1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-06-01 22:41:43 +03:00
2016-01-06 14:08:59 -06:00

324 lines
12 KiB
C++

/* Copyright (C) 2014 InfiniDB, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; version 2 of
the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
/******************************************************************************
* $Id: primitiveprocessor.h 2035 2013-01-21 14:12:19Z rdempsey $
*
*****************************************************************************/
/** @file */
#ifndef PRIMITIVEPROCESSOR_H_
#define PRIMITIVEPROCESSOR_H_
#include <stdexcept>
#include <vector>
#ifndef _MSC_VER
#include <tr1/unordered_set>
#else
#include <unordered_set>
#endif
#ifdef __linux__
#define POSIX_REGEX
#endif
#ifdef POSIX_REGEX
#include <regex.h>
#else
#include <boost/regex.hpp>
#endif
#include <cstddef>
#include <boost/shared_ptr.hpp>
#include <boost/shared_array.hpp>
#include "primitivemsg.h"
#include "calpontsystemcatalog.h"
#include "stats.h"
#include "primproc.h"
#include "hasher.h"
class PrimTest;
namespace primitives
{
enum ColumnFilterMode {
STANDARD,
TWO_ARRAYS,
UNORDERED_SET
};
class pcfHasher
{
public:
inline size_t operator()(const int64_t i) const
{
return i;
}
};
class pcfEqual
{
public:
inline size_t operator()(const int64_t f1, const int64_t f2) const
{
return f1 == f2;
}
};
typedef std::tr1::unordered_set<int64_t, pcfHasher, pcfEqual> prestored_set_t;
typedef std::tr1::unordered_set<std::string, utils::Hasher> DictEqualityFilter;
struct idb_regex_t
{
#ifdef POSIX_REGEX
regex_t regex;
#else
boost::regex regex;
#endif
bool used;
idb_regex_t() : used(false) { }
~idb_regex_t() {
#ifdef POSIX_REGEX
if (used)
regfree(&regex);
#endif
}
};
struct ParsedColumnFilter {
ColumnFilterMode columnFilterMode;
boost::shared_array<int64_t> prestored_argVals;
boost::shared_array<uint8_t> prestored_cops;
boost::shared_array<uint8_t> prestored_rfs;
boost::shared_ptr<prestored_set_t> prestored_set;
boost::shared_array<idb_regex_t> prestored_regex;
uint8_t likeOps;
ParsedColumnFilter();
~ParsedColumnFilter();
};
//@bug 1828 These need to be public so that column operations can use it for 'like'
struct p_DataValue {
int len;
const uint8_t *data;
};
boost::shared_ptr<ParsedColumnFilter> parseColumnFilter(const uint8_t *filterString,
uint32_t colWidth, uint32_t colType, uint32_t filterCount, uint32_t BOP);
/** @brief This class encapsulates the primitive processing functionality of the system.
*
* This class encapsulates the primitive processing functionality of the system.
*/
class PrimitiveProcessor
{
public:
PrimitiveProcessor(int debugLevel=0);
virtual ~PrimitiveProcessor();
/** @brief Sets the block to operate on
*
* The primitive processing functions operate on one block at a time. The caller
* sets which block to operate on next with this function.
*/
void setBlockPtr(int *data)
{
block = data;
}
void setPMStatsPtr(dbbc::Stats* p)
{
fStatsPtr=p;
}
/** @brief The interface to Mark's NIOS primitive processing code.
*
* The interface to Mark's NIOS primitive processing code. Instead of reading
* and writing to a bus, it will read/write to buffers specified by inBuf
* and outBuf. The primitives implemented this way are:
* - p_Col and p_ColAggregate
* - p_GetSignature
*
* @param inBuf (in) The buffer containing a command to execute
* @param inLength (in) The size of inBuf in 4-byte words
* @param outBuf (in) The buffer to store the output in
* @param outLength (in) The size of outBuf in 4-byte words
* @param written (out) The number of bytes written to outBuf.
* @note Throws logic_error if the output buffer is too small for the result.
*/
void processBuffer(int *inBuf, unsigned inLength, int *outBuf, unsigned outLength,
unsigned *written);
/* Patrick */
/** @brief The p_TokenByScan primitive processor
*
* The p_TokenByScan primitive processor. It relies on the caller setting
* the block to operate on with setBlockPtr(). It assumes the continuation
* pointer is not used.
* @param t (in) The arguments to the primitive
* @param out (out) This must point to memory of some currently unknown max size
* @param outSize (in) The size of the output buffer in bytes.
* @note Throws logic_error if the output buffer is too small for the result.
*/
void p_TokenByScan(const TokenByScanRequestHeader *t,
TokenByScanResultHeader *out, unsigned outSize,bool utf8,
boost::shared_ptr<DictEqualityFilter> eqFilter);
/** @brief The p_IdxWalk primitive processor
*
* The p_IdxWalk primitive processor. The caller must set the block to operate
* on with setBlockPtr(). This primitive can return intermediate results.
* All results returned will have an different LBID than the input. They can
* also be in varying states of completion. A result is final when
* Shift >= SSlen, otherwise it is intermediate and needs to be reissued with
* the specified LBID loaded.
* @note If in->NVALS > 2, new vectors may be returned in the result set, which
* will have to be deleted by the caller. The test to use right now is
* ({element}->NVALS > 2 && {element}->State == 0). If that condition is true,
* delete the vector, otherwise don't. This kludginess is for efficiency's sake
* and may go away for the sake of sanity later.
* @note It is safe to delete any vector passed in after the call.
* @param out The caller should pass in an empty vector. The results
* will be returned as elements of this vector.
*/
void p_IdxWalk(const IndexWalkHeader *in, std::vector<IndexWalkHeader *> *out) throw();
/** @brief The p_IdxList primitive processor.
