
/**
* avg_mode connector stub
*/
my_bool avg_mode_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message, "avg_mode() requires one argument");
return 1;
}
/*
if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->sumsq = 0;
initid->ptr = (char*)data;
*/
return 0;
}
void avg_mode_deinit(UDF_INIT* initid)
{
// free(initid->ptr);
}
void avg_mode_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// data->sumsq = 0;
}
void avg_mode_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// double val = cvtArgToDouble(args->arg_type[0], args->args[0]);
// data->sumsq = val*val;
}
long long avg_mode(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// return data->sumsq;
return 0;
}
//=======================================================================
/**
* avgx connector stub. Exactly the same functionality as the
* built in avg() function. Use to test the performance of the
* API
*/
struct avgx_data
{
double sumx;
int64_t cnt;
};
my_bool avgx_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct avgx_data* data;
if (args->arg_count != 1)
{
strcpy(message, "avgx() requires one argument");
return 1;
}
if (!(data = (struct avgx_data*)malloc(sizeof(struct avgx_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->sumx = 0;
data->cnt = 0;
initid->ptr = (char*)data;
return 0;
}
void avgx_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void avgx_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct avgx_data* data = (struct avgx_data*)initid->ptr;
data->sumx = 0;
data->cnt = 0;
}
void avgx_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused)))
{
// TODO test for NULL in x and y
struct avgx_data* data = (struct avgx_data*)initid->ptr;
double xval = cvtArgToDouble(args->arg_type[1], args->args[0]);
++data->cnt;
data->sumx += xval;
}
long long avgx(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct avgx_data* data = (struct avgx_data*)initid->ptr;
return data->sumx / data->cnt;
}
/**
* distinct_count connector stub
*/
my_bool distinct_count_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message, "distinct_count() requires one argument");
return 1;
}
return 0;
}
void distinct_count_deinit(UDF_INIT* initid)
{
// free(initid->ptr);
}
void distinct_count_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
}
void distinct_count_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
}
long long distinct_count(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
return 0;
}
}