1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-05-31 11:41:14 +03:00

958 lines
30 KiB
C++
Executable File

/* Copyright (C) 2017 MariaDB Corporaton
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; version 2 of
the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
/***********************************************************************
* $Id$
*
* mcsv1_UDAF.h
***********************************************************************/
/**
* Columnstore interface for writing a User Defined Aggregate
* Functions (UDAF) and User Defined Analytic Functions (UDAnF)
* or a function that can act as either - UDA(n)F
*
* The basic steps are:
*
* 1. Create a the UDA(n)F function interface in some .h file.
* 2. Create the UDF function implementation in some .cpp file
* 3. Create the connector stub (MariaDB UDAF definition) for
* this UDF function.
* 4. build the dynamic librarys using all of the source.
* 5 Put the library in $COLUMNSTORE_INSTALL/lib of
* all modules
* 6. Put the connector stub in $COLUMNSTORE_INSTALL/mysql/lib
* of all UMs
* 7. restart the Columnstore system. 7. notify mysqld about the
* new functions with commands like:
*
* CREATE AGGREGATE FUNCTION all_null returns BOOL soname
* 'libudf_mysql.so';
*
* // An example that only makes sense as a UDAnF
* CREATE AGGREGATE FUNCTION mcs_interpolate returns REAL
* soname 'libudf_mysql.so';
*
* Use the name of the connector stub library in CREATE
* AGGREGATE FUNCTION
*
* The UDAF functions may run distributed in the Columnstore
* engine. UDAnF do not run distributed.
*
* UDAF is User Defined Aggregate Function.
* UDAnF is User Defined Analytic Function.
* UDA(n)F is an acronym for a function that could be either. It
* is also used to describe the interface that is used for
* either.
*/
#ifndef HEADER_mcsv1_udaf
#define HEADER_mcsv1_udaf
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <boost/shared_ptr.hpp>
#include <boost/any.hpp>
#ifdef _MSC_VER
#include <unordered_map>
#else
#include <tr1/unordered_map>
#endif
#include "any.hpp"
#include "calpontsystemcatalog.h"
#include "wf_frame.h"
using namespace execplan;
#if defined(_MSC_VER) && defined(xxxRGNODE_DLLEXPORT)
#define EXPORT __declspec(dllexport)
#else
#define EXPORT
#endif
namespace mcsv1sdk
{
/**
* A map from name to function object.
*
* This is temporary until we get the library loading task
* complete
*
* TODO: Remove when library loading is enabled.
*/
class mcsv1_UDAF;
typedef std::tr1::unordered_map<std::string, mcsv1_UDAF*> UDAF_MAP;
class UDAFMap
{
public:
EXPORT UDAFMap(){};
EXPORT ~UDAFMap(){};
static EXPORT UDAF_MAP& getMap();
private:
static UDAF_MAP fm;
};
/**
* A class to hold your user data
*
* If your UDAF only needs a fixed sized data struct, you need
* do nothing with this. Call setUserDataSize in your init
* function with the required size and the framework will take
* care of it.
*
* If you need something more or just want to control things,
* then override UserData with your data structure and
* implement createUserData in your function object to create
* your data structure. Your UserData destuctor should take care
* of any cleanup you may need (Simple containers clean
* themselves up).
*/
class mcsv1Context;
struct UserData
{
UserData() : size(0), data(NULL) {};
UserData(size_t sz) {size = sz; data = new uint8_t[sz];}
virtual ~UserData() { if (data) delete [] data;}
/**
* serialize()
*
* User data is passed between processes. In order to do so, it
* must be serialized. Since user data can have sub objects,
* containers and the like, it is up to the UDAF to provide the
* serialize function. The streaming functionality of
* messageqcpp::ByteStream must be used.
*
* The default streams the size and data buffer to the
* ByteStream
*/
virtual void serialize(messageqcpp::ByteStream& bs) const;
/**
* unserialize()
*
* User data is passed between processes. In order to do so, it
* must be unserialized. Since user data can have sub objects,
* containers and the like, it is up to the UDAF to provide the
* unserialize function. The streaming functionality of
* messageqcpp::ByteStream must be used.
*
* data is the datablock returned by createUserData.
*
* The default creates the data array and streams into data.