*
* The p_IdxList primitive processor. The caller must set the block to operate
* on with setBlockPtr(). This primitive can return one intermediate result
* for every call made. If there is an intermediate result returned, it will
* be the first element, distinguished by its type field. If the
* first element has a type == RID (3) , there is no intermediate result. If
* the first element had a type == LLP_SUBBLK (4) or type == LLP_BLK (5),
* that element is the intermediate result. Its value field will be a pointer
* to the next section of the list.
*
* @param rqst (in) The request header followed by NVALS IndexWalkParams
* @param rslt (out) The caller passes in a buffer which will be filled
* by the primitive on return. It will consist of an IndexListHeader,
* followed by NVALS IndexListEntrys.
* @param mode (optional, in) 0 specifies old behavior (the last entry of a block might
* be a pointer). 1 specifies new behavior (the last entry should be ignored).
*/
void p_IdxList(const IndexListHeader *rqst, IndexListHeader *rslt, int mode = 1);
/** @brief The p_AggregateSignature primitive processor.
*
* The p_AggregateSignature primitive processor. It operates on a dictionary
* block and assumes the continuation pointer is not used.
* @param in The input parameters
* @param out A pointer to a buffer where the result will be written.
* @param outSize The size of the output buffer in bytes.
* @param written (out parameter) A pointer to 1 int, which will contain the
* number of bytes written to out.
*/
void p_AggregateSignature(const AggregateSignatureRequestHeader *in,
AggregateSignatureResultHeader *out, unsigned outSize, unsigned *written, bool utf8);
/** @brief The p_Col primitive processor.
*
* The p_Col primitive processor. It operates on a column block specified using setBlockPtr().
* @param in The buffer containing the command parameters.
* The buffer should begin with a NewColRequestHeader structure, followed by
* an array of 'NOPS' defining the filter to apply (optional),
* followed by an array of RIDs to apply the filter to (optional).
* @param out The buffer that will contain the results. On return, it will start with
* a NewColResultHeader, followed by the output type specified by in->OutputType.
* \li If OT_RID, it will be an array of RIDs
* \li If OT_DATAVALUE, it will be an array of matching data values stored in the column
* \li If OT_BOTH, it will be an array of <DataValue, RID> pairs
* @param outSize The size of the output buffer in bytes.
* @param written (out parameter) A pointer to 1 int, which will contain the
* number of bytes written to out.
* @note See PrimitiveMsg.h for the type definitions.
*/
void p_Col(NewColRequestHeader *in, NewColResultHeader *out, unsigned outSize,
unsigned *written);
boost::shared_ptr<ParsedColumnFilter> parseColumnFilter(const uint8_t *filterString,
uint32_t colWidth, uint32_t colType, uint32_t filterCount, uint32_t BOP);
void setParsedColumnFilter(boost::shared_ptr<ParsedColumnFilter>);
/** @brief The p_ColAggregate primitive processor.
*
* The p_ColAggregate primitive processor. It operates on a column block
* specified using setBlockPtr().
* @param in The buffer containing the command parameters. The buffer should begin
* with a NewColAggRequestHeader, followed by an array of RIDs to generate
* the data for (optional).
* @param out The buffer to put the result in. On return, it will contain a
* NewCollAggResultHeader.
* @note See PrimitiveMsg.h for the type definitions.
*/
// void p_ColAggregate(const NewColAggRequestHeader *in, NewColAggResultHeader *out);
void p_Dictionary(const DictInput *in, std::vector<uint8_t> *out, bool utf8,
bool skipNulls, boost::shared_ptr<DictEqualityFilter> eqFilter,
uint8_t eqOp);
inline void setLogicalBlockMode(bool b) { logicalBlockMode = b; }
static int convertToRegexp(idb_regex_t *regex, const p_DataValue *str);
inline static bool isEscapedChar(char c);
boost::shared_array<idb_regex_t> makeLikeFilter(const DictFilterElement *inputMsg, uint32_t count);
void setLikeFilter(boost::shared_array<idb_regex_t> filter) { parsedLikeFilter = filter; }
private:
PrimitiveProcessor(const PrimitiveProcessor& rhs);
PrimitiveProcessor& operator=(const PrimitiveProcessor& rhs);
int *block;
bool compare(int cmpResult, uint8_t COP, int len1, int len2) throw();
int compare(int val1, int val2, uint8_t COP, bool lastStage) throw();
void indexWalk_1(const IndexWalkHeader *in, std::vector<IndexWalkHeader *> *out) throw();
void indexWalk_2(const IndexWalkHeader *in, std::vector<IndexWalkHeader *> *out) throw();
void indexWalk_many(const IndexWalkHeader *in, std::vector<IndexWalkHeader *> *out) throw();
void grabSubTree(const IndexWalkHeader *in, std::vector<IndexWalkHeader *> *out) throw();
void nextSig(int NVALS, const PrimToken *tokens, p_DataValue *ret,
uint8_t outputFlags = 0, bool oldGetSigBehavior = false, bool skipNulls = false) throw();
bool isLike(const p_DataValue *dict, const idb_regex_t *arg) throw();
// void do_sum8(NewColAggResultHeader *out, int64_t val);
// void do_unsignedsum8(NewColAggResultHeader *out, int64_t val);
uint64_t masks[11];
int dict_OffsetIndex, currentOffsetIndex; // used by p_dictionary
int fDebugLevel;
dbbc::Stats* fStatsPtr; // pointer for pmstats
bool logicalBlockMode;
boost::shared_ptr<ParsedColumnFilter> parsedColumnFilter;
boost::shared_array<idb_regex_t> parsedLikeFilter;
friend class ::PrimTest;
};
} //namespace primitives
#endif
// vim:ts=4 sw=4: