You've already forked mariadb-columnstore-engine
							
							
				mirror of
				https://github.com/mariadb-corporation/mariadb-columnstore-engine.git
				synced 2025-10-30 07:25:34 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			2845 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2845 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2013 Google Inc. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| //
 | |
| // A btree implementation of the STL set and map interfaces. A btree is both
 | |
| // smaller and faster than STL set/map. The red-black tree implementation of
 | |
| // STL set/map has an overhead of 3 pointers (left, right and parent) plus the
 | |
| // node color information for each stored value. So a set<int32> consumes 20
 | |
| // bytes for each value stored. This btree implementation stores multiple
 | |
| // values on fixed size nodes (usually 256 bytes) and doesn't store child
 | |
| // pointers for leaf nodes. The result is that a btree_set<int32> may use much
 | |
| // less memory per stored value. For the random insertion benchmark in
 | |
| // btree_test.cc, a btree_set<int32> with node-size of 256 uses 4.9 bytes per
 | |
| // stored value.
 | |
| //
 | |
| // The packing of multiple values on to each node of a btree has another effect
 | |
| // besides better space utilization: better cache locality due to fewer cache
 | |
| // lines being accessed. Better cache locality translates into faster
 | |
| // operations.
 | |
| //
 | |
| // CAVEATS
 | |
| //
 | |
| // Insertions and deletions on a btree can cause splitting, merging or
 | |
| // rebalancing of btree nodes. And even without these operations, insertions
 | |
| // and deletions on a btree will move values around within a node. In both
 | |
| // cases, the result is that insertions and deletions can invalidate iterators
 | |
| // pointing to values other than the one being inserted/deleted. This is
 | |
| // notably different from STL set/map which takes care to not invalidate
 | |
| // iterators on insert/erase except, of course, for iterators pointing to the
 | |
| // value being erased.  A partial workaround when erasing is available:
 | |
| // erase() returns an iterator pointing to the item just after the one that was
 | |
| // erased (or end() if none exists).  See also safe_btree.
 | |
| 
 | |
| // PERFORMANCE
 | |
| //
 | |
| //   btree_bench --benchmarks=. 2>&1 | ./benchmarks.awk
 | |
| //
 | |
| // Run on pmattis-warp.nyc (4 X 2200 MHz CPUs); 2010/03/04-15:23:06
 | |
| // Benchmark                 STL(ns) B-Tree(ns) @    <size>
 | |
| // --------------------------------------------------------
 | |
| // BM_set_int32_insert        1516      608  +59.89%  <256>    [40.0,  5.2]
 | |
| // BM_set_int32_lookup        1160      414  +64.31%  <256>    [40.0,  5.2]
 | |
| // BM_set_int32_fulllookup     960      410  +57.29%  <256>    [40.0,  4.4]
 | |
| // BM_set_int32_delete        1741      528  +69.67%  <256>    [40.0,  5.2]
 | |
| // BM_set_int32_queueaddrem   3078     1046  +66.02%  <256>    [40.0,  5.5]
 | |
| // BM_set_int32_mixedaddrem   3600     1384  +61.56%  <256>    [40.0,  5.3]
 | |
| // BM_set_int32_fifo           227      113  +50.22%  <256>    [40.0,  4.4]
 | |
| // BM_set_int32_fwditer        158       26  +83.54%  <256>    [40.0,  5.2]
 | |
| // BM_map_int32_insert        1551      636  +58.99%  <256>    [48.0, 10.5]
 | |
| // BM_map_int32_lookup        1200      508  +57.67%  <256>    [48.0, 10.5]
 | |
| // BM_map_int32_fulllookup     989      487  +50.76%  <256>    [48.0,  8.8]
 | |
| // BM_map_int32_delete        1794      628  +64.99%  <256>    [48.0, 10.5]
 | |
| // BM_map_int32_queueaddrem   3189     1266  +60.30%  <256>    [48.0, 11.6]
 | |
| // BM_map_int32_mixedaddrem   3822     1623  +57.54%  <256>    [48.0, 10.9]
 | |
| // BM_map_int32_fifo           151      134  +11.26%  <256>    [48.0,  8.8]
 | |
| // BM_map_int32_fwditer        161       32  +80.12%  <256>    [48.0, 10.5]
 | |
| // BM_set_int64_insert        1546      636  +58.86%  <256>    [40.0, 10.5]
 | |
| // BM_set_int64_lookup        1200      512  +57.33%  <256>    [40.0, 10.5]
 | |
| // BM_set_int64_fulllookup     971      487  +49.85%  <256>    [40.0,  8.8]
 | |
| // BM_set_int64_delete        1745      616  +64.70%  <256>    [40.0, 10.5]
 | |
| // BM_set_int64_queueaddrem   3163     1195  +62.22%  <256>    [40.0, 11.6]
 | |
| // BM_set_int64_mixedaddrem   3760     1564  +58.40%  <256>    [40.0, 10.9]
 | |
| // BM_set_int64_fifo           146      103  +29.45%  <256>    [40.0,  8.8]
 | |
| // BM_set_int64_fwditer        162       31  +80.86%  <256>    [40.0, 10.5]
 | |
| // BM_map_int64_insert        1551      720  +53.58%  <256>    [48.0, 20.7]
 | |
| // BM_map_int64_lookup        1214      612  +49.59%  <256>    [48.0, 20.7]
 | |
| // BM_map_int64_fulllookup     994      592  +40.44%  <256>    [48.0, 17.2]
 | |
| // BM_map_int64_delete        1778      764  +57.03%  <256>    [48.0, 20.7]
 | |
| // BM_map_int64_queueaddrem   3189     1547  +51.49%  <256>    [48.0, 20.9]
 | |
| // BM_map_int64_mixedaddrem   3779     1887  +50.07%  <256>    [48.0, 21.6]
 | |
| // BM_map_int64_fifo           147      145   +1.36%  <256>    [48.0, 17.2]
 | |
| // BM_map_int64_fwditer        162       41  +74.69%  <256>    [48.0, 20.7]
 | |
| // BM_set_string_insert       1989     1966   +1.16%  <256>    [64.0, 44.5]
 | |
| // BM_set_string_lookup       1709     1600   +6.38%  <256>    [64.0, 44.5]
 | |
| // BM_set_string_fulllookup   1573     1529   +2.80%  <256>    [64.0, 35.4]
 | |
| // BM_set_string_delete       2520     1920  +23.81%  <256>    [64.0, 44.5]
 | |
| // BM_set_string_queueaddrem  4706     4309   +8.44%  <256>    [64.0, 48.3]
 | |
| // BM_set_string_mixedaddrem  5080     4654   +8.39%  <256>    [64.0, 46.7]
 | |
| // BM_set_string_fifo          318      512  -61.01%  <256>    [64.0, 35.4]
 | |
| // BM_set_string_fwditer       182       93  +48.90%  <256>    [64.0, 44.5]
 | |
| // BM_map_string_insert       2600     2227  +14.35%  <256>    [72.0, 55.8]
 | |
| // BM_map_string_lookup       2068     1730  +16.34%  <256>    [72.0, 55.8]
 | |
| // BM_map_string_fulllookup   1859     1618  +12.96%  <256>    [72.0, 44.0]
 | |
| // BM_map_string_delete       3168     2080  +34.34%  <256>    [72.0, 55.8]
 | |
| // BM_map_string_queueaddrem  5840     4701  +19.50%  <256>    [72.0, 59.4]
 | |
| // BM_map_string_mixedaddrem  6400     5200  +18.75%  <256>    [72.0, 57.8]
 | |
| // BM_map_string_fifo          398      596  -49.75%  <256>    [72.0, 44.0]
 | |
| // BM_map_string_fwditer       243      113  +53.50%  <256>    [72.0, 55.8]
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <stddef.h>
 | |
| #include <string.h>
 | |
| #include <sys/types.h>
 | |
| #include <algorithm>
 | |
| #include <functional>
 | |
| #include <iostream>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include "type_traits_hm"
 | |
| #include <new>
 | |
| #include <ostream>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #define NDEBUG 1
 | |
| #endif
 | |
| 
 | |
| namespace btree
 | |
| {
 | |
| // Inside a btree method, if we just call swap(), it will choose the
 | |
| // btree::swap method, which we don't want. And we can't say ::swap
 | |
| // because then MSVC won't pickup any std::swap() implementations. We
 | |
| // can't just use std::swap() directly because then we don't get the
 | |
| // specialization for types outside the std namespace. So the solution
 | |
| // is to have a special swap helper function whose name doesn't
 | |
| // collide with other swap functions defined by the btree classes.
 | |
| template <typename T>
 | |
| inline void btree_swap_helper(T& a, T& b)
 | |
| {
 | |
|   using std::swap;
 | |
|   swap(a, b);
 | |
| }
 | |
| 
 | |
| // A template helper used to select A or B based on a condition.
 | |
| template <bool cond, typename A, typename B>
 | |
| struct if_
 | |
| {
 | |
|   typedef A type;
 | |
| };
 | |
| 
 | |
| template <typename A, typename B>
 | |
| struct if_<false, A, B>
 | |
| {
 | |
|   typedef B type;
 | |
| };
 | |
| 
 | |
| // Types small_ and big_ are promise that sizeof(small_) < sizeof(big_)
 | |
| typedef char small_;
 | |
| 
 | |
| struct big_
 | |
| {
 | |
|   char dummy[2];
 | |
| };
 | |
| 
 | |
| // A compile-time assertion.
 | |
| template <bool>
 | |
| struct CompileAssert
 | |
| {
 | |
| };
 | |
| 
 | |
| #define COMPILE_ASSERT(expr, msg) typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
 | |
| 
 | |
| // A helper type used to indicate that a key-compare-to functor has been
 | |
| // provided. A user can specify a key-compare-to functor by doing:
 | |
| //
 | |
| //  struct MyStringComparer
 | |
| //      : public util::btree::btree_key_compare_to_tag {
 | |
| //    int operator()(const string &a, const string &b) const {
 | |
| //      return a.compare(b);
 | |
| //    }
 | |
| //  };
 | |
| //
 | |
| // Note that the return type is an int and not a bool. There is a
 | |
| // COMPILE_ASSERT which enforces this return type.
 | |
| struct btree_key_compare_to_tag
 | |
| {
 | |
| };
 | |
| 
 | |
| // A helper class that indicates if the Compare parameter is derived from
 | |
| // btree_key_compare_to_tag.
 | |
| template <typename Compare>
 | |
| struct btree_is_key_compare_to : public std::is_convertible<Compare, btree_key_compare_to_tag>
 | |
| {
 | |
| };
 | |
| 
 | |
| // A helper class to convert a boolean comparison into a three-way
 | |
| // "compare-to" comparison that returns a negative value to indicate
 | |
| // less-than, zero to indicate equality and a positive value to
 | |
| // indicate greater-than. This helper class is specialized for
 | |
| // less<string> and greater<string>. The btree_key_compare_to_adapter
 | |
| // class is provided so that btree users automatically get the more
 | |
| // efficient compare-to code when using common google string types
 | |
| // with common comparison functors.