*/
virtual void unserialize(messageqcpp::ByteStream& bs);
// The default data store. You may or may not wish to use these fields.
uint32_t size;
uint8_t* data;
private:
// For now, copy construction is unwanted
UserData(UserData&);
};
// Flags to define the type and limitations of a UDA(n)F
// Used in context->fRunFlags
static uint64_t UDAF_OVER_REQUIRED __attribute__ ((unused)) = 1; // May only be used as UDAnF
static uint64_t UDAF_OVER_ALLOWED __attribute__ ((unused)) = 1 << 1; // May be used as UDAF or UDAnF
static uint64_t UDAF_ORDER_REQUIRED __attribute__ ((unused)) = 1 << 2; // If used as UDAnF, ORDER BY is required
static uint64_t UDAF_ORDER_ALLOWED __attribute__ ((unused)) = 1 << 3; // If used as UDAnF, ORDER BY is optional
static uint64_t UDAF_WINDOWFRAME_REQUIRED __attribute__ ((unused)) = 1 << 4; // If used as UDAnF, a WINDOW FRAME is required
static uint64_t UDAF_WINDOWFRAME_ALLOWED __attribute__ ((unused)) = 1 << 5; // If used as UDAnF, a WINDOW FRAME is optional
static uint64_t UDAF_MAYBE_NULL __attribute__ ((unused)) = 1 << 6; // If UDA(n)F might return NULL.
static uint64_t UDAF_IGNORE_NULLS __attribute__ ((unused)) = 1 << 7; // If UDA(n)F wants NULL rows suppressed.
// Flags set by the framework to define the context of the call.
// User code shouldn't use these directly
// used in context->fContextFlags
static uint64_t CONTEXT_IS_ANALYTIC __attribute__ ((unused)) = 1; // If called using OVER
static uint64_t CONTEXT_HAS_CURRENT_ROW __attribute__ ((unused)) = 1 << 1; // The current window contains the current row.
static uint64_t CONTEXT_IS_PM __attribute__ ((unused)) = 1 << 2; // The call was made by the PM
// Flags that describe the contents of a specific input parameter
// These will be set in context->dataFlags for each method call by the framework.
// User code shouldn't use these directly
static uint64_t PARAM_IS_NULL __attribute__ ((unused)) = 1;
static uint64_t PARAM_IS_CONSTANT __attribute__ ((unused)) = 1 << 1;
// shorthand for the list of columns in the call sent to init()
// first is the actual column name and second is the data type in Columnstore.
typedef std::vector<std::pair<std::string, CalpontSystemCatalog::ColDataType> >COL_TYPES;
// This is the context class that is passed to all API callbacks
// The framework potentially sets data here for each invocation of
// mcsv1_UDAF methods. Access methods are given for data useful to UDA(n)F.
// Don't modify anything directly except the struct retrieved with getUserData().
// UDA(n)F devlopers should not modify this class. The framework and other UDA(n)F
// rely on it being as it was when they were compiled.
//
// It's probable that future versions of Columnstore will add functionality to
// the context. UDA(n)F may need to be re-compiled in this case.
class mcsv1Context
{
public:
EXPORT mcsv1Context();
EXPORT mcsv1Context(const mcsv1Context& rhs);
// The destructor is virtual only in case a version 2 is made derived from v1
// to promote backward compatibility.
// mcsv1Context should never be subclassed by UDA(n)F developers
EXPORT virtual ~mcsv1Context();
// Set an error message if something goes wrong
EXPORT void setErrorMessage(std::string errmsg);
// Get the previously set error message
EXPORT const std::string& getErrorMessage() const;
// Set the flags as a set. Return the previous flags.
EXPORT uint64_t setRunFlags(uint64_t flags);
// return the flags
EXPORT uint64_t getRunFlags() const;
// The following set, get, clear and toggle methods can be used to manipulate
// multiple flags by ORing them together in the call sequence.
// Ex setRunFlag(UDAF_OVER_REQUIRED | UDAF_ORDER_REQUIRED);
// sets both flags and returns true if BOTH flags are already set.
//
// Set a specific flag and return its previous setting
EXPORT bool setRunFlag(uint64_t flag);
// Get a specific flag
EXPORT bool getRunFlag(uint64_t flag);
// clear a specific flag and return its previous setting
EXPORT bool clearRunFlag(uint64_t flag);
// toggle a specific flag and return its previous setting
EXPORT bool toggleRunFlag(uint64_t flag);
// Use these to determine the way your UDA(n)F was called
// Valid in all method calls
EXPORT bool isAnalytic();
EXPORT bool isWindowHasCurrentRow();
// Determine if the call is made by the UM
// This could be because the UDA(n)F is not being distributed
// Or it could be during setup or during consolodation of PM values.
