1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-04-18 21:44:02 +03:00
2018-08-17 16:17:13 +01:00

1062 lines
28 KiB
C++

/* Copyright (C) 2014 InfiniDB, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; version 2 of
the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "tuplejoiner.h"
#include <algorithm>
#include <vector>
#include <limits>
#ifdef _MSC_VER
#include <unordered_set>
#else
#include <tr1/unordered_set>
#endif
#include "hasher.h"
#include "lbidlist.h"
using namespace std;
using namespace rowgroup;
using namespace utils;
using namespace execplan;
using namespace joblist;
namespace joiner
{
TupleJoiner::TupleJoiner(
const rowgroup::RowGroup& smallInput,
const rowgroup::RowGroup& largeInput,
uint32_t smallJoinColumn,
uint32_t largeJoinColumn,
JoinType jt) :
smallRG(smallInput), largeRG(largeInput), joinAlg(INSERTING), joinType(jt),
threadCount(1), typelessJoin(false), bSignedUnsignedJoin(false), uniqueLimit(100), finished(false)
{
if (smallRG.usesStringTable())
{
STLPoolAllocator<pair<const int64_t, Row::Pointer> > alloc(64 * 1024 * 1024 + 1);
_pool = alloc.getPoolAllocator();
sth.reset(new sthash_t(10, hasher(), sthash_t::key_equal(), alloc));
}
else
{
STLPoolAllocator<pair<const int64_t, uint8_t*> > alloc(64 * 1024 * 1024 + 1);
_pool = alloc.getPoolAllocator();
h.reset(new hash_t(10, hasher(), hash_t::key_equal(), alloc));
}
smallRG.initRow(&smallNullRow);
if (smallOuterJoin() || largeOuterJoin() || semiJoin() || antiJoin())
{
smallNullMemory = RGData(smallRG, 1);
smallRG.setData(&smallNullMemory);
smallRG.getRow(0, &smallNullRow);
smallNullRow.initToNull();
}
smallKeyColumns.push_back(smallJoinColumn);
largeKeyColumns.push_back(largeJoinColumn);
discreteValues.reset(new bool[1]);
cpValues.reset(new vector<int64_t>[1]);
discreteValues[0] = false;
if (smallRG.isUnsigned(smallKeyColumns[0]))
{
cpValues[0].push_back(numeric_limits<uint64_t>::max());
cpValues[0].push_back(0);
}
else
{
cpValues[0].push_back(numeric_limits<int64_t>::max());
cpValues[0].push_back(numeric_limits<int64_t>::min());
}
if (smallRG.isUnsigned(smallJoinColumn) != largeRG.isUnsigned(largeJoinColumn))
bSignedUnsignedJoin = true;
nullValueForJoinColumn = smallNullRow.getSignedNullValue(smallJoinColumn);
}
TupleJoiner::TupleJoiner(
const rowgroup::RowGroup& smallInput,
const rowgroup::RowGroup& largeInput,
const vector<uint32_t>& smallJoinColumns,
const vector<uint32_t>& largeJoinColumns,
JoinType jt) :
smallRG(smallInput), largeRG(largeInput), joinAlg(INSERTING),
joinType(jt), threadCount(1), typelessJoin(true),
smallKeyColumns(smallJoinColumns), largeKeyColumns(largeJoinColumns),
bSignedUnsignedJoin(false), uniqueLimit(100), finished(false)
{
STLPoolAllocator<pair<const TypelessData, Row::Pointer> > alloc(64 * 1024 * 1024 + 1);
_pool = alloc.getPoolAllocator();
ht.reset(new typelesshash_t(10, hasher(), typelesshash_t::key_equal(), alloc));
smallRG.initRow(&smallNullRow);
if (smallOuterJoin() || largeOuterJoin() || semiJoin() || antiJoin())
{
smallNullMemory = RGData(smallRG, 1);
smallRG.setData(&smallNullMemory);
smallRG.getRow(0, &smallNullRow);
smallNullRow.initToNull();
}
for (uint32_t i = keyLength = 0; i < smallKeyColumns.size(); i++)
{
if (smallRG.getColTypes()[smallKeyColumns[i]] == CalpontSystemCatalog::CHAR ||
smallRG.getColTypes()[smallKeyColumns[i]] == CalpontSystemCatalog::VARCHAR
||
smallRG.getColTypes()[smallKeyColumns[i]] == CalpontSystemCatalog::TEXT)
{
keyLength += smallRG.getColumnWidth(smallKeyColumns[i]) + 1; // +1 null char
// MCOL-698: if we don't do this LONGTEXT allocates 32TB RAM
if (keyLength > 65536)
keyLength = 65536;
}
else
keyLength += 8;
// Set bSignedUnsignedJoin if one or more join columns are signed to unsigned compares.