 | |
| template <typename Compare>
 | |
| struct btree_key_compare_to_adapter : Compare
 | |
| {
 | |
|   btree_key_compare_to_adapter()
 | |
|   {
 | |
|   }
 | |
|   btree_key_compare_to_adapter(const Compare& c) : Compare(c)
 | |
|   {
 | |
|   }
 | |
|   btree_key_compare_to_adapter(const btree_key_compare_to_adapter<Compare>& c) : Compare(c)
 | |
|   {
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct btree_key_compare_to_adapter<std::less<std::string> > : public btree_key_compare_to_tag
 | |
| {
 | |
|   btree_key_compare_to_adapter()
 | |
|   {
 | |
|   }
 | |
|   btree_key_compare_to_adapter(const std::less<std::string>&)
 | |
|   {
 | |
|   }
 | |
|   btree_key_compare_to_adapter(const btree_key_compare_to_adapter<std::less<std::string> >&)
 | |
|   {
 | |
|   }
 | |
|   int operator()(const std::string& a, const std::string& b) const
 | |
|   {
 | |
|     return a.compare(b);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct btree_key_compare_to_adapter<std::greater<std::string> > : public btree_key_compare_to_tag
 | |
| {
 | |
|   btree_key_compare_to_adapter()
 | |
|   {
 | |
|   }
 | |
|   btree_key_compare_to_adapter(const std::greater<std::string>&)
 | |
|   {
 | |
|   }
 | |
|   btree_key_compare_to_adapter(const btree_key_compare_to_adapter<std::greater<std::string> >&)
 | |
|   {
 | |
|   }
 | |
|   int operator()(const std::string& a, const std::string& b) const
 | |
|   {
 | |
|     return b.compare(a);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A helper class that allows a compare-to functor to behave like a plain
 | |
| // compare functor. This specialization is used when we do not have a
 | |
| // compare-to functor.
 | |
| template <typename Key, typename Compare, bool HaveCompareTo>
 | |
| struct btree_key_comparer
 | |
| {
 | |
|   btree_key_comparer()
 | |
|   {
 | |
|   }
 | |
|   btree_key_comparer(Compare c) : comp(c)
 | |
|   {
 | |
|   }
 | |
|   static bool bool_compare(const Compare& comp, const Key& x, const Key& y)
 | |
|   {
 | |
|     return comp(x, y);
 | |
|   }
 | |
|   bool operator()(const Key& x, const Key& y) const
 | |
|   {
 | |
|     return bool_compare(comp, x, y);
 | |
|   }
 | |
|   Compare comp;
 | |
| };
 | |
| 
 | |
| // A specialization of btree_key_comparer when a compare-to functor is
 | |
| // present. We need a plain (boolean) comparison in some parts of the btree
 | |
| // code, such as insert-with-hint.
 | |
| template <typename Key, typename Compare>
 | |
| struct btree_key_comparer<Key, Compare, true>
 | |
| {
 | |
|   btree_key_comparer()
 | |
|   {
 | |
|   }
 | |
|   btree_key_comparer(Compare c) : comp(c)
 | |
|   {
 | |
|   }
 | |
|   static bool bool_compare(const Compare& comp, const Key& x, const Key& y)
 | |
|   {
 | |
|     return comp(x, y) < 0;
 | |
|   }
 | |
|   bool operator()(const Key& x, const Key& y) const
 | |
|   {
 | |
|     return bool_compare(comp, x, y);
 | |
|   }
 | |
|   Compare comp;
 | |
| };
 | |
| 
 | |
| // A helper function to compare to keys using the specified compare
 | |
| // functor. This dispatches to the appropriate btree_key_comparer comparison,
 | |
| // depending on whether we have a compare-to functor or not (which depends on
 | |
| // whether Compare is derived from btree_key_compare_to_tag).
 | |
| template <typename Key, typename Compare>
 | |
| bool btree_compare_keys(const Compare& comp, const Key& x, const Key& y)
 | |
| {
 | |
|   typedef btree_key_comparer<Key, Compare, btree_is_key_compare_to<Compare>::value> key_comparer;
 | |
|   return key_comparer::bool_compare(comp, x, y);
 | |
| }
 | |
| 
 | |
| template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, int ValueSize>
 | |
| struct btree_common_params
 | |
| {
 | |
|   // If Compare is derived from btree_key_compare_to_tag then use it as the
 | |
|   // key_compare type. Otherwise, use btree_key_compare_to_adapter<> which will
 | |
|   // fall-back to Compare if we don't have an appropriate specialization.
 | |
|   typedef typename if_<btree_is_key_compare_to<Compare>::value, Compare,
 | |
|                        btree_key_compare_to_adapter<Compare> >::type key_compare;
 | |
|   // A type which indicates if we have a key-compare-to functor or a plain old
 | |
|   // key-compare functor.
 | |
|   typedef btree_is_key_compare_to<key_compare> is_key_compare_to;
 | |
| 
 | |
|   typedef Alloc allocator_type;
 | |
|   typedef Key key_type;
 | |
|   typedef ssize_t size_type;
 | |
|   typedef ptrdiff_t difference_type;
 | |
| 
 | |
|   enum
 | |
|   {
 | |
|     kTargetNodeSize = TargetNodeSize,
 | |
| 
 | |
|     // Available space for values.  This is largest for leaf nodes,
 | |
|     // which has overhead no fewer than two pointers.
 | |
|     kNodeValueSpace = TargetNodeSize - 2 * sizeof(void*),
 | |
|   };
 | |
| 
 | |
|   // This is an integral type large enough to hold as many
 | |
|   // ValueSize-values as will fit a node of TargetNodeSize bytes.
 | |
|   typedef typename if_<(kNodeValueSpace / ValueSize) >= 256, uint16_t, uint8_t>::type node_count_type;
 | |
| };
 | |
| 
 | |
| // A parameters structure for holding the type parameters for a btree_map.
 | |
| template <typename Key, typename Data, typename Compare, typename Alloc, int TargetNodeSize>
 | |
| struct btree_map_params
 | |
|  : public btree_common_params<Key, Compare, Alloc, TargetNodeSize, sizeof(Key) + sizeof(Data)>
 | |
| {
 | |
|   typedef Data data_type;
 | |
|   typedef Data mapped_type;
 | |
|   typedef std::pair<const Key, data_type> value_type;
 | |
|   typedef std::pair<Key, data_type> mutable_value_type;
 | |
|   typedef value_type* pointer;
 | |
|   typedef const value_type* const_pointer;
 | |
|   typedef value_type& reference;
 | |
|   typedef const value_type& const_reference;
 | |
| 
 | |
|   enum
 | |
|   {
 | |
|     kValueSize = sizeof(Key) + sizeof(data_type),
 | |
|   };
 | |
| 
 | |
|   static const Key& key(const value_type& x)
 | |
|   {
 | |
|     return x.first;
 | |
|   }
 | |
|   static const Key& key(const mutable_value_type& x)
 | |
|   {
 | |
|     return x.first;
 | |
|   }
 | |
|   static void swap(mutable_value_type* a, mutable_value_type* b)
 | |
|   {
 | |
|     btree_swap_helper(a->first, b->first);
 | |
|     btree_swap_helper(a->second, b->second);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A parameters structure for holding the type parameters for a btree_set.
 | |
| template <typename Key, typename Compare, typename Alloc, int TargetNodeSize>
 | |
| struct btree_set_params : public btree_common_params<Key, Compare, Alloc, TargetNodeSize, sizeof(Key)>
 | |
| {
 | |
|   typedef std::false_type data_type;
 | |
|   typedef std::false_type mapped_type;
 | |
|   typedef Key value_type;
 | |
|   typedef value_type mutable_value_type;
 | |
|   typedef value_type* pointer;
 | |
|   typedef const value_type* const_pointer;
 | |
|   typedef value_type& reference;
 | |
|   typedef const value_type& const_reference;
 | |
| 
 | |
|   enum
 | |
|   {
 | |
|     kValueSize = sizeof(Key),
 | |
|   };
 | |
| 
 | |
|   static const Key& key(const value_type& x)
 | |
|   {
 | |
|     return x;
 | |
|   }
 | |
|   static void swap(mutable_value_type* a, mutable_value_type* b)
 | |
|   {
 | |
|     btree_swap_helper<mutable_value_type>(*a, *b);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // An adapter class that converts a lower-bound compare into an upper-bound
 | |
| // compare.
 | |
| template <typename Key, typename Compare>
 | |
| struct btree_upper_bound_adapter : public Compare
 | |
| {
 | |
|   btree_upper_bound_adapter(Compare c) : Compare(c)
 | |
|   {
 | |
|   }
 | |
|   bool operator()(const Key& a, const Key& b) const
 | |
|   {
 | |
|     return !static_cast<const Compare&>(*this)(b, a);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Key, typename CompareTo>
 | |
| struct btree_upper_bound_compare_to_adapter : public CompareTo
 | |
| {
 | |
|   btree_upper_bound_compare_to_adapter(CompareTo c) : CompareTo(c)
 | |
|   {
 | |
|   }
 | |
|   int operator()(const Key& a, const Key& b) const
 | |
|   {
 | |
|     return static_cast<const CompareTo&>(*this)(b, a);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Dispatch helper class for using linear search with plain compare.
 | |
| template <typename K, typename N, typename Compare>
 | |
| struct btree_linear_search_plain_compare
 | |
| {
 | |
|   static int lower_bound(const K& k, const N& n, Compare comp)
 | |
|   {
 | |
|     return n.linear_search_plain_compare(k, 0, n.count(), comp);
 | |
|   }
 | |
|   static int upper_bound(const K& k, const N& n, Compare comp)
 | |
|   {
 | |
|     typedef btree_upper_bound_adapter<K, Compare> upper_compare;
 | |
|     return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Dispatch helper class for using linear search with compare-to
 | |
| template <typename K, typename N, typename CompareTo>
 | |
| struct btree_linear_search_compare_to
 | |
| {
 | |
|   static int lower_bound(const K& k, const N& n, CompareTo comp)
 | |
|   {
 | |
|     return n.linear_search_compare_to(k, 0, n.count(), comp);
 | |
|   }
 | |
|   static int upper_bound(const K& k, const N& n, CompareTo comp)
 | |
|   {
 | |
|     typedef btree_upper_bound_adapter<K, btree_key_comparer<K, CompareTo, true> > upper_compare;
 | |
|     return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Dispatch helper class for using binary search with plain compare.
 | |
| template <typename K, typename N, typename Compare>
 | |
| struct btree_binary_search_plain_compare
 | |
| {
 | |
|   static int lower_bound(const K& k, const N& n, Compare comp)
 | |
|   {
 | |
|     return n.binary_search_plain_compare(k, 0, n.count(), comp);
 | |
|   }
 | |
|   static int upper_bound(const K& k, const N& n, Compare comp)
 | |
|   {
 | |
|     typedef btree_upper_bound_adapter<K, Compare> upper_compare;
 | |
|     return n.binary_search_plain_compare(k, 0, n.count(), upper_compare(comp));
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Dispatch helper class for using binary search with compare-to.
 | |
| template <typename K, typename N, typename CompareTo>
 | |
| struct btree_binary_search_compare_to
 | |
| {
 | |
|   static int lower_bound(const K& k, const N& n, CompareTo comp)
 | |
|   {
 | |
|     return n.binary_search_compare_to(k, 0, n.count(), CompareTo());
 | |
|   }
 | |
|   static int upper_bound(const K& k, const N& n, CompareTo comp)
 | |
|   {
 | |
|     typedef btree_upper_bound_adapter<K, btree_key_comparer<K, CompareTo, true> > upper_compare;
 | |
|     return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A node in the btree holding. The same node type is used for both internal
 | |
| // and leaf nodes in the btree, though the nodes are allocated in such a way
 | |
| // that the children array is only valid in internal nodes.