// valid in all calls
EXPORT bool isUM();
// Determine if the call is made by the PM
// This will be during partial aggregation performed on the PM
// valid in all calls
EXPORT bool isPM();
// Parameter refinement description accessors
// valid in nextValue and dropValue
size_t getParameterCount() const;
// Determine if an input parameter is NULL
// valid in nextValue and dropValue
EXPORT bool isParamNull(int paramIdx);
// If a parameter is a constant, the UDA(n)F could presumably optimize its workings
// during the first call to nextValue().
// Is there a better way to determine this?
// valid in nextValue
EXPORT bool isParamConstant(int paramIdx);
// For getting the result type.
EXPORT CalpontSystemCatalog::ColDataType getResultType() const;
// For getting the decimal characteristics for the return type.
// These will be set to the default before init().
EXPORT int32_t getScale() const;
EXPORT int32_t getPrecision() const;
// If you want to change the result type
// valid in init()
EXPORT bool setResultType(CalpontSystemCatalog::ColDataType resultType);
// For setting the decimal characteristics for the return value.
// This only makes sense if the return type is decimal, but should be set
// to (0, -1) for other types if the inout is decimal.
// valid in init()
EXPORT bool setScale(int32_t scale);
EXPORT bool setPrecision(int32_t precision);
// For all types, get the return column width in bytes. Ex. INT will return 4.
EXPORT int32_t getColWidth();
// For non-numric return types, set the return column width. This defaults
// to the the length of the input.
// valid in init()
EXPORT bool setColWidth(int32_t colWidth);
// If a method is known to take a while, call this periodically to see if something
// interupted the processing. If getInterrupted() returns true, then the executing
// method should clean up and exit.
EXPORT bool getInterrupted() const;
// Allocate instance specific memory. This should be type cast to a structure overlay
// defined by the function. The actual allocatoin occurs in the various modules that
// do the aggregation. If the UDAF is being calculated in a distributed fashion, then
// multiple instances of this data may be allocated. Calls to the subaggregate functions
// do not share a context.
// You do not need to worry about freeing this memory. The framework handles all management.
// Call this during init()
EXPORT void setUserDataSize(int bytes);
// Call this everywhere except init()
EXPORT UserData* getUserData();
// Many UDAnF need a default Window Frame. If none is set here, the default is
// UNBOUNDED PRECEDING to CURRENT ROW.
// It's possible to not allow the the WINDOW FRAME phrase in the UDAnF by setting
// the UDAF_WINDOWFRAME_REQUIRED and UDAF_WINDOWFRAME_ALLOWED both to false. Columnstore
// requires a Window Frame in order to process UDAnF. In this case, the default will
// be used for all calls.
// Possible values for start frame are
// WF_UNBOUNDED_PRECEDING, WF_CURRENT_ROW, WF_PRECEDING or WF_FOLLOWING
// possible values for end frame are
// WF_CURRENT_ROW, WF_UNBOUNDED_FOLLOWING, WF_PRECEDING or WF_FOLLOWING
// If WF_PRECEEdING and/or WF_FOLLOWING, a start or end constant should
// be included to say how many preceeding or following is the default
// Set this during init()
EXPORT bool setDefaultWindowFrame(WF_FRAME defaultStartFrame,
WF_FRAME defaultEndFrame,
int32_t startConstant = 0, // For WF_PRECEEDING or WF_FOLLOWING
int32_t endConstant = 0); // For WF_PRECEEDING or WF_FOLLOWING
// There may be times you want to know the actual frame set by the caller
EXPORT void getStartFrame(WF_FRAME& startFrame, int32_t& startConstant) const;
EXPORT void getEndFrame(WF_FRAME& endFrame, int32_t& endConstant) const;
// Deep Equivalence
bool operator==(const mcsv1Context& c) const;
bool operator!=(const mcsv1Context& c) const;
// stream operator for debugging
EXPORT const std::string toString() const;
// Get the name of the function
EXPORT const std::string& getName() const;
EXPORT mcsv1Context& operator=(const mcsv1Context& rhs);
EXPORT mcsv1Context& copy(const mcsv1Context& rhs);
private:
uint64_t fRunFlags; // Set by the user to define the type of UDA(n)F
uint64_t fContextFlags; // Set by the framework to define this specific call.
int32_t fUserDataSize;
boost::shared_ptr<UserData> fUserData;
CalpontSystemCatalog::ColDataType fResultType;
int32_t fColWidth; // The length in bytes of the return type
int32_t fResultscale; // For scale, the number of digits to the right of the decimal
int32_t fResultPrecision; // The max number of digits allowed in the decimal value
std::string errorMsg;
std::vector<uint32_t>* dataFlags; // one entry for each parameter
bool* bInterrupted; // Gets set to true by the Framework if something happens
WF_FRAME fStartFrame; // Is set to default to start, then modified by the actual frame in the call
WF_FRAME fEndFrame; // Is set to default to start, then modified by the actual frame in the call
int32_t fStartConstant; // for start frame WF_PRECEEDIMG or WF_FOLLOWING
int32_t fEndConstant; // for end frame WF_PRECEEDIMG or WF_FOLLOWING
std::string functionName;
mcsv1sdk::mcsv1_UDAF* func;
public:
// For use by the framework
EXPORT void serialize(messageqcpp::ByteStream& b) const;
EXPORT void unserialize(messageqcpp::ByteStream& b);
EXPORT void createUserData();
EXPORT void setUserData(boost::shared_ptr<UserData> userData);
EXPORT void setUserData(UserData* userData);
EXPORT void setName(std::string name);
EXPORT void setContextFlags(uint64_t flags);
EXPORT void setContextFlag(uint64_t flag);
EXPORT void clearContextFlag(uint64_t flag);
EXPORT uint64_t getContextFlags() const;
EXPORT uint32_t getUserDataSize() const;
EXPORT std::vector<uint32_t>& getDataFlags();
EXPORT void setDataFlags(std::vector<uint32_t>* flags);
EXPORT void setInterrupted(bool interrupted);
EXPORT void setInterrupted(bool* interrupted);
EXPORT mcsv1sdk::mcsv1_UDAF* getFunction();
EXPORT mcsv1sdk::mcsv1_UDAF* getFunction() const;
EXPORT boost::shared_ptr<UserData> getUserDataSP();
};
// Since aggregate functions can operate on any data type, we use the following structure
// to define the input row data. To be type insensiteve, data is stored in type static_any::any.
//
// To access the data it must be type cast to the correct type using static_any::cast.
// example for int data:
//
// if (valIn.compatible(intTypeId)
// int myint = valIn.cast<int>();
//
// For multi-paramter aggregations, the colsIn vector of next_value()
// contains the ordered set of row parameters.
//
// For char, varchar, text, varbinary and blob types, columnData will be std::string.
struct ColumnDatum
{
CalpontSystemCatalog::ColDataType dataType; // defined in calpontsystemcatalog.h
static_any::any columnData;
uint32_t scale; // If dataType is a DECIMAL type
uint32_t precision; // If dataType is a DECIMAL type
ColumnDatum() : dataType(CalpontSystemCatalog::UNDEFINED), scale(0), precision(-1){};
};
// Override mcsv1_UDAF to build your User Defined Aggregate (UDAF) and/or
// User Defined Analytic Function (UDAnF).
// These will be singleton classes, so don't put any instance
// specific data in here. All instance data is stored in mcsv1Context
// passed to each user function and retrieved by the getUserData() method.
//
// Each API function returns a ReturnCode. If ERROR is returned at any time,
// the query is aborted, getInterrupted() will begin to return true and the
// message set in config->setErrorMessage() is returned to MariaDB.
class mcsv1_UDAF
{
public:
enum ReturnCode
{
ERROR = 0,
SUCCESS = 1,
NOT_IMPLEMENTED = 2 // User UDA(n)F shouldn't return this
};
// Defaults OK
mcsv1_UDAF(){};
virtual ~mcsv1_UDAF(){};
/**
* init()
*
* Mandatory. Implement this to initialize flags and instance
* data. Called once per SQL statement. You can do any sanity
* checks here.
*
* colTypes (in) - A vector of ColDataType defining the
* parameters of the UDA(n)F call. These can be used to decide
* to override the default return type. If desired, the new
* return type can be set by context->setReturnType() and
* decimal scale and precision can be set by context->setScale
* and context->setPrecision respectively.