if (smallRG.isUnsigned(smallKeyColumns[i]) != largeRG.isUnsigned(largeKeyColumns[i]))
{
bSignedUnsignedJoin = true;
}
}
storedKeyAlloc = FixedAllocator(keyLength);
discreteValues.reset(new bool[smallKeyColumns.size()]);
cpValues.reset(new vector<int64_t>[smallKeyColumns.size()]);
for (uint32_t i = 0; i < smallKeyColumns.size(); i++)
{
discreteValues[i] = false;
if (isUnsigned(smallRG.getColTypes()[smallKeyColumns[i]]))
{
cpValues[i].push_back(static_cast<int64_t>(numeric_limits<uint64_t>::max()));
cpValues[i].push_back(0);
}
else
{
cpValues[i].push_back(numeric_limits<int64_t>::max());
cpValues[i].push_back(numeric_limits<int64_t>::min());
}
}
}
TupleJoiner::TupleJoiner() { }
TupleJoiner::TupleJoiner(const TupleJoiner& j)
{
throw runtime_error("TupleJoiner(TupleJoiner) shouldn't be called.");
}
TupleJoiner& TupleJoiner::operator=(const TupleJoiner& j)
{
throw runtime_error("TupleJoiner::operator=() shouldn't be called.");
return *this;
}
TupleJoiner::~TupleJoiner()
{
smallNullMemory = RGData();
}
bool TupleJoiner::operator<(const TupleJoiner& tj) const
{
return size() < tj.size();
}
void TupleJoiner::insert(Row& r, bool zeroTheRid)
{
/* when doing a disk-based join, only the first iteration on the large side
will 'zeroTheRid'. The successive iterations will need it unchanged. */
if (zeroTheRid)
r.zeroRid();
updateCPData(r);
if (joinAlg == UM)
{
if (typelessJoin)
{
ht->insert(pair<TypelessData, Row::Pointer>
(makeTypelessKey(r, smallKeyColumns, keyLength, &storedKeyAlloc),
r.getPointer()));
}
else if (!smallRG.usesStringTable())
{
int64_t smallKey;
if (r.isUnsigned(smallKeyColumns[0]))
smallKey = (int64_t)(r.getUintField(smallKeyColumns[0]));
else
smallKey = r.getIntField(smallKeyColumns[0]);
if (UNLIKELY(smallKey == nullValueForJoinColumn))
h->insert(pair<int64_t, uint8_t*>(getJoinNullValue(), r.getData()));
else
h->insert(pair<int64_t, uint8_t*>(smallKey, r.getData())); // Normal path for integers
}
else
{
int64_t smallKey = r.getIntField(smallKeyColumns[0]);
if (UNLIKELY(smallKey == nullValueForJoinColumn))
sth->insert(pair<int64_t, Row::Pointer>(getJoinNullValue(), r.getPointer()));
else
sth->insert(pair<int64_t, Row::Pointer>(smallKey, r.getPointer()));
}
}
else
{
rows.push_back(r.getPointer());
}
}
void TupleJoiner::match(rowgroup::Row& largeSideRow, uint32_t largeRowIndex, uint32_t threadID,
vector<Row::Pointer>* matches)
{
uint32_t i;
bool isNull = hasNullJoinColumn(largeSideRow);
matches->clear();
if (inPM())
{
vector<uint32_t>& v = pmJoinResults[threadID][largeRowIndex];
uint32_t size = v.size();
for (i = 0; i < size; i++)
if (v[i] < rows.size())
matches->push_back(rows[v[i]]);
if (UNLIKELY((semiJoin() || antiJoin()) && matches->size() == 0))
matches->push_back(smallNullRow.getPointer());
}
else if (LIKELY(!isNull))
{
if (UNLIKELY(typelessJoin))
{
TypelessData largeKey;
thIterator it;
pair<thIterator, thIterator> range;
largeKey = makeTypelessKey(largeSideRow, largeKeyColumns, keyLength, &tmpKeyAlloc[threadID]);
it = ht->find(largeKey);
if (it == ht->end() && !(joinType & (LARGEOUTER | MATCHNULLS)))
return;
range = ht->equal_range(largeKey);
for (; range.first != range.second; ++range.first)
matches->push_back(range.first->second);
}
else if (!smallRG.usesStringTable())
{
int64_t largeKey;
iterator it;
pair<iterator, iterator> range;
Row r;
if (largeSideRow.isUnsigned(largeKeyColumns[0]))
{
largeKey = (int64_t)largeSideRow.getUintField(largeKeyColumns[0]);
}
else
{
largeKey = largeSideRow.getIntField(largeKeyColumns[0]);
}
it = h->find(largeKey);
if (it == end() && !(joinType & (LARGEOUTER | MATCHNULLS)))
return;
range = h->equal_range(largeKey);
//smallRG.initRow(&r);
for (; range.first != range.second; ++range.first)
{
//r.setData(range.first->second);
//cerr << "matched small side row: " << r.toString() << endl;
matches->push_back(range.first->second);
}
}
else
{
int64_t largeKey;
sthash_t::iterator it;
pair<sthash_t::iterator, sthash_t::iterator> range;
Row r;
largeKey = largeSideRow.getIntField(largeKeyColumns[0]);
it = sth->find(largeKey);
if (it == sth->end() && !(joinType & (LARGEOUTER | MATCHNULLS)))
return;
range = sth->equal_range(largeKey);
//smallRG.initRow(&r);
for (; range.first != range.second; ++range.first)
{
//r.setPointer(range.first->second);
//cerr << "matched small side row: " << r.toString() << endl;
matches->push_back(range.first->second);
}
}
}
if (UNLIKELY(largeOuterJoin() && matches->size() == 0))
{
//cout << "Matched the NULL row: " << smallNullRow.toString() << endl;
matches->push_back(smallNullRow.getPointer());
}
if (UNLIKELY(inUM() && (joinType & MATCHNULLS) && !isNull && !typelessJoin))
{
if (!smallRG.usesStringTable())
{
pair<iterator, iterator> range = h->equal_range(getJoinNullValue());
for (; range.first != range.second; ++range.first)
matches->push_back(range.first->second);
}
else
{
pair<sthash_t::iterator, sthash_t::iterator> range = sth->equal_range(getJoinNullValue());
for (; range.first != range.second; ++range.first)
matches->push_back(range.first->second);
}
}
/* Bug 3524. For 'not in' queries this matches everything.