 | |
| template <typename Params>
 | |
| class btree_node
 | |
| {
 | |
|  public:
 | |
|   typedef Params params_type;
 | |
|   typedef btree_node<Params> self_type;
 | |
|   typedef typename Params::key_type key_type;
 | |
|   typedef typename Params::data_type data_type;
 | |
|   typedef typename Params::value_type value_type;
 | |
|   typedef typename Params::mutable_value_type mutable_value_type;
 | |
|   typedef typename Params::pointer pointer;
 | |
|   typedef typename Params::const_pointer const_pointer;
 | |
|   typedef typename Params::reference reference;
 | |
|   typedef typename Params::const_reference const_reference;
 | |
|   typedef typename Params::key_compare key_compare;
 | |
|   typedef typename Params::size_type size_type;
 | |
|   typedef typename Params::difference_type difference_type;
 | |
|   // Typedefs for the various types of node searches.
 | |
|   typedef btree_linear_search_plain_compare<key_type, self_type, key_compare>
 | |
|       linear_search_plain_compare_type;
 | |
|   typedef btree_linear_search_compare_to<key_type, self_type, key_compare> linear_search_compare_to_type;
 | |
|   typedef btree_binary_search_plain_compare<key_type, self_type, key_compare>
 | |
|       binary_search_plain_compare_type;
 | |
|   typedef btree_binary_search_compare_to<key_type, self_type, key_compare> binary_search_compare_to_type;
 | |
|   // If we have a valid key-compare-to type, use linear_search_compare_to,
 | |
|   // otherwise use linear_search_plain_compare.
 | |
|   typedef typename if_<Params::is_key_compare_to::value, linear_search_compare_to_type,
 | |
|                        linear_search_plain_compare_type>::type linear_search_type;
 | |
|   // If we have a valid key-compare-to type, use binary_search_compare_to,
 | |
|   // otherwise use binary_search_plain_compare.
 | |
|   typedef typename if_<Params::is_key_compare_to::value, binary_search_compare_to_type,
 | |
|                        binary_search_plain_compare_type>::type binary_search_type;
 | |
|   // If the key is an integral or floating point type, use linear search which
 | |
|   // is faster than binary search for such types. Might be wise to also
 | |
|   // configure linear search based on node-size.
 | |
|   typedef typename if_<std::is_integral<key_type>::value || std::is_floating_point<key_type>::value,
 | |
|                        linear_search_type, binary_search_type>::type search_type;
 | |
| 
 | |
|   struct base_fields
 | |
|   {
 | |
|     typedef typename Params::node_count_type field_type;
 | |
| 
 | |
|     // A boolean indicating whether the node is a leaf or not.
 | |
|     bool leaf;
 | |
|     // The position of the node in the node's parent.
 | |
|     field_type position;
 | |
|     // The maximum number of values the node can hold.
 | |
|     field_type max_count;
 | |
|     // The count of the number of values in the node.
 | |
|     field_type count;
 | |
|     // A pointer to the node's parent.
 | |
|     btree_node* parent;
 | |
|   };
 | |
| 
 | |
|   enum
 | |
|   {
 | |
|     kValueSize = params_type::kValueSize,
 | |
|     kTargetNodeSize = params_type::kTargetNodeSize,
 | |
| 
 | |
|     // Compute how many values we can fit onto a leaf node.
 | |
|     kNodeTargetValues = (kTargetNodeSize - sizeof(base_fields)) / kValueSize,
 | |
|     // We need a minimum of 3 values per internal node in order to perform
 | |
|     // splitting (1 value for the two nodes involved in the split and 1 value
 | |
|     // propagated to the parent as the delimiter for the split).
 | |
|     kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
 | |
| 
 | |
|     kExactMatch = 1 << 30,
 | |
|     kMatchMask = kExactMatch - 1,
 | |
|   };
 | |
| 
 | |
|   struct leaf_fields : public base_fields
 | |
|   {
 | |
|     // The array of values. Only the first count of these values have been
 | |
|     // constructed and are valid.
 | |
|     mutable_value_type values[kNodeValues];
 | |
|   };
 | |
| 
 | |
|   struct internal_fields : public leaf_fields
 | |
|   {
 | |
|     // The array of child pointers. The keys in children_[i] are all less than
 | |
|     // key(i). The keys in children_[i + 1] are all greater than key(i). There
 | |
|     // are always count + 1 children.
 | |
|     btree_node* children[kNodeValues + 1];
 | |
|   };
 | |
| 
 | |
|   struct root_fields : public internal_fields
 | |
|   {
 | |
|     btree_node* rightmost;
 | |
|     size_type size;
 | |
|   };
 | |
| 
 | |
|  public:
 | |
|   // Getter/setter for whether this is a leaf node or not. This value doesn't
 | |
|   // change after the node is created.
 | |
|   bool leaf() const
 | |
|   {
 | |
|     return fields_.leaf;
 | |
|   }
 | |
| 
 | |
|   // Getter for the position of this node in its parent.
 | |
|   int position() const
 | |
|   {
 | |
|     return fields_.position;
 | |
|   }
 | |
|   void set_position(int v)
 | |
|   {
 | |
|     fields_.position = v;
 | |
|   }
 | |
| 
 | |
|   // Getter/setter for the number of values stored in this node.
 | |
|   int count() const
 | |
|   {
 | |
|     return fields_.count;
 | |
|   }
 | |
|   void set_count(int v)
 | |
|   {
 | |
|     fields_.count = v;
 | |
|   }
 | |
|   int max_count() const
 | |
|   {
 | |
|     return fields_.max_count;
 | |
|   }
 | |
| 
 | |
|   // Getter for the parent of this node.
 | |
|   btree_node* parent() const
 | |
|   {
 | |
|     return fields_.parent;
 | |
|   }
 | |
|   // Getter for whether the node is the root of the tree. The parent of the
 | |
|   // root of the tree is the leftmost node in the tree which is guaranteed to
 | |
|   // be a leaf.
 | |
|   bool is_root() const
 | |
|   {
 | |
|     return parent()->leaf();
 | |
|   }
 | |
|   void make_root()
 | |
|   {
 | |
|     assert(parent()->is_root());
 | |
|     fields_.parent = fields_.parent->parent();
 | |
|   }
 | |
| 
 | |
|   // Getter for the rightmost root node field. Only valid on the root node.
 | |
|   btree_node* rightmost() const
 | |
|   {
 | |
|     return fields_.rightmost;
 | |
|   }
 | |
|   btree_node** mutable_rightmost()
 | |
|   {
 | |
|     return &fields_.rightmost;
 | |
|   }
 | |
| 
 | |
|   // Getter for the size root node field. Only valid on the root node.
 | |
|   size_type size() const
 | |
|   {
 | |
|     return fields_.size;
 | |
|   }
 | |
|   size_type* mutable_size()
 | |
|   {
 | |
|     return &fields_.size;
 | |
|   }
 | |
| 
 | |
|   // Getters for the key/value at position i in the node.
 | |
|   const key_type& key(int i) const
 | |
|   {
 | |
|     return params_type::key(fields_.values[i]);
 | |
|   }
 | |
|   reference value(int i)
 | |
|   {
 | |
|     return reinterpret_cast<reference>(fields_.values[i]);
 | |
|   }
 | |
|   const_reference value(int i) const
 | |
|   {
 | |
|     return reinterpret_cast<const_reference>(fields_.values[i]);
 | |
|   }
 | |
|   mutable_value_type* mutable_value(int i)
 | |
|   {
 | |
|     return &fields_.values[i];
 | |
|   }
 | |
| 
 | |
|   // Swap value i in this node with value j in node x.
 | |
|   void value_swap(int i, btree_node* x, int j)
 | |
|   {
 | |
|     params_type::swap(mutable_value(i), x->mutable_value(j));
 | |
|   }
 | |
| 
 | |
|   // Getters/setter for the child at position i in the node.
 | |
|   btree_node* child(int i) const
 | |
|   {
 | |
|     return fields_.children[i];
 | |
|   }
 | |
|   btree_node** mutable_child(int i)
 | |
|   {
 | |
|     return &fields_.children[i];
 | |
|   }
 | |
|   void set_child(int i, btree_node* c)
 | |
|   {
 | |
|     *mutable_child(i) = c;
 | |
|     c->fields_.parent = this;
 | |
|     c->fields_.position = i;
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k.
 | |
|   template <typename Compare>
 | |
|   int lower_bound(const key_type& k, const Compare& comp) const
 | |
|   {
 | |
|     return search_type::lower_bound(k, *this, comp);
 | |
|   }
 | |
|   // Returns the position of the first value whose key is greater than k.
 | |
|   template <typename Compare>
 | |
|   int upper_bound(const key_type& k, const Compare& comp) const
 | |
|   {
 | |
|     return search_type::upper_bound(k, *this, comp);
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k using
 | |
|   // linear search performed using plain compare.
 | |
|   template <typename Compare>
 | |
|   int linear_search_plain_compare(const key_type& k, int s, int e, const Compare& comp) const
 | |
|   {
 | |
|     while (s < e)
 | |
|     {
 | |
|       if (!btree_compare_keys(comp, key(s), k))
 | |
|       {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       ++s;
 | |
|     }
 | |
| 
 | |
|     return s;
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k using
 | |
|   // linear search performed using compare-to.
 | |
|   template <typename Compare>
 | |
|   int linear_search_compare_to(const key_type& k, int s, int e, const Compare& comp) const
 | |
|   {
 | |
|     while (s < e)
 | |
|     {
 | |
|       int c = comp(key(s), k);
 | |
| 
 | |
|       if (c == 0)
 | |
|       {
 | |
|         return s | kExactMatch;
 | |
|       }
 | |
|       else if (c > 0)
 | |
|       {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       ++s;
 | |
|     }
 | |
| 
 | |
|     return s;
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k using
 | |
|   // binary search performed using plain compare.
 | |
|   template <typename Compare>
 | |
|   int binary_search_plain_compare(const key_type& k, int s, int e, const Compare& comp) const
 | |
|   {
 | |
|     while (s != e)
 | |
|     {
 | |
|       int mid = (s + e) / 2;
 | |
| 
 | |
|       if (btree_compare_keys(comp, key(mid), k))
 | |
|       {
 | |
|         s = mid + 1;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         e = mid;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return s;
 | |
|   }
 | |
| 
 | |
|   // Returns the position of the first value whose key is not less than k using
 | |
|   // binary search performed using compare-to.
 | |
|   template <typename CompareTo>
 | |
|   int binary_search_compare_to(const key_type& k, int s, int e, const CompareTo& comp) const
 | |
|   {
 | |
|     while (s != e)
 | |
|     {
 | |
|       int mid = (s + e) / 2;
 | |
|       int c = comp(key(mid), k);
 | |
| 
 | |
|       if (c < 0)
 | |
|       {
 | |
|         s = mid + 1;
 | |
|       }
 | |
|       else if (c > 0)
 | |
|       {
 | |
|         e = mid;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // Need to return the first value whose key is not less than k, which
 | |
|         // requires continuing the binary search. Note that we are guaranteed
 | |
|         // that the result is an exact match because if "key(mid-1) < k" the
 | |
|         // call to binary_search_compare_to() will return "mid".