*
* Return mcsv1_UDAF::ERROR on any error, such as non-compatible
* colTypes or wrong number of arguments. Else return
* mcsv1_UDAF::SUCCESS.
*/
virtual ReturnCode init(mcsv1Context* context,
COL_TYPES& colTypes) = 0;
/**
* reset()
*
* Mandatory. Reset the UDA(n)F for a new group, partition or,
* in some cases, new Window Frame. Do not free any memory
* allocated by createUserData(). The SDK Framework owns
* that memory and will handle that. Use this opportunity to
* reset any variables in context->getUserData() needed for the
* next aggregation. May be called multiple times if running in
* a ditributed fashion.
*
* Use this opportunity to initialize the userData.
*/
virtual ReturnCode reset(mcsv1Context* context) = 0;
/**
* nextValue()
*
* Mandatory. Handle a single row.
*
* colsIn - A vector of data structure describing the input
* data.
*
* This function is called once for every row in the filtered
* result set (before aggregation). It is very important that
* this function is efficient.
*
* If the UDAF is running in a distributed fashion, nextValue
* cannot depend on order, as it will only be called for each
* row found on the specific PM.
*
* valsIn (in) - a vector of the parameters from the row.
*/
virtual ReturnCode nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn) = 0;
/**
* subEvaluate()
*
* Mandatory -- Called if the UDAF is running in a distributed
* fashion. Columnstore tries to run all aggregate functions
* distributed, depending on context.
*
* Perform an aggregation on rows partially aggregated by
* nextValue. Columnstore calls nextValue for each row on a
* given PM for a group (GROUP BY). subEvaluate is called on the
* UM to consolodate those values into a single instance of
* userData. Keep your aggregated totals in context's userData.
* The first time this is called for a group, reset() would have
* been called with this version of userData.
*
* Called for every partial data set in each group in GROUP BY.
*
* When subEvaluate has been called for all subAggregated data
* sets, Evaluate will be called with the same context as here.
*
* valIn (In) - This is a pointer to a UserData class with the
* partially aggregated values. It will contain the value of
* userData as seen in the last call to NextValue for a given
* PM.
*
*/
virtual ReturnCode subEvaluate(mcsv1Context* context, const UserData* userDataIn) = 0;
/**
* evaluate()
*
* Mandatory. Get the aggregated value.
*
* Called for every new group if UDAF GROUP BY, UDAnF partition
* or, in some cases, new Window Frame.
*
* Set the aggregated value into valOut. The datatype is assumed
* to be the same as that set in the init() function;
*
* If the UDAF is running in a distributed fashion, evaluate is
* called after a series of subEvaluate calls.
*
* valOut (out) - Set the aggregated value here. The datatype is
* assumed to be the same as that set in the init() function;
*
* To return a NULL value, don't assign to valOut.
*/
virtual ReturnCode evaluate(mcsv1Context* context, static_any::any& valOut) = 0;
/**
* dropValue()
*
* Optional -- If defined, the server will call this instead of
* reset for UDAnF.
*
* Don't implement if a UDAnF has one or more of the following:
* The UDAnF can't be used with a Window Frame
* The UDAnF is not reversable in some way
* The UDAnF is not interested in optimal performance
*
* If not implemented, reset() followed by a series of
* nextValue() will be called for each movement of the Window
* Frame.
*
* If implemented, then each movement of the Window Frame will
* result in dropValue() being called for each row falling out
* of the Frame and nextValue() being called for each new row
* coming into the Frame.
*
* valsDropped (in) - a vector of the parameters from the row
* leaving the Frame
*
* dropValue() will not be called for unbounded/current row type
* frames, as those are already optimized.
*/
virtual ReturnCode dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped);
/**
* createUserData()
*
* Optional -- The default is to create a data byte array of
* size as set in context->setUserDataSize()
*
* Create your variable length data structure via
* userData = new <UserData_type>
*
* The data structure may contain references to containers or
* pointers to other objects. Remember that for distributed
* processing, this may be called multiple times for variaous
* computing blocks. At the least, it will be called once per PM
* that processes the data, and once more for the UM. For UDAnF,
* it may only be called once.
*
* Set length to the base length of the data structure you
* create.
*
*/
virtual ReturnCode createUserData(UserData*& userdata, int32_t& length);
protected:
// These are handy for testing the actual type of static_any
static const static_any::any& charTypeId;
static const static_any::any& scharTypeId;
static const static_any::any& shortTypeId;
static const static_any::any& intTypeId;
static const static_any::any& longTypeId;
static const static_any::any& llTypeId;
static const static_any::any& ucharTypeId;
static const static_any::any& ushortTypeId;
static const static_any::any& uintTypeId;
static const static_any::any& ulongTypeId;
static const static_any::any& ullTypeId;
static const static_any::any& floatTypeId;
static const static_any::any& doubleTypeId;
static const static_any::any& strTypeId;
};
/***********************************************************************
* There is no user modifiable code past this point
***********************************************************************/
// Function definitions for mcsv1Context
inline mcsv1Context::mcsv1Context() :
fRunFlags(UDAF_OVER_ALLOWED | UDAF_ORDER_ALLOWED | UDAF_WINDOWFRAME_ALLOWED),
fContextFlags(0),
fUserDataSize(0),
fResultType(CalpontSystemCatalog::UNDEFINED),
fColWidth(0),
fResultscale(0),
fResultPrecision(18),
dataFlags(NULL),
bInterrupted(NULL),
fStartFrame(WF_UNBOUNDED_PRECEDING),
fEndFrame(WF_CURRENT_ROW),
fStartConstant(0),
fEndConstant(0),
func(NULL)
{
}
inline mcsv1Context::mcsv1Context(const mcsv1Context& rhs) :
fContextFlags(0),
fColWidth(0),
dataFlags(NULL),
bInterrupted(NULL),
func(NULL)
{
copy(rhs);
}
inline mcsv1Context& mcsv1Context::copy(const mcsv1Context& rhs)
{
fRunFlags = rhs.getRunFlags();
fResultType = rhs.getResultType();
fUserDataSize = rhs.getUserDataSize();
fResultscale = rhs.getScale();
fResultPrecision = rhs.getPrecision();
rhs.getStartFrame(fStartFrame, fStartConstant);
rhs.getEndFrame(fEndFrame, fEndConstant);
functionName = rhs.getName();
bInterrupted = rhs.bInterrupted; // Multiple threads will use the same reference
func = rhs.func;
return *this;
}
inline mcsv1Context::~mcsv1Context()
{
}
inline mcsv1Context& mcsv1Context::operator=(const mcsv1Context& rhs)
{
fContextFlags = 0;
fColWidth = 0;
dataFlags = NULL;
bInterrupted = NULL;
func = NULL;
return copy(rhs);
}
inline void mcsv1Context::setErrorMessage(std::string errmsg)
{
errorMsg = errmsg;
}
inline const std::string& mcsv1Context::getErrorMessage() const
{
return errorMsg;
}
inline uint64_t mcsv1Context::setRunFlags(uint64_t flags)
{
uint64_t f = fRunFlags;
fRunFlags = flags;
return f;
}
inline uint64_t mcsv1Context::getRunFlags() const
{
return fRunFlags;
}
inline bool mcsv1Context::setRunFlag(uint64_t flag)
{
bool b = fRunFlags & flag;
fRunFlags |= flag;
return b;
}
inline bool mcsv1Context::getRunFlag(uint64_t flag)
{
return fRunFlags & flag;
}
inline bool mcsv1Context::clearRunFlag(uint64_t flag)
{
bool b = fRunFlags & flag;
fRunFlags &= ~flag;
return b;
}
inline bool mcsv1Context::toggleRunFlag(uint64_t flag)
{
bool b = fRunFlags & flag;
fRunFlags ^= flag;
return b;
}
inline bool mcsv1Context::isAnalytic()
{
return fContextFlags & CONTEXT_IS_ANALYTIC;
}
inline bool mcsv1Context::isWindowHasCurrentRow()
{
return fContextFlags & CONTEXT_HAS_CURRENT_ROW;
}
inline bool mcsv1Context::isUM()
{
return !(fContextFlags & CONTEXT_IS_PM);
}
inline bool mcsv1Context::isPM()
{
return fContextFlags & CONTEXT_IS_PM;
}
inline size_t mcsv1Context::getParameterCount() const
{
if (dataFlags)
return dataFlags->size();
return 0;
}
inline bool mcsv1Context::isParamNull(int paramIdx)
{
if (dataFlags)
return (*dataFlags)[paramIdx] & PARAM_IS_NULL;
return false;
}
inline bool mcsv1Context::isParamConstant(int paramIdx)
{
if (dataFlags)
return (*dataFlags)[paramIdx] & PARAM_IS_CONSTANT;
return false;
}
inline CalpontSystemCatalog::ColDataType mcsv1Context::getResultType() const
{
return fResultType;
}
inline bool mcsv1Context::setResultType(CalpontSystemCatalog::ColDataType resultType)
{
fResultType = resultType;
return true; // We may want to sanity check here.
}
inline int32_t mcsv1Context::getScale() const
{
return fResultscale;
}
inline int32_t mcsv1Context::getPrecision() const
{
return fResultPrecision;
}
inline bool mcsv1Context::setScale(int32_t scale)
{
fResultscale = scale;
return true;
}
inline bool mcsv1Context::setPrecision(int32_t precision)
{
fResultPrecision = precision;
return true;
}
inline bool mcsv1Context::setColWidth(int32_t colWidth)
{
fColWidth = colWidth;
return true;
}
inline void mcsv1Context::setInterrupted(bool interrupted)
{
if (bInterrupted)
{
*bInterrupted = interrupted;
}
}
inline void mcsv1Context::setInterrupted(bool* interrupted)
{
bInterrupted = interrupted;
}
inline bool mcsv1Context::getInterrupted() const
{
if (bInterrupted)
{
return bInterrupted;
}
return false;
}
inline void mcsv1Context::setUserDataSize(int bytes)
{
fUserDataSize = bytes;
}
inline UserData* mcsv1Context::getUserData()
{
if (!fUserData)
{
createUserData();
}
return fUserData.get();
}
inline boost::shared_ptr<UserData> mcsv1Context::getUserDataSP()
{
if (!fUserData)
{
createUserData();
}
return fUserData;
}
inline void mcsv1Context::setUserData(boost::shared_ptr<UserData> userData)
{
fUserData = userData;
}
inline void mcsv1Context::setUserData(UserData* userData)
{
if (userData)
{
fUserData.reset(userData);
}
else
{
fUserData.reset();
}
}
inline bool mcsv1Context::setDefaultWindowFrame(WF_FRAME defaultStartFrame,
WF_FRAME defaultEndFrame,
int32_t startConstant,
int32_t endConstant)
{
// TODO: Add sanity checks
fStartFrame = defaultStartFrame;
fEndFrame = defaultEndFrame;
fStartConstant = startConstant;
fEndConstant = endConstant;
return true;
}
inline void mcsv1Context::getStartFrame(WF_FRAME& startFrame, int32_t& startConstant) const
{
startFrame = fStartFrame;
startConstant = fStartConstant;
}
inline void mcsv1Context::getEndFrame(WF_FRAME& endFrame, int32_t& endConstant) const
{
endFrame = fEndFrame;
endConstant = fEndConstant;
}
inline const std::string& mcsv1Context::getName() const
{
return functionName;
}
inline void mcsv1Context::setName(std::string name)
{
functionName = name;
}
inline uint64_t mcsv1Context::getContextFlags() const
{
return fContextFlags;
}
inline void mcsv1Context::setContextFlags(uint64_t flags)
{
fContextFlags = flags;
}
inline void mcsv1Context::setContextFlag(uint64_t flag)
{
fContextFlags |= flag;
}
inline void mcsv1Context::clearContextFlag(uint64_t flag)
{
fContextFlags &= ~flag;
}
inline uint32_t mcsv1Context::getUserDataSize() const
{
return fUserDataSize;
}
inline std::vector<uint32_t>& mcsv1Context::getDataFlags()
{
return *dataFlags;
}
inline void mcsv1Context::setDataFlags(std::vector<uint32_t>* flags)
{
dataFlags = flags;
}
inline mcsv1_UDAF::ReturnCode mcsv1_UDAF::dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped)
{
return NOT_IMPLEMENTED;
}
inline mcsv1_UDAF::ReturnCode mcsv1_UDAF::createUserData(UserData*& userData, int32_t& length)
{
userData = new UserData(length);
userData->size = length;
return SUCCESS;
}
}; // namespace mcssdk
#undef EXPORT
#endif // HEADER_mcsv1_udaf.h