*/
if (UNLIKELY(inUM() && isNull && antiJoin() && (joinType & MATCHNULLS)))
{
if (!typelessJoin)
{
if (!smallRG.usesStringTable())
{
iterator it;
for (it = h->begin(); it != h->end(); ++it)
matches->push_back(it->second);
}
else
{
sthash_t::iterator it;
for (it = sth->begin(); it != sth->end(); ++it)
matches->push_back(it->second);
}
}
else
{
thIterator it;
for (it = ht->begin(); it != ht->end(); ++it)
matches->push_back(it->second);
}
}
}
void TupleJoiner::doneInserting()
{
// a minor textual cleanup
#ifdef TJ_DEBUG
#define CHECKSIZE \
if (uniquer.size() > uniqueLimit) { \
cout << "too many discrete values\n"; \
return; \
}
#else
#define CHECKSIZE \
if (uniquer.size() > uniqueLimit) \
return;
#endif
uint32_t col;
/* Put together the discrete values for the runtime casual partitioning restriction */
finished = true;
for (col = 0; col < smallKeyColumns.size(); col++)
{
tr1::unordered_set<int64_t> uniquer;
tr1::unordered_set<int64_t>::iterator uit;
sthash_t::iterator sthit;
hash_t::iterator hit;
typelesshash_t::iterator thit;
uint32_t i, pmpos = 0, rowCount;
Row smallRow;
smallRG.initRow(&smallRow);
if (smallRow.isCharType(smallKeyColumns[col]))
continue;
rowCount = size();
if (joinAlg == PM)
pmpos = 0;
else if (typelessJoin)
thit = ht->begin();
else if (!smallRG.usesStringTable())
hit = h->begin();
else
sthit = sth->begin();
for (i = 0; i < rowCount; i++)
{
if (joinAlg == PM)
smallRow.setPointer(rows[pmpos++]);
else if (typelessJoin)
{
smallRow.setPointer(thit->second);
++thit;
}
else if (!smallRG.usesStringTable())
{
smallRow.setPointer(hit->second);
++hit;
}
else
{
smallRow.setPointer(sthit->second);
++sthit;
}
if (smallRow.isUnsigned(smallKeyColumns[col]))
{
uniquer.insert((int64_t)smallRow.getUintField(smallKeyColumns[col]));
}
else
{
uniquer.insert(smallRow.getIntField(smallKeyColumns[col]));
}
CHECKSIZE;
}
discreteValues[col] = true;
cpValues[col].clear();
#ifdef TJ_DEBUG
cout << "inserting " << uniquer.size() << " discrete values\n";
#endif
for (uit = uniquer.begin(); uit != uniquer.end(); ++uit)
cpValues[col].push_back(*uit);
}
}
void TupleJoiner::setInPM()
{
joinAlg = PM;
}
void TupleJoiner::setInUM()
{
vector<Row::Pointer> empty;
Row smallRow;
uint32_t i, size;
if (joinAlg == UM)
return;
joinAlg = UM;
size = rows.size();
smallRG.initRow(&smallRow);
#ifdef TJ_DEBUG
cout << "converting array to hash, size = " << size << "\n";
#endif
for (i = 0; i < size; i++)
{
smallRow.setPointer(rows[i]);
insert(smallRow);
}
#ifdef TJ_DEBUG
cout << "done\n";
#endif
rows.swap(empty);
if (typelessJoin)
{
tmpKeyAlloc.reset(new FixedAllocator[threadCount]);
for (i = 0; i < threadCount; i++)
tmpKeyAlloc[i] = FixedAllocator(keyLength, true);
}
}
void TupleJoiner::setPMJoinResults(boost::shared_array<vector<uint32_t> > jr,
uint32_t threadID)
{
pmJoinResults[threadID] = jr;
}
void TupleJoiner::markMatches(uint32_t threadID, uint32_t rowCount)
{
boost::shared_array<vector<uint32_t> > matches = pmJoinResults[threadID];
uint32_t i, j;
for (i = 0; i < rowCount; i++)
for (j = 0; j < matches[i].size(); j++)
{
if (matches[i][j] < rows.size())
{
smallRow[threadID].setPointer(rows[matches[i][j]]);
smallRow[threadID].markRow();
}
}
}
void TupleJoiner::markMatches(uint32_t threadID, const vector<Row::Pointer>& matches)
{
uint32_t rowCount = matches.size();
uint32_t i;
for (i = 0; i < rowCount; i++)
{
smallRow[threadID].setPointer(matches[i]);
smallRow[threadID].markRow();
}
}
boost::shared_array<std::vector<uint32_t> > TupleJoiner::getPMJoinArrays(uint32_t threadID)
{
return pmJoinResults[threadID];
}
void TupleJoiner::setThreadCount(uint32_t cnt)
{
threadCount = cnt;
pmJoinResults.reset(new boost::shared_array<vector<uint32_t> >[cnt]);
smallRow.reset(new Row[cnt]);
for (uint32_t i = 0; i < cnt; i++)
smallRG.initRow(&smallRow[i]);
if (typelessJoin)
{
tmpKeyAlloc.reset(new FixedAllocator[threadCount]);
for (uint32_t i = 0; i < threadCount; i++)
tmpKeyAlloc[i] = FixedAllocator(keyLength, true);
}
if (fe)
{
fes.reset(new funcexp::FuncExpWrapper[cnt]);
for (uint32_t i = 0; i < cnt; i++)
fes[i] = *fe;
}
}
void TupleJoiner::getUnmarkedRows(vector<Row::Pointer>* out)
{
Row smallR;
smallRG.initRow(&smallR);
out->clear();
if (inPM())
{
uint32_t i, size;
size = rows.size();
for (i = 0; i < size; i++)
{
smallR.setPointer(rows[i]);
if (!smallR.isMarked())
out->push_back(rows[i]);
}
}
else
{
if (typelessJoin)
{
typelesshash_t::iterator it;
for (it = ht->begin(); it != ht->end(); ++it)
{
smallR.setPointer(it->second);
if (!smallR.isMarked())
out->push_back(it->second);
}
}
else if (!smallRG.usesStringTable())
{
iterator it;
for (it = begin(); it != end(); ++it)
{
smallR.setPointer(it->second);
if (!smallR.isMarked())
out->push_back(it->second);
}
}
else
{
sthash_t::iterator it;
for (it = sth->begin(); it != sth->end(); ++it)
{
smallR.setPointer(it->second);
if (!smallR.isMarked())
out->push_back(it->second);
}
}
}
}
uint64_t TupleJoiner::getMemUsage() const
{
if (inUM() && typelessJoin)
return _pool->getMemUsage() + storedKeyAlloc.getMemUsage();
else if (inUM())
return _pool->getMemUsage();
else
return (rows.size() * sizeof(Row::Pointer));
}
void TupleJoiner::setFcnExpFilter(boost::shared_ptr<funcexp::FuncExpWrapper> pt)
{
fe = pt;
if (fe)
joinType |= WITHFCNEXP;
else
joinType &= ~WITHFCNEXP;
}
void TupleJoiner::updateCPData(const Row& r)
{
uint32_t col;
if (antiJoin() || largeOuterJoin())
return;
for (col = 0; col < smallKeyColumns.size(); col++)
{
if (r.isLongString(smallKeyColumns[col]))
continue;
int64_t& min = cpValues[col][0], &max = cpValues[col][1];
if (r.isCharType(smallKeyColumns[col]))
{
int64_t val = r.getIntField(smallKeyColumns[col]);
if (order_swap(val) < order_swap(min) ||
min == numeric_limits<int64_t>::max())
{
min = val;
}
if (order_swap(val) > order_swap(max) ||
max == numeric_limits<int64_t>::min())
{
max = val;
}
}
else if (r.isUnsigned(smallKeyColumns[col]))
{
uint64_t uval = r.getUintField(smallKeyColumns[col]);
if (uval > static_cast<uint64_t>(max))
max = static_cast<int64_t>(uval);
if (uval < static_cast<uint64_t>(min))
min = static_cast<int64_t>(uval);
}
else
{
int64_t val = r.getIntField(smallKeyColumns[col]);
if (val > max)
max = val;
if (val < min)
min = val;
}
}
}
size_t TupleJoiner::size() const
{
if (joinAlg == UM || joinAlg == INSERTING)
{
if (UNLIKELY(typelessJoin))
return ht->size();
else if (!smallRG.usesStringTable())
return h->size();
else
return sth->size();
}
return rows.size();
}
TypelessData makeTypelessKey(const Row& r, const vector<uint32_t>& keyCols,
uint32_t keylen, FixedAllocator* fa)
{
TypelessData ret;
uint32_t off = 0, i, j;
execplan::CalpontSystemCatalog::ColDataType type;
ret.data = (uint8_t*) fa->allocate();
for (i = 0; i < keyCols.size(); i++)
{
type = r.getColTypes()[keyCols[i]];
if (type == CalpontSystemCatalog::VARCHAR ||
type == CalpontSystemCatalog::CHAR ||
type == CalpontSystemCatalog::TEXT)
{
// this is a string, copy a normalized version
const uint8_t* str = r.getStringPointer(keyCols[i]);
uint32_t width = r.getStringLength(keyCols[i]);
if (width > 65536)
{
throw runtime_error("Cannot join strings greater than 64KB");
}
for (j = 0; j < width && str[j] != 0; j++)
{
if (off >= keylen)
goto toolong;
ret.data[off++] = str[j];
}
if (off >= keylen)
goto toolong;
ret.data[off++] = 0;
}
else
{
if (off + 8 > keylen)
goto toolong;
if (r.isUnsigned(keyCols[i]))
{
*((uint64_t*) &ret.data[off]) = r.getUintField(keyCols[i]);
}
else
{
*((int64_t*) &ret.data[off]) = r.getIntField(keyCols[i]);
}
off += 8;
}
}
ret.len = off;
fa->truncateBy(keylen - off);
return ret;
toolong:
fa->truncateBy(keylen);
ret.len = 0;
return ret;
}
TypelessData makeTypelessKey(const Row& r, const vector<uint32_t>& keyCols, PoolAllocator* fa)
{
TypelessData ret;
uint32_t off = 0, i, j;
execplan::CalpontSystemCatalog::ColDataType type;
uint32_t keylen = 0;
/* get the length of the normalized key... */
for (i = 0; i < keyCols.size(); i++)
{
type = r.getColTypes()[keyCols[i]];
if (r.isCharType(keyCols[i]))
keylen += r.getStringLength(keyCols[i]) + 1;
else
keylen += 8;
}
ret.data = (uint8_t*) fa->allocate(keylen);
for (i = 0; i < keyCols.size(); i++)
{
type = r.getColTypes()[keyCols[i]];
if (type == CalpontSystemCatalog::VARCHAR ||
type == CalpontSystemCatalog::CHAR ||
type == CalpontSystemCatalog::TEXT)
{
// this is a string, copy a normalized version
const uint8_t* str = r.getStringPointer(keyCols[i]);
uint32_t width = r.getStringLength(keyCols[i]);
if (width > 65536)
{
throw runtime_error("Cannot join strings greater than 64KB");
}
for (j = 0; j < width && str[j] != 0; j++)
ret.data[off++] = str[j];
ret.data[off++] = 0;
}
else
{
if (r.isUnsigned(keyCols[i]))
{
*((uint64_t*)&ret.data[off]) = r.getUintField(keyCols[i]);
}
else
{
*((int64_t*)&ret.data[off]) = r.getIntField(keyCols[i]);
}
off += 8;
}
}
assert(off == keylen);
ret.len = off;
return ret;
}
uint64_t getHashOfTypelessKey(const Row& r, const vector<uint32_t>& keyCols, uint32_t seed)
{
Hasher_r hasher;
uint64_t ret = seed, tmp;
uint32_t i;
uint32_t width = 0;
char nullChar = '\0';
execplan::CalpontSystemCatalog::ColDataType type;
for (i = 0; i < keyCols.size(); i++)
{
type = r.getColTypes()[keyCols[i]];
if (type == CalpontSystemCatalog::VARCHAR ||
type == CalpontSystemCatalog::CHAR ||
type == CalpontSystemCatalog::TEXT)
{
// this is a string, copy a normalized version
const uint8_t* str = r.getStringPointer(keyCols[i]);
uint32_t len = r.getStringLength(keyCols[i]);
ret = hasher((const char*) str, len, ret);
/*
for (uint32_t j = 0; j < width && str[j] != 0; j++)
ret.data[off++] = str[j];
*/
ret = hasher(&nullChar, 1, ret);
width += len + 1;
}
else
{
width += 8;
if (r.isUnsigned(keyCols[i]))
{
tmp = r.getUintField(keyCols[i]);
ret = hasher((char*) &tmp, 8, ret);
}
else
{
tmp = r.getIntField(keyCols[i]);
ret = hasher((char*) &tmp, 8, ret);
}
}
}
ret = hasher.finalize(ret, width);
return ret;
}
string TypelessData::toString() const
{
uint32_t i;
ostringstream os;
os << hex;
for (i = 0; i < len; i++)
{
os << (uint32_t) data[i] << " ";
}
os << dec;
return os.str();
}
void TypelessData::serialize(messageqcpp::ByteStream& b) const
{
b << len;
b.append(data, len);
}
void TypelessData::deserialize(messageqcpp::ByteStream& b, utils::FixedAllocator& fa)
{
b >> len;
data = (uint8_t*) fa.allocate(len);
memcpy(data, b.buf(), len);
b.advance(len);
}
void TypelessData::deserialize(messageqcpp::ByteStream& b, utils::PoolAllocator& fa)
{
b >> len;
data = (uint8_t*) fa.allocate(len);
memcpy(data, b.buf(), len);
b.advance(len);
}
bool TupleJoiner::hasNullJoinColumn(const Row& r) const
{
uint64_t key;
for (uint32_t i = 0; i < largeKeyColumns.size(); i++)
{
if (r.isNullValue(largeKeyColumns[i]))
return true;
if (UNLIKELY(bSignedUnsignedJoin))
{
// BUG 5628 If this is a signed/unsigned join column and the sign bit is set on either
// side, then this row should not compare. Treat as NULL to prevent compare, even if
// the bit patterns match.