 | |
|         s = binary_search_compare_to(k, s, mid, comp);
 | |
|         return s | kExactMatch;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return s;
 | |
|   }
 | |
| 
 | |
|   // Inserts the value x at position i, shifting all existing values and
 | |
|   // children at positions >= i to the right by 1.
 | |
|   void insert_value(int i, const value_type& x);
 | |
| 
 | |
|   // Removes the value at position i, shifting all existing values and children
 | |
|   // at positions > i to the left by 1.
 | |
|   void remove_value(int i);
 | |
| 
 | |
|   // Rebalances a node with its right sibling.
 | |
|   void rebalance_right_to_left(btree_node* sibling, int to_move);
 | |
|   void rebalance_left_to_right(btree_node* sibling, int to_move);
 | |
| 
 | |
|   // Splits a node, moving a portion of the node's values to its right sibling.
 | |
|   void split(btree_node* sibling, int insert_position);
 | |
| 
 | |
|   // Merges a node with its right sibling, moving all of the values and the
 | |
|   // delimiting key in the parent node onto itself.
 | |
|   void merge(btree_node* sibling);
 | |
| 
 | |
|   // Swap the contents of "this" and "src".
 | |
|   void swap(btree_node* src);
 | |
| 
 | |
|   // Node allocation/deletion routines.
 | |
|   static btree_node* init_leaf(leaf_fields* f, btree_node* parent, int max_count)
 | |
|   {
 | |
|     btree_node* n = reinterpret_cast<btree_node*>(f);
 | |
|     f->leaf = 1;
 | |
|     f->position = 0;
 | |
|     f->max_count = max_count;
 | |
|     f->count = 0;
 | |
|     f->parent = parent;
 | |
| 
 | |
|     if (!NDEBUG)
 | |
|     {
 | |
|       memset(&f->values, 0, max_count * sizeof(value_type));
 | |
|     }
 | |
| 
 | |
|     return n;
 | |
|   }
 | |
|   static btree_node* init_internal(internal_fields* f, btree_node* parent)
 | |
|   {
 | |
|     btree_node* n = init_leaf(f, parent, kNodeValues);
 | |
|     f->leaf = 0;
 | |
| 
 | |
|     if (!NDEBUG)
 | |
|     {
 | |
|       memset(f->children, 0, sizeof(f->children));
 | |
|     }
 | |
| 
 | |
|     return n;
 | |
|   }
 | |
|   static btree_node* init_root(root_fields* f, btree_node* parent)
 | |
|   {
 | |
|     btree_node* n = init_internal(f, parent);
 | |
|     f->rightmost = parent;
 | |
|     f->size = parent->count();
 | |
|     return n;
 | |
|   }
 | |
|   void destroy()
 | |
|   {
 | |
|     for (int i = 0; i < count(); ++i)
 | |
|     {
 | |
|       value_destroy(i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   void value_init(int i)
 | |
|   {
 | |
|     new (&fields_.values[i]) mutable_value_type;
 | |
|   }
 | |
|   void value_init(int i, const value_type& x)
 | |
|   {
 | |
|     new (&fields_.values[i]) mutable_value_type(x);
 | |
|   }
 | |
|   void value_destroy(int i)
 | |
|   {
 | |
|     fields_.values[i].~mutable_value_type();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   root_fields fields_;
 | |
| 
 | |
|  private:
 | |
|   btree_node(const btree_node&);
 | |
|   void operator=(const btree_node&);
 | |
| };
 | |
| 
 | |
| template <typename Node, typename Reference, typename Pointer>
 | |
| struct btree_iterator
 | |
| {
 | |
|   typedef typename Node::key_type key_type;
 | |
|   typedef typename Node::size_type size_type;
 | |
|   typedef typename Node::difference_type difference_type;
 | |
|   typedef typename Node::params_type params_type;
 | |
| 
 | |
|   typedef Node node_type;
 | |
|   typedef typename std::remove_const<Node>::type normal_node;
 | |
|   typedef const Node const_node;
 | |
|   typedef typename params_type::value_type value_type;
 | |
|   typedef typename params_type::pointer normal_pointer;
 | |
|   typedef typename params_type::reference normal_reference;
 | |
|   typedef typename params_type::const_pointer const_pointer;
 | |
|   typedef typename params_type::const_reference const_reference;
 | |
| 
 | |
|   typedef Pointer pointer;
 | |
|   typedef Reference reference;
 | |
|   typedef std::bidirectional_iterator_tag iterator_category;
 | |
| 
 | |
|   typedef btree_iterator<normal_node, normal_reference, normal_pointer> iterator;
 | |
|   typedef btree_iterator<const_node, const_reference, const_pointer> const_iterator;
 | |
|   typedef btree_iterator<Node, Reference, Pointer> self_type;
 | |
| 
 | |
|   btree_iterator() : node(NULL), position(-1)
 | |
|   {
 | |
|   }
 | |
|   btree_iterator(Node* n, int p) : node(n), position(p)
 | |
|   {
 | |
|   }
 | |
|   btree_iterator(const iterator& x) : node(x.node), position(x.position)
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   // Increment/decrement the iterator.
 | |
|   void increment()
 | |
|   {
 | |
|     if (node->leaf() && ++position < node->count())
 | |
|     {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     increment_slow();
 | |
|   }
 | |
|   void increment_by(int count);
 | |
|   void increment_slow();
 | |
| 
 | |
|   void decrement()
 | |
|   {
 | |
|     if (node->leaf() && --position >= 0)
 | |
|     {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     decrement_slow();
 | |
|   }
 | |
|   void decrement_slow();
 | |
| 
 | |
|   bool operator==(const const_iterator& x) const
 | |
|   {
 | |
|     return node == x.node && position == x.position;
 | |
|   }
 | |
|   bool operator!=(const const_iterator& x) const
 | |
|   {
 | |
|     return node != x.node || position != x.position;
 | |
|   }
 | |
| 
 | |
|   // Accessors for the key/value the iterator is pointing at.
 | |
|   const key_type& key() const
 | |
|   {
 | |
|     return node->key(position);
 | |
|   }
 | |
|   reference operator*() const
 | |
|   {
 | |
|     return node->value(position);
 | |
|   }
 | |
|   pointer operator->() const
 | |
|   {
 | |
|     return &node->value(position);
 | |
|   }
 | |
| 
 | |
|   self_type& operator++()
 | |
|   {
 | |
|     increment();
 | |
|     return *this;
 | |
|   }
 | |
|   self_type& operator--()
 | |
|   {
 | |
|     decrement();
 | |
|     return *this;
 | |
|   }
 | |
|   self_type operator++(int)
 | |
|   {
 | |
|     self_type tmp = *this;
 | |
|     ++*this;
 | |
|     return tmp;
 | |
|   }
 | |
|   self_type operator--(int)
 | |
|   {
 | |
|     self_type tmp = *this;
 | |
|     --*this;
 | |
|     return tmp;
 | |
|   }
 | |
| 
 | |
|   // The node in the tree the iterator is pointing at.
 | |
|   Node* node;
 | |
|   // The position within the node of the tree the iterator is pointing at.
 | |
|   int position;
 | |
| };
 | |
| 
 | |
| // Dispatch helper class for using btree::internal_locate with plain compare.
 | |
| struct btree_internal_locate_plain_compare
 | |
| {
 | |
|   template <typename K, typename T, typename Iter>
 | |
|   static std::pair<Iter, int> dispatch(const K& k, const T& t, Iter iter)
 | |
|   {
 | |
|     return t.internal_locate_plain_compare(k, iter);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Dispatch helper class for using btree::internal_locate with compare-to.
 | |
| struct btree_internal_locate_compare_to
 | |
| {
 | |
|   template <typename K, typename T, typename Iter>
 | |
|   static std::pair<Iter, int> dispatch(const K& k, const T& t, Iter iter)
 | |
|   {
 | |
|     return t.internal_locate_compare_to(k, iter);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Params>
 | |
| class btree : public Params::key_compare
 | |
| {
 | |
|   typedef btree<Params> self_type;
 | |
|   typedef btree_node<Params> node_type;
 | |
|   typedef typename node_type::base_fields base_fields;
 | |
|   typedef typename node_type::leaf_fields leaf_fields;
 | |
|   typedef typename node_type::internal_fields internal_fields;
 | |
|   typedef typename node_type::root_fields root_fields;
 | |
|   typedef typename Params::is_key_compare_to is_key_compare_to;
 | |
| 
 | |
|   friend class btree_internal_locate_plain_compare;
 | |
|   friend class btree_internal_locate_compare_to;
 | |
|   typedef typename if_<is_key_compare_to::value, btree_internal_locate_compare_to,
 | |
|                        btree_internal_locate_plain_compare>::type internal_locate_type;
 | |
| 
 | |
|   enum
 | |
|   {
 | |
|     kNodeValues = node_type::kNodeValues,
 | |
|     kMinNodeValues = kNodeValues / 2,
 | |
|     kValueSize = node_type::kValueSize,
 | |
|     kExactMatch = node_type::kExactMatch,
 | |
|     kMatchMask = node_type::kMatchMask,
 | |
|   };
 | |
| 
 | |
|   // A helper class to get the empty base class optimization for 0-size
 | |
|   // allocators. Base is internal_allocator_type.
 | |
|   // (e.g. empty_base_handle<internal_allocator_type, node_type*>). If Base is
 | |
|   // 0-size, the compiler doesn't have to reserve any space for it and
 | |
|   // sizeof(empty_base_handle) will simply be sizeof(Data). Google [empty base
 | |
|   // class optimization] for more details.
 | |
|   template <typename Base, typename Data>
 | |
|   struct empty_base_handle : public Base
 | |
|   {
 | |
|     empty_base_handle(const Base& b, const Data& d) : Base(b), data(d)
 | |
|     {
 | |
|     }
 | |
|     Data data;
 | |
|   };
 | |
| 
 | |
|   struct node_stats
 | |
|   {
 | |
|     node_stats(ssize_t l, ssize_t i) : leaf_nodes(l), internal_nodes(i)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     node_stats& operator+=(const node_stats& x)
 | |
|     {
 | |
|       leaf_nodes += x.leaf_nodes;
 | |
|       internal_nodes += x.internal_nodes;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     ssize_t leaf_nodes;
 | |
|     ssize_t internal_nodes;
 | |
|   };
 | |
| 
 | |
|  public:
 | |
|   typedef Params params_type;
 | |
|   typedef typename Params::key_type key_type;
 | |
|   typedef typename Params::data_type data_type;
 | |
|   typedef typename Params::mapped_type mapped_type;
 | |
|   typedef typename Params::value_type value_type;
 | |
|   typedef typename Params::key_compare key_compare;
 | |
|   typedef typename Params::pointer pointer;
 | |
|   typedef typename Params::const_pointer const_pointer;
 | |
|   typedef typename Params::reference reference;
 | |
|   typedef typename Params::const_reference const_reference;
 | |
|   typedef typename Params::size_type size_type;
 | |
|   typedef typename Params::difference_type difference_type;
 | |
|   typedef btree_iterator<node_type, reference, pointer> iterator;
 | |
|   typedef typename iterator::const_iterator const_iterator;
 | |
|   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 | |
|   typedef std::reverse_iterator<iterator> reverse_iterator;
 | |
| 
 | |
|   typedef typename Params::allocator_type allocator_type;
 | |
|   typedef typename allocator_type::template rebind<char>::other internal_allocator_type;
 | |
| 
 | |
|  public:
 | |
|   // Default constructor.
 | |
|   btree(const key_compare& comp, const allocator_type& alloc) : key_compare(comp), root_(alloc, NULL)
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   // Copy constructor.
 | |
|   btree(const self_type& x) : key_compare(x.key_comp()), root_(x.internal_allocator(), NULL)
 | |
|   {
 | |
|     assign(x);
 | |
|   }
 | |
| 
 | |
|   // Destructor.
 | |
|   ~btree()
 | |
|   {
 | |
|     clear();
 | |
|   }
 | |
| 
 | |
|   // Iterator routines.
 | |
|   iterator begin()
 | |
|   {
 | |
|     return iterator(leftmost(), 0);
 | |
|   }
 | |
|   const_iterator begin() const
 | |
|   {
 | |
|     return const_iterator(leftmost(), 0);
 | |
|   }
 | |
|   iterator end()
 | |
|   {
 | |
|     return iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
 | |
|   }
 | |
|   const_iterator end() const
 | |
|   {
 | |
|     return const_iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
 | |
|   }
 | |
|   reverse_iterator rbegin()
 | |
|   {
 | |
|     return reverse_iterator(end());
 | |
|   }
 | |
|   const_reverse_iterator rbegin() const
 | |
|   {
 | |
|     return const_reverse_iterator(end());
 | |
|   }
 | |
|   reverse_iterator rend()
 | |
|   {
 | |
|     return reverse_iterator(begin());
 | |
|   }
 | |
|   const_reverse_iterator rend() const
 | |
|   {
 | |
|     return const_reverse_iterator(begin());
 | |
|   }
 | |
| 
 | |
|   // Finds the first element whose key is not less than key.
 | |
|   iterator lower_bound(const key_type& key)
 | |
|   {
 | |
|     return internal_end(internal_lower_bound(key, iterator(root(), 0)));
 | |
|   }
 | |
|   const_iterator lower_bound(const key_type& key) const
 | |
|   {
 | |
|     return internal_end(internal_lower_bound(key, const_iterator(root(), 0)));
 | |
|   }
 | |
| 
 | |
|   // Finds the first element whose key is greater than key.
 | |
|   iterator upper_bound(const key_type& key)
 | |
|   {
 | |
|     return internal_end(internal_upper_bound(key, iterator(root(), 0)));
 | |
|   }
 | |
|   const_iterator upper_bound(const key_type& key) const
 | |
|   {
 | |
|     return internal_end(internal_upper_bound(key, const_iterator(root(), 0)));
 | |
|   }
 | |
| 
 | |
|   // Finds the range of values which compare equal to key. The first member of
 | |
|   // the returned pair is equal to lower_bound(key). The second member pair of
 | |
|   // the pair is equal to upper_bound(key).
 | |
|   std::pair<iterator, iterator> equal_range(const key_type& key)
 | |
|   {
 | |
|     return std::make_pair(lower_bound(key), upper_bound(key));
 | |
|   }
 | |
|   std::pair<const_iterator, const_iterator> equal_range(const key_type& key) const
 | |
|   {
 | |
|     return std::make_pair(lower_bound(key), upper_bound(key));
 | |
|   }
 | |
| 
 | |
|   // Inserts a value into the btree only if it does not already exist. The
 | |
|   // boolean return value indicates whether insertion succeeded or failed. The
 | |
|   // ValuePointer type is used to avoid instatiating the value unless the key
 | |
|   // is being inserted. Value is not dereferenced if the key already exists in
 | |
|   // the btree. See btree_map::operator[].
 | |
|   template <typename ValuePointer>
 | |
|   std::pair<iterator, bool> insert_unique(const key_type& key, ValuePointer value)
 | |
|   {
 | |
|     if (empty())
 | |
|     {
 | |
|       *mutable_root() = new_leaf_root_node(1);
 | |
|     }
 | |
| 
 | |
|     std::pair<iterator, int> res = internal_locate(key, iterator(root(), 0));
 | |
|     iterator& iter = res.first;
 | |
| 
 | |
|     if (res.second == kExactMatch)
 | |
|     {
 | |
|       // The key already exists in the tree, do nothing.
 | |
|       return std::make_pair(internal_last(iter), false);
 | |
|     }
 | |
|     else if (!res.second)
 | |
|     {
 | |
|       iterator last = internal_last(iter);
 | |
| 
 | |
|       if (last.node && !compare_keys(key, last.key()))
 | |
|       {
 | |
|         // The key already exists in the tree, do nothing.
 | |
|         return std::make_pair(last, false);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return std::make_pair(internal_insert(iter, *value), true);
 | |
|   }
 | |
| 
 | |
|   // Inserts a value into the btree only if it does not already exist. The
 | |
|   // boolean return value indicates whether insertion succeeded or failed.
 | |
|   std::pair<iterator, bool> insert_unique(const value_type& v)
 | |
|   {
 | |
|     return insert_unique(params_type::key(v), &v);
 | |
|   }
 | |
| 
 | |
|   // Insert with hint. Check to see if the value should be placed immediately
 | |
|   // before position in the tree. If it does, then the insertion will take
 | |
|   // amortized constant time. If not, the insertion will take amortized
 | |
|   // logarithmic time as if a call to insert_unique(v) were made.
 | |
|   iterator insert_unique(iterator position, const value_type& v)
 | |
|   {
 | |
|     if (!empty())
 | |
|     {
 | |
|       const key_type& key = params_type::key(v);
 | |
| 
 | |
|       if (position == end() || compare_keys(key, position.key()))
 | |
|       {
 | |
|         iterator prev = position;
 | |
| 
 | |
|         if (position == begin() || compare_keys((--prev).key(), key))
 | |
|         {
 | |
|           // prev.key() < key < position.key()
 | |
|           return internal_insert(position, v);
 | |
|         }
 | |
|       }
 | |
|       else if (compare_keys(position.key(), key))
 | |
|       {
 | |
|         iterator next = position;
 | |
|         ++next;
 | |
| 
 | |
|         if (next == end() || compare_keys(key, next.key()))
 | |
|         {
 | |
|           // position.key() < key < next.key()
 | |
|           return internal_insert(next, v);
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // position.key() == key
 | |
|         return position;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return insert_unique(v).first;
 | |
|   }
 | |
| 
 | |
|   // Insert a range of values into the btree.
 | |
|   template <typename InputIterator>
 | |
|   void insert_unique(InputIterator b, InputIterator e)
 | |
|   {
 | |
|     for (; b != e; ++b)
 | |
|     {
 | |
|       insert_unique(end(), *b);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Inserts a value into the btree. The ValuePointer type is used to avoid
 | |
|   // instatiating the value unless the key is being inserted. Value is not
 | |
|   // dereferenced if the key already exists in the btree. See
 | |
|   // btree_map::operator[].
 | |
|   template <typename ValuePointer>
 | |
|   iterator insert_multi(const key_type& key, ValuePointer value)
 | |
|   {
 | |
|     if (empty())
 | |
|     {
 | |
|       *mutable_root() = new_leaf_root_node(1);
 | |
|     }
 | |
| 
 | |
|     iterator iter = internal_upper_bound(key, iterator(root(), 0));
 | |
| 
 | |
|     if (!iter.node)
 | |
|     {
 | |
|       iter = end();
 | |
|     }
 | |
| 
 | |
|     return internal_insert(iter, *value);
 | |
|   }
 | |
| 
 | |
|   // Inserts a value into the btree.
 | |
|   iterator insert_multi(const value_type& v)
 | |
|   {
 | |
|     return insert_multi(params_type::key(v), &v);
 | |
|   }
 | |
| 
 | |
|   // Insert with hint. Check to see if the value should be placed immediately
 | |
|   // before position in the tree. If it does, then the insertion will take
 | |
|   // amortized constant time. If not, the insertion will take amortized
 | |
|   // logarithmic time as if a call to insert_multi(v) were made.
 | |
|   iterator insert_multi(iterator position, const value_type& v)
 | |
|   {
 | |
|     if (!empty())
 | |
|     {
 | |
|       const key_type& key = params_type::key(v);
 | |
| 
 | |
|       if (position == end() || !compare_keys(position.key(), key))
 | |
|       {
 | |
|         iterator prev = position;
 | |
| 
 | |
|         if (position == begin() || !compare_keys(key, (--prev).key()))
 | |
|         {
 | |
|           // prev.key() <= key <= position.key()
 | |
|           return internal_insert(position, v);
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         iterator next = position;
 | |
|         ++next;
 | |
| 
 | |
|         if (next == end() || !compare_keys(next.key(), key))
 | |
|         {
 | |
|           // position.key() < key <= next.key()
 | |
|           return internal_insert(next, v);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return insert_multi(v);
 | |
|   }
 | |
| 
 | |
|   // Insert a range of values into the btree.
 | |
|   template <typename InputIterator>
 | |
|   void insert_multi(InputIterator b, InputIterator e)
 | |
|   {
 | |
|     for (; b != e; ++b)
 | |
|     {
 | |
|       insert_multi(end(), *b);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void assign(const self_type& x)
 | |
|   {
 | |
|     clear();
 | |
| 
 | |
|     *mutable_key_comp() = x.key_comp();
 | |
|     *mutable_internal_allocator() = x.internal_allocator();
 | |
| 
 | |
|     // Assignment can avoid key comparisons because we know the order of the
 | |
|     // values is the same order we'll store them in.
 | |
|     for (const_iterator iter = x.begin(); iter != x.end(); ++iter)
 | |
|     {
 | |
|       if (empty())
 | |
|       {
 | |
|         insert_multi(*iter);
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // If the btree is not empty, we can just insert the new value at the end
 | |
|         // of the tree!
 | |
|         internal_insert(end(), *iter);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Erase the specified iterator from the btree. The iterator must be valid
 | |
|   // (i.e. not equal to end()).  Return an iterator pointing to the node after
 | |
|   // the one that was erased (or end() if none exists).
 | |
|   iterator erase(iterator iter)
 | |
|   {
 | |
|     bool internal_delete = false;
 | |
| 
 | |
|     if (!iter.node->leaf())
 | |
|     {
 | |
|       // Deletion of a value on an internal node. Swap the key with the largest
 | |
|       // value of our left child. This is easy, we just decrement iter.
 | |
|       iterator tmp_iter(iter--);
 | |
|       assert(iter.node->leaf());
 | |
|       assert(!compare_keys(tmp_iter.key(), iter.key()));
 | |
|       iter.node->value_swap(iter.position, tmp_iter.node, tmp_iter.position);
 | |
|       internal_delete = true;
 | |
|       --*mutable_size();
 | |
|     }
 | |
|     else if (!root()->leaf())
 | |
|     {
 | |
|       --*mutable_size();
 | |
|     }
 | |
| 
 | |
|     // Delete the key from the leaf.
 | |
|     iter.node->remove_value(iter.position);
 | |
| 
 | |
|     // We want to return the next value after the one we just erased. If we
 | |
|     // erased from an internal node (internal_delete == true), then the next
 | |
|     // value is ++(++iter). If we erased from a leaf node (internal_delete ==
 | |
|     // false) then the next value is ++iter. Note that ++iter may point to an
 | |
|     // internal node and the value in the internal node may move to a leaf node
 | |
|     // (iter.node) when rebalancing is performed at the leaf level.