if (smallRG.isUnsigned(smallKeyColumns[i]) != largeRG.isUnsigned(largeKeyColumns[i]))
{
if (r.isUnsigned(largeKeyColumns[i]))
key = r.getUintField(largeKeyColumns[i]); // Does not propogate sign bit
else
key = r.getIntField(largeKeyColumns[i]); // Propogates sign bit
if (key & 0x8000000000000000ULL)
{
return true;
}
}
}
}
return false;
}
string TupleJoiner::getTableName() const
{
return tableName;
}
void TupleJoiner::setTableName(const string& tname)
{
tableName = tname;
}
/* Disk based join support */
void TupleJoiner::clearData()
{
STLPoolAllocator<pair<const TypelessData, Row::Pointer> > alloc(64 * 1024 * 1024 + 1);
_pool = alloc.getPoolAllocator();
if (typelessJoin)
ht.reset(new typelesshash_t(10, hasher(), typelesshash_t::key_equal(), alloc));
else if (smallRG.usesStringTable())
sth.reset(new sthash_t(10, hasher(), sthash_t::key_equal(), alloc));
else
h.reset(new hash_t(10, hasher(), hash_t::key_equal(), alloc));
std::vector<rowgroup::Row::Pointer> empty;
rows.swap(empty);
finished = false;
}
boost::shared_ptr<TupleJoiner> TupleJoiner::copyForDiskJoin()
{
boost::shared_ptr<TupleJoiner> ret(new TupleJoiner());
ret->smallRG = smallRG;
ret->largeRG = largeRG;
ret->smallNullMemory = smallNullMemory;
ret->smallNullRow = smallNullRow;
ret->joinType = joinType;
ret->tableName = tableName;
ret->typelessJoin = typelessJoin;
ret->smallKeyColumns = smallKeyColumns;
ret->largeKeyColumns = largeKeyColumns;
ret->keyLength = keyLength;
ret->bSignedUnsignedJoin = bSignedUnsignedJoin;
ret->fe = fe;
ret->nullValueForJoinColumn = nullValueForJoinColumn;
ret->uniqueLimit = uniqueLimit;
ret->discreteValues.reset(new bool[smallKeyColumns.size()]);
ret->cpValues.reset(new vector<int64_t>[smallKeyColumns.size()]);
for (uint32_t i = 0; i < smallKeyColumns.size(); i++)
{
ret->discreteValues[i] = false;
if (isUnsigned(smallRG.getColTypes()[smallKeyColumns[i]]))
{
ret->cpValues[i].push_back(static_cast<int64_t>(numeric_limits<uint64_t>::max()));
ret->cpValues[i].push_back(0);
}
else
{
ret->cpValues[i].push_back(numeric_limits<int64_t>::max());
ret->cpValues[i].push_back(numeric_limits<int64_t>::min());
}
}
if (typelessJoin)
ret->storedKeyAlloc = FixedAllocator(keyLength);
ret->setThreadCount(1);
ret->clearData();
ret->setInUM();
return ret;
}
};