 | |
| 
 | |
|     // Merge/rebalance as we walk back up the tree.
 | |
|     iterator res(iter);
 | |
| 
 | |
|     for (;;)
 | |
|     {
 | |
|       if (iter.node == root())
 | |
|       {
 | |
|         try_shrink();
 | |
| 
 | |
|         if (empty())
 | |
|         {
 | |
|           return end();
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (iter.node->count() >= kMinNodeValues)
 | |
|       {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       bool merged = try_merge_or_rebalance(&iter);
 | |
| 
 | |
|       if (iter.node->leaf())
 | |
|       {
 | |
|         res = iter;
 | |
|       }
 | |
| 
 | |
|       if (!merged)
 | |
|       {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       iter.node = iter.node->parent();
 | |
|     }
 | |
| 
 | |
|     // Adjust our return value. If we're pointing at the end of a node, advance
 | |
|     // the iterator.
 | |
|     if (res.position == res.node->count())
 | |
|     {
 | |
|       res.position = res.node->count() - 1;
 | |
|       ++res;
 | |
|     }
 | |
| 
 | |
|     // If we erased from an internal node, advance the iterator.
 | |
|     if (internal_delete)
 | |
|     {
 | |
|       ++res;
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   // Erases range. Returns the number of keys erased.
 | |
|   int erase(iterator begin, iterator end)
 | |
|   {
 | |
|     int count = distance(begin, end);
 | |
| 
 | |
|     for (int i = 0; i < count; i++)
 | |
|     {
 | |
|       begin = erase(begin);
 | |
|     }
 | |
| 
 | |
|     return count;
 | |
|   }
 | |
| 
 | |
|   // Erases the specified key from the btree. Returns 1 if an element was
 | |
|   // erased and 0 otherwise.
 | |
|   int erase_unique(const key_type& key)
 | |
|   {
 | |
|     iterator iter = internal_find_unique(key, iterator(root(), 0));
 | |
| 
 | |
|     if (!iter.node)
 | |
|     {
 | |
|       // The key doesn't exist in the tree, return nothing done.
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     erase(iter);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Erases all of the entries matching the specified key from the
 | |
|   // btree. Returns the number of elements erased.
 | |
|   int erase_multi(const key_type& key)
 | |
|   {
 | |
|     iterator begin = internal_lower_bound(key, iterator(root(), 0));
 | |
| 
 | |
|     if (!begin.node)
 | |
|     {
 | |
|       // The key doesn't exist in the tree, return nothing done.
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // Delete all of the keys between begin and upper_bound(key).
 | |
|     iterator end = internal_end(internal_upper_bound(key, iterator(root(), 0)));
 | |
|     return erase(begin, end);
 | |
|   }
 | |
| 
 | |
|   // Finds the iterator corresponding to a key or returns end() if the key is
 | |
|   // not present.
 | |
|   iterator find_unique(const key_type& key)
 | |
|   {
 | |
|     return internal_end(internal_find_unique(key, iterator(root(), 0)));
 | |
|   }
 | |
|   const_iterator find_unique(const key_type& key) const
 | |
|   {
 | |
|     return internal_end(internal_find_unique(key, const_iterator(root(), 0)));
 | |
|   }
 | |
|   iterator find_multi(const key_type& key)
 | |
|   {
 | |
|     return internal_end(internal_find_multi(key, iterator(root(), 0)));
 | |
|   }
 | |
|   const_iterator find_multi(const key_type& key) const
 | |
|   {
 | |
|     return internal_end(internal_find_multi(key, const_iterator(root(), 0)));
 | |
|   }
 | |
| 
 | |
|   // Returns a count of the number of times the key appears in the btree.
 | |
|   size_type count_unique(const key_type& key) const
 | |
|   {
 | |
|     const_iterator begin = internal_find_unique(key, const_iterator(root(), 0));
 | |
| 
 | |
|     if (!begin.node)
 | |
|     {
 | |
|       // The key doesn't exist in the tree.
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
|   }
 | |
|   // Returns a count of the number of times the key appears in the btree.
 | |
|   size_type count_multi(const key_type& key) const
 | |
|   {
 | |
|     return distance(lower_bound(key), upper_bound(key));
 | |
|   }
 | |
| 
 | |
|   // Clear the btree, deleting all of the values it contains.
 | |
|   void clear()
 | |
|   {
 | |
|     if (root() != NULL)
 | |
|     {
 | |
|       internal_clear(root());
 | |
|     }
 | |
| 
 | |
|     *mutable_root() = NULL;
 | |
|   }
 | |
| 
 | |
|   // Swap the contents of *this and x.
 | |
|   void swap(self_type& x)
 | |
|   {
 | |
|     std::swap(static_cast<key_compare&>(*this), static_cast<key_compare&>(x));
 | |
|     std::swap(root_, x.root_);
 | |
|   }
 | |
| 
 | |
|   // Assign the contents of x to *this.
 | |
|   self_type& operator=(const self_type& x)
 | |
|   {
 | |
|     if (&x == this)
 | |
|     {
 | |
|       // Don't copy onto ourselves.
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     assign(x);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   key_compare* mutable_key_comp()
 | |
|   {
 | |
|     return this;
 | |
|   }
 | |
|   const key_compare& key_comp() const
 | |
|   {
 | |
|     return *this;
 | |
|   }
 | |
|   bool compare_keys(const key_type& x, const key_type& y) const
 | |
|   {
 | |
|     return btree_compare_keys(key_comp(), x, y);
 | |
|   }
 | |
| 
 | |
|   // Dump the btree to the specified ostream. Requires that operator<< is
 | |
|   // defined for Key and Value.
 | |
|   void dump(std::ostream& os) const
 | |
|   {
 | |
|     if (root() != NULL)
 | |
|     {
 | |
|       internal_dump(os, root(), 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verifies the structure of the btree.
 | |
|   void verify() const
 | |
|   {
 | |
|     if (root() != NULL)
 | |
|     {
 | |
|       assert(size() == internal_verify(root(), NULL, NULL));
 | |
|       assert(leftmost() == (++const_iterator(root(), -1)).node);
 | |
|       assert(rightmost() == (--const_iterator(root(), root()->count())).node);
 | |
|       assert(leftmost()->leaf());
 | |
|       assert(rightmost()->leaf());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       assert(size() == 0);
 | |
|       assert(leftmost() == NULL);
 | |
|       assert(rightmost() == NULL);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Size routines. Note that empty() is slightly faster than doing size()==0.
 | |
|   size_type size() const
 | |
|   {
 | |
|     if (empty())
 | |
|       return 0;
 | |
| 
 | |
|     if (root()->leaf())
 | |
|       return root()->count();
 | |
| 
 | |
|     return root()->size();
 | |
|   }
 | |
|   size_type max_size() const
 | |
|   {
 | |
|     return std::numeric_limits<size_type>::max();
 | |
|   }
 | |
|   bool empty() const
 | |
|   {
 | |
|     return root() == NULL;
 | |
|   }
 | |
| 
 | |
|   // The height of the btree. An empty tree will have height 0.
 | |
|   size_type height() const
 | |
|   {
 | |
|     size_type h = 0;
 | |
| 
 | |
|     if (root())
 | |
|     {
 | |
|       // Count the length of the chain from the leftmost node up to the
 | |
|       // root. We actually count from the root back around to the level below
 | |
|       // the root, but the calculation is the same because of the circularity
 | |
|       // of that traversal.
 | |
|       const node_type* n = root();
 | |
| 
 | |
|       do
 | |
|       {
 | |
|         ++h;
 | |
|         n = n->parent();
 | |
|       } while (n != root());
 | |
|     }
 | |
| 
 | |
|     return h;
 | |
|   }
 | |
| 
 | |
|   // The number of internal, leaf and total nodes used by the btree.
 | |
|   size_type leaf_nodes() const
 | |
|   {
 | |
|     return internal_stats(root()).leaf_nodes;
 | |
|   }
 | |
|   size_type internal_nodes() const
 | |
|   {
 | |
|     return internal_stats(root()).internal_nodes;
 | |
|   }
 | |
|   size_type nodes() const
 | |
|   {
 | |
|     node_stats stats = internal_stats(root());
 | |
|     return stats.leaf_nodes + stats.internal_nodes;
 | |
|   }
 | |
| 
 | |
|   // The total number of bytes used by the btree.
 | |
|   size_type bytes_used() const
 | |
|   {
 | |
|     node_stats stats = internal_stats(root());
 | |
| 
 | |
|     if (stats.leaf_nodes == 1 && stats.internal_nodes == 0)
 | |
|     {
 | |
|       return sizeof(*this) + sizeof(base_fields) + root()->max_count() * sizeof(value_type);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       return sizeof(*this) + sizeof(root_fields) - sizeof(internal_fields) +
 | |
|              stats.leaf_nodes * sizeof(leaf_fields) + stats.internal_nodes * sizeof(internal_fields);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The average number of bytes used per value stored in the btree.
 | |
|   static double average_bytes_per_value()
 | |
|   {
 | |
|     // Returns the number of bytes per value on a leaf node that is 75%
 | |
|     // full. Experimentally, this matches up nicely with the computed number of
 | |
|     // bytes per value in trees that had their values inserted in random order.
 | |
|     return sizeof(leaf_fields) / (kNodeValues * 0.75);
 | |
|   }
 | |
| 
 | |
|   // The fullness of the btree. Computed as the number of elements in the btree
 | |
|   // divided by the maximum number of elements a tree with the current number
 | |
|   // of nodes could hold. A value of 1 indicates perfect space
 | |
|   // utilization. Smaller values indicate space wastage.
 | |
|   double fullness() const
 | |
|   {
 | |
|     return double(size()) / (nodes() * kNodeValues);
 | |
|   }
 | |
|   // The overhead of the btree structure in bytes per node. Computed as the
 | |
|   // total number of bytes used by the btree minus the number of bytes used for
 | |
|   // storing elements divided by the number of elements.
 | |
|   double overhead() const
 | |
|   {
 | |
|     if (empty())
 | |
|     {
 | |
|       return 0.0;
 | |
|     }
 | |
| 
 | |
|     return (bytes_used() - size() * kValueSize) / double(size());
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Internal accessor routines.
 | |
|   node_type* root()
 | |
|   {
 | |
|     return root_.data;
 | |
|   }
 | |
|   const node_type* root() const
 | |
|   {
 | |
|     return root_.data;
 | |
|   }
 | |
|   node_type** mutable_root()
 | |
|   {
 | |
|     return &root_.data;
 | |
|   }
 | |
| 
 | |
|   // The rightmost node is stored in the root node.
 | |
|   node_type* rightmost()
 | |
|   {
 | |
|     return (!root() || root()->leaf()) ? root() : root()->rightmost();
 | |
|   }
 | |
|   const node_type* rightmost() const
 | |
|   {
 | |
|     return (!root() || root()->leaf()) ? root() : root()->rightmost();
 | |
|   }
 | |
|   node_type** mutable_rightmost()
 | |
|   {
 | |
|     return root()->mutable_rightmost();
 | |
|   }
 | |
| 
 | |
|   // The leftmost node is stored as the parent of the root node.
 | |
|   node_type* leftmost()
 | |
|   {
 | |
|     return root() ? root()->parent() : NULL;
 | |
|   }
 | |
|   const node_type* leftmost() const
 | |
|   {
 | |
|     return root() ? root()->parent() : NULL;
 | |
|   }
 | |
| 
 | |
|   // The size of the tree is stored in the root node.
 | |
|   size_type* mutable_size()
 | |
|   {
 | |
|     return root()->mutable_size();
 | |
|   }
 | |
| 
 | |
|   // Allocator routines.
 | |
|   internal_allocator_type* mutable_internal_allocator()
 | |
|   {
 | |
|     return static_cast<internal_allocator_type*>(&root_);
 | |
|   }
 | |
|   const internal_allocator_type& internal_allocator() const
 | |
|   {
 | |
|     return *static_cast<const internal_allocator_type*>(&root_);
 | |
|   }
 | |
| 
 | |
|   // Node creation/deletion routines.
 | |
|   node_type* new_internal_node(node_type* parent)
 | |
|   {
 | |
|     internal_fields* p =
 | |
|         reinterpret_cast<internal_fields*>(mutable_internal_allocator()->allocate(sizeof(internal_fields)));
 | |
|     return node_type::init_internal(p, parent);
 | |
|   }
 | |
|   node_type* new_internal_root_node()
 | |
|   {
 | |
|     root_fields* p =
 | |
|         reinterpret_cast<root_fields*>(mutable_internal_allocator()->allocate(sizeof(root_fields)));
 | |
|     return node_type::init_root(p, root()->parent());
 | |
|   }
 | |
|   node_type* new_leaf_node(node_type* parent)
 | |
|   {
 | |
|     leaf_fields* p =
 | |
|         reinterpret_cast<leaf_fields*>(mutable_internal_allocator()->allocate(sizeof(leaf_fields)));
 | |
|     return node_type::init_leaf(p, parent, kNodeValues);
 | |
|   }
 | |
|   node_type* new_leaf_root_node(int max_count)
 | |
|   {
 | |
|     leaf_fields* p = reinterpret_cast<leaf_fields*>(
 | |
|         mutable_internal_allocator()->allocate(sizeof(base_fields) + max_count * sizeof(value_type)));
 | |
|     return node_type::init_leaf(p, reinterpret_cast<node_type*>(p), max_count);
 | |
|   }
 | |
|   void delete_internal_node(node_type* node)
 | |
|   {
 | |
|     node->destroy();
 | |
|     assert(node != root());
 | |
|     mutable_internal_allocator()->deallocate(reinterpret_cast<char*>(node), sizeof(internal_fields));
 | |
|   }
 | |
|   void delete_internal_root_node()
 | |
|   {
 | |
|     root()->destroy();
 | |
|     mutable_internal_allocator()->deallocate(reinterpret_cast<char*>(root()), sizeof(root_fields));
 | |
|   }
 | |
|   void delete_leaf_node(node_type* node)
 | |
|   {
 | |
|     node->destroy();
 | |
|     mutable_internal_allocator()->deallocate(reinterpret_cast<char*>(node),
 | |
|                                              sizeof(base_fields) + node->max_count() * sizeof(value_type));
 | |
|   }
 | |
| 
 | |
|   // Rebalances or splits the node iter points to.
 | |
|   void rebalance_or_split(iterator* iter)
 | |
|   {
 | |
|     node_type*& node = iter->node;
 | |
|     int& insert_position = iter->position;
 | |
|     assert(node->count() == node->max_count());
 | |
| 
 | |
|     // First try to make room on the node by rebalancing.
 | |
|     node_type* parent = node->parent();
 | |
| 
 | |
|     if (node != root())
 | |
|     {
 | |
|       if (node->position() > 0)
 | |
|       {
 | |
|         // Try rebalancing with our left sibling.
 | |
|         node_type* left = parent->child(node->position() - 1);
 | |
| 
 | |
|         if (left->count() < left->max_count())
 | |
|         {
 | |
|           // We bias rebalancing based on the position being inserted. If we're
 | |
|           // inserting at the end of the right node then we bias rebalancing to
 | |
|           // fill up the left node.
 | |
|           int to_move = (left->max_count() - left->count()) / (1 + (insert_position < left->max_count()));
 | |
|           to_move = std::max(1, to_move);
 | |
| 
 | |
|           if (((insert_position - to_move) >= 0) || ((left->count() + to_move) < left->max_count()))
 | |
|           {
 | |
|             left->rebalance_right_to_left(node, to_move);
 | |
| 
 | |
|             assert(node->max_count() - node->count() == to_move);
 | |
|             insert_position = insert_position - to_move;
 | |
| 
 | |
|             if (insert_position < 0)
 | |
|             {
 | |
|               insert_position = insert_position + left->count() + 1;
 | |
|               node = left;
 | |
|             }
 | |
| 
 | |
|             assert(node->count() < node->max_count());
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (node->position() < parent->count())
 | |
|       {
 | |
|         // Try rebalancing with our right sibling.
 | |
|         node_type* right = parent->child(node->position() + 1);
 | |
| 
 | |
|         if (right->count() < right->max_count())
 | |
|         {
 | |
|           // We bias rebalancing based on the position being inserted. If we're
 | |
|           // inserting at the beginning of the left node then we bias rebalancing
 | |
|           // to fill up the right node.
 | |
|           int to_move = (right->max_count() - right->count()) / (1 + (insert_position > 0));
 | |
|           to_move = std::max(1, to_move);
 | |
| 
 | |
|           if ((insert_position <= (node->count() - to_move)) ||
 | |
|               ((right->count() + to_move) < right->max_count()))
 | |
|           {
 | |
|             node->rebalance_left_to_right(right, to_move);
 | |
| 
 | |
|             if (insert_position > node->count())
 | |
|             {
 | |
|               insert_position = insert_position - node->count() - 1;
 | |
|               node = right;
 | |
|             }
 | |
| 
 | |
|             assert(node->count() < node->max_count());
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Rebalancing failed, make sure there is room on the parent node for a new
 | |
|       // value.
 | |
|       if (parent->count() == parent->max_count())
 | |
|       {
 | |
|         iterator parent_iter(node->parent(), node->position());
 | |
|         rebalance_or_split(&parent_iter);
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       // Rebalancing not possible because this is the root node.
 | |
|       if (root()->leaf())
 | |
|       {
 | |
|         // The root node is currently a leaf node: create a new root node and set
 | |
|         // the current root node as the child of the new root.
 | |
|         parent = new_internal_root_node();
 | |
|         parent->set_child(0, root());
 | |
|         *mutable_root() = parent;
 | |
|         assert(*mutable_rightmost() == parent->child(0));
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // The root node is an internal node. We do not want to create a new root
 | |
|         // node because the root node is special and holds the size of the tree
 | |
|         // and a pointer to the rightmost node. So we create a new internal node
 | |
|         // and move all of the items on the current root into the new node.
 | |
|         parent = new_internal_node(parent);
 | |
|         parent->set_child(0, parent);
 | |
|         parent->swap(root());
 | |
|         node = parent;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Split the node.
 | |
|     node_type* split_node;
 | |
| 
 | |
|     if (node->leaf())
 | |
|     {
 | |
|       split_node = new_leaf_node(parent);
 | |
|       node->split(split_node, insert_position);
 | |
| 
 | |
|       if (rightmost() == node)
 | |
|       {
 | |
|         *mutable_rightmost() = split_node;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       split_node = new_internal_node(parent);
 | |
|       node->split(split_node, insert_position);
 | |
|     }
 | |
| 
 | |
|     if (insert_position > node->count())
 | |
|     {
 | |
|       insert_position = insert_position - node->count() - 1;
 | |
|       node = split_node;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merges the values of left, right and the delimiting key on their parent
 | |
|   // onto left, removing the delimiting key and deleting right.
 | |
|   void merge_nodes(node_type* left, node_type* right)
 | |
|   {
 | |
|     left->merge(right);
 | |
| 
 | |
|     if (right->leaf())
 | |
|     {
 | |
|       if (rightmost() == right)
 | |
|       {
 | |
|         *mutable_rightmost() = left;
 | |
|       }
 | |
| 
 | |
|       delete_leaf_node(right);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       delete_internal_node(right);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Tries to merge node with its left or right sibling, and failing that,
 | |
|   // rebalance with its left or right sibling. Returns true if a merge
 | |
|   // occurred, at which point it is no longer valid to access node. Returns
 | |
|   // false if no merging took place.
 | |
|   bool try_merge_or_rebalance(iterator* iter)
 | |
|   {
 | |
|     node_type* parent = iter->node->parent();
 | |
| 
 | |
|     if (iter->node->position() > 0)
 | |
|     {
 | |
|       // Try merging with our left sibling.
 | |
|       node_type* left = parent->child(iter->node->position() - 1);
 | |
| 
 | |
|       if ((1 + left->count() + iter->node->count()) <= left->max_count())
 | |
|       {
 | |
|         iter->position += 1 + left->count();
 | |
|         merge_nodes(left, iter->node);
 | |
|         iter->node = left;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (iter->node->position() < parent->count())
 | |
|     {
 | |
|       // Try merging with our right sibling.
 | |
|       node_type* right = parent->child(iter->node->position() + 1);
 | |
| 
 | |
|       if ((1 + iter->node->count() + right->count()) <= right->max_count())
 | |
|       {
 | |
|         merge_nodes(iter->node, right);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Try rebalancing with our right sibling. We don't perform rebalancing if
 | |
|       // we deleted the first element from iter->node and the node is not
 | |
|       // empty. This is a small optimization for the common pattern of deleting
 | |
|       // from the front of the tree.
 | |
|       if ((right->count() > kMinNodeValues) && ((iter->node->count() == 0) || (iter->position > 0)))
 | |
|       {
 | |
|         int to_move = (right->count() - iter->node->count()) / 2;
 | |
|         to_move = std::min(to_move, right->count() - 1);
 | |
|         iter->node->rebalance_right_to_left(right, to_move);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (iter->node->position() > 0)
 | |
|     {
 | |
|       // Try rebalancing with our left sibling. We don't perform rebalancing if
 | |
|       // we deleted the last element from iter->node and the node is not
 | |
|       // empty. This is a small optimization for the common pattern of deleting
 | |
|       // from the back of the tree.
 | |
|       node_type* left = parent->child(iter->node->position() - 1);
 | |
| 
 | |
|       if ((left->count() > kMinNodeValues) &&
 | |
|           ((iter->node->count() == 0) || (iter->position < iter->node->count())))
 | |
|       {
 | |
|         int to_move = (left->count() - iter->node->count()) / 2;
 | |
|         to_move = std::min(to_move, left->count() - 1);
 | |
|         left->rebalance_left_to_right(iter->node, to_move);
 | |
|         iter->position += to_move;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Tries to shrink the height of the tree by 1.
 | |
|   void try_shrink()
 | |
|   {
 | |
|     if (root()->count() > 0)
 | |
|     {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Deleted the last item on the root node, shrink the height of the tree.
 | |
|     if (root()->leaf())
 | |
|     {
 | |
|       assert(size() == 0);
 | |
|       delete_leaf_node(root());
 | |
|       *mutable_root() = NULL;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       node_type* child = root()->child(0);
 | |
| 
 | |
|       if (child->leaf())
 | |
|       {
 | |
|         // The child is a leaf node so simply make it the root node in the tree.
 | |
|         child->make_root();
 | |
|         delete_internal_root_node();
 | |
|         *mutable_root() = child;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // The child is an internal node. We want to keep the existing root node
 | |
|         // so we move all of the values from the child node into the existing
 | |
|         // (empty) root node.
 | |
|         child->swap(root());
 | |
|         delete_internal_node(child);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   iterator internal_end(iterator iter)
 | |
|   {
 | |
|     return iter.node ? iter : end();
 | |
|   }
 | |
|   const_iterator internal_end(const_iterator iter) const
 | |
|   {
 | |
|     return iter.node ? iter : end();
 | |
|   }
 | |
| 
 | |
|   // Inserts a value into the btree immediately before iter. Requires that
 | |
|   // key(v) <= iter.key() and (--iter).key() <= key(v).
 | |
|   iterator internal_insert(iterator iter, const value_type& v)
 | |
|   {
 | |
|     if (!iter.node->leaf())
 | |
|     {
 | |
|       // We can't insert on an internal node. Instead, we'll insert after the
 | |
|       // previous value which is guaranteed to be on a leaf node.
 | |
|       --iter;
 | |
|       ++iter.position;
 | |
|     }
 | |
| 
 | |
|     if (iter.node->count() == iter.node->max_count())
 | |
|     {
 | |
|       // Make room in the leaf for the new item.
 | |
|       if (iter.node->max_count() < kNodeValues)
 | |
|       {
 | |
|         // Insertion into the root where the root is smaller that the full node
 | |
|         // size. Simply grow the size of the root node.
 | |
|         assert(iter.node == root());
 | |
|         iter.node = new_leaf_root_node(std::min<int>(kNodeValues, 2 * iter.node->max_count()));
 | |
|         iter.node->swap(root());
 | |
|         delete_leaf_node(root());
 | |
|         *mutable_root() = iter.node;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         rebalance_or_split(&iter);
 | |
|         ++*mutable_size();
 | |
|       }
 | |
|     }
 | |
|     else if (!root()->leaf())
 | |
|     {
 | |
|       ++*mutable_size();
 | |
|     }
 | |
| 
 | |
|     iter.node->insert_value(iter.position, v);
 | |
|     return iter;
 | |
|   }
 | |
| 
 | |
|   // Returns an iterator pointing to the first value >= the value "iter" is
 | |
|   // pointing at. Note that "iter" might be pointing to an invalid location as
 | |
|   // iter.position == iter.node->count(). This routine simply moves iter up in
 | |
|   // the tree to a valid location.
 | |
|   template <typename IterType>
 | |
|   static IterType internal_last(IterType iter)
 | |
|   {
 | |
|     while (iter.node && iter.position == iter.node->count())
 | |
|     {
 | |
|       iter.position = iter.node->position();
 | |
|       iter.node = iter.node->parent();
 | |
| 
 | |
|       if (iter.node->leaf())
 | |
|       {
 | |
|         iter.node = NULL;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return iter;
 | |
|   }
 | |
| 
 | |
|   // Returns an iterator pointing to the leaf position at which key would
 | |
|   // reside in the tree. We provide 2 versions of internal_locate. The first
 | |
|   // version (internal_locate_plain_compare) always returns 0 for the second
 | |
|   // field of the pair. The second version (internal_locate_compare_to) is for
 | |
|   // the key-compare-to specialization and returns either kExactMatch (if the
 | |
|   // key was found in the tree) or -kExactMatch (if it wasn't) in the second
 | |
|   // field of the pair. The compare_to specialization allows the caller to
 | |
|   // avoid a subsequent comparison to determine if an exact match was made,
 | |
|   // speeding up string keys.
 | |
|   template <typename IterType>
 | |
|   std::pair<IterType, int> internal_locate(const key_type& key, IterType iter) const
 | |
|   {
 | |
|     return internal_locate_type::dispatch(key, *this, iter);
 | |
|   }
 | |
| 
 | |
|   template <typename IterType>
 | |
|   std::pair<IterType, int> internal_locate_plain_compare(const key_type& key, IterType iter) const
 | |
|   {
 | |
|     for (;;)
 | |
|     {
 | |
|       iter.position = iter.node->lower_bound(key, key_comp());
 | |
| 
 | |
|       if (iter.node->leaf())
 | |
|       {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       iter.node = iter.node->child(iter.position);
 | |
|     }
 | |
| 
 | |
|     return std::make_pair(iter, 0);
 | |
|   }
 | |
| 
 | |
|   template <typename IterType>
 | |
|   std::pair<IterType, int> internal_locate_compare_to(const key_type& key, IterType iter) const
 | |
|   {
 | |
|     for (;;)
 | |
|     {
 | |
|       int res = iter.node->lower_bound(key, key_comp());
 | |
|       iter.position = res & kMatchMask;
 | |
| 
 | |
|       if (res & kExactMatch)
 | |
|       {
 | |
|         return std::make_pair(iter, static_cast<int>(kExactMatch));
 | |
|       }
 | |
| 
 | |
|       if (iter.node->leaf())
 | |
|       {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       iter.node = iter.node->child(iter.position);
 | |
|     }
 | |
| 
 | |
|     return std::make_pair(iter, -kExactMatch);
 | |
|   }
 | |
| 
 | |
|   // Internal routine which implements lower_bound().
 | |
|   template <typename IterType>
 | |
|   IterType internal_lower_bound(const key_type& key, IterType iter) const
 | |
|   {
 | |
|     if (iter.node)
 | |
|     {
 | |
|       for (;;)
 | |
|       {
 | |
|         iter.position = iter.node->lower_bound(key, key_comp()) & kMatchMask;
 | |
| 
 | |
|         if (iter.node->leaf())
 | |
|         {
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         iter.node = iter.node->child(iter.position);
 | |
|       }
 | |
| 
 | |
|       iter = internal_last(iter);
 | |
|     }
 | |
| 
 | |
|     return iter;
 | |
|   }
 | |
| 
 | |
|   // Internal routine which implements upper_bound().
 | |
|   template <typename IterType>
 | |
|   IterType internal_upper_bound(const key_type& key, IterType iter) const
 | |
|   {
 | |
|     if (iter.node)
 | |
|     {
 | |
|       for (;;)
 | |
|       {
 | |
|         iter.position = iter.node->upper_bound(key, key_comp());
 | |
| 
 | |
|         if (iter.node->leaf())
 | |
|         {
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         iter.node = iter.node->child(iter.position);
 | |
|       }
 | |
| 
 | |
|       iter = internal_last(iter);
 | |
|     }
 | |
| 
 | |
|     return iter;
 | |
|   }
 | |
| 
 | |
|   // Internal routine which implements find_unique().
 | |
|   template <typename IterType>
 | |
|   IterType internal_find_unique(const key_type& key, IterType iter) const
 | |
|   {
 | |
|     if (iter.node)
 | |
|     {
 | |
|       std::pair<IterType, int> res = internal_locate(key, iter);
 | |
| 
 | |
|       if (res.second == kExactMatch)
 | |
|       {
 | |
|         return res.first;
 | |
|       }
 | |
| 
 | |
|       if (!res.second)
 | |
|       {
 | |
|         iter = internal_last(res.first);
 | |
| 
 | |
|         if (iter.node && !compare_keys(key, iter.key()))
 | |
|         {
 | |
|           return iter;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return IterType(NULL, 0);
 | |
|   }
 | |
| 
 | |
|   // Internal routine which implements find_multi().
 | |
|   template <typename IterType>
 | |
|   IterType internal_find_multi(const key_type& key, IterType iter) const
 | |
|   {
 | |
|     if (iter.node)
 | |
|     {
 | |
|       iter = internal_lower_bound(key, iter);
 | |
| 
 | |
|       if (iter.node)
 | |
|       {
 | |
|         iter = internal_last(iter);
 | |
| 
 | |
|         if (iter.node && !compare_keys(key, iter.key()))
 | |
|         {
 | |
|           return iter;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return IterType(NULL, 0);
 | |
|   }
 | |
| 
 | |
|   // Deletes a node and all of its children.
 | |
|   void internal_clear(node_type* node)
 | |
|   {
 | |
|     if (!node->leaf())
 | |
|     {
 | |
|       for (int i = 0; i <= node->count(); ++i)
 | |
|       {
 | |
|         internal_clear(node->child(i));
 | |
|       }
 | |
| 
 | |
|       if (node == root())
 | |
|       {
 | |
|         delete_internal_root_node();
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         delete_internal_node(node);
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       delete_leaf_node(node);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Dumps a node and all of its children to the specified ostream.
 | |
|   void internal_dump(std::ostream& os, const node_type* node, int level) const
 | |
|   {
 | |
|     for (int i = 0; i < node->count(); ++i)
 | |
|     {
 | |
|       if (!node->leaf())
 | |
|       {
 | |
|         internal_dump(os, node->child(i), level + 1);
 | |
|       }
 | |
| 
 | |
|       for (int j = 0; j < level; ++j)
 | |
|       {
 | |
|         os << "  ";
 | |
|       }
 | |
| 
 | |
|       os << node->key(i) << " [" << level << "]\n";
 | |
|     }
 | |
| 
 | |
|     if (!node->leaf())
 | |
|     {
 | |
|       internal_dump(os, node->child(node->count()), level + 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verifies the tree structure of node.
 | |
|   int internal_verify(const node_type* node, const key_type* lo, const key_type* hi) const
 | |
|   {
 | |
|     assert(node->count() > 0);
 | |
|     assert(node->count() <= node->max_count());
 | |
| 
 | |
|     if (lo)
 | |
|     {
 | |
|       assert(!compare_keys(node->key(0), *lo));
 | |
|     }
 | |
| 
 | |
|     if (hi)
 | |
|     {
 | |
|       assert(!compare_keys(*hi, node->key(node->count() - 1)));
 | |
|     }
 | |
| 
 | |
|     for (int i = 1; i < node->count(); ++i)
 | |
|     {
 | |
|       assert(!compare_keys(node->key(i), node->key(i - 1)));
 | |
|     }
 | |
| 
 | |
|     int count = node->count();
 | |
| 
 | |
|     if (!node->leaf())
 | |
|     {
 | |
|       for (int i = 0; i <= node->count(); ++i)
 | |
|       {
 | |
|         assert(node->child(i) != NULL);
 | |
|         assert(node->child(i)->parent() == node);
 | |
|         assert(node->child(i)->position() == i);
 | |
|         count += internal_verify(node->child(i), (i == 0) ? lo : &node->key(i - 1),
 | |
|                                  (i == node->count()) ? hi : &node->key(i));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return count;
 | |
|   }
 | |
| 
 | |
|   node_stats internal_stats(const node_type* node) const
 | |
|   {
 | |
|     if (!node)
 | |
|     {
 | |
|       return node_stats(0, 0);
 | |
|     }
 | |
| 
 | |
|     if (node->leaf())
 | |
|     {
 | |
|       return node_stats(1, 0);
 | |
|     }
 | |
| 
 | |
|     node_stats res(0, 1);
 | |
| 
 | |
|     for (int i = 0; i <= node->count(); ++i)
 | |
|     {
 | |
|       res += internal_stats(node->child(i));
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   empty_base_handle<internal_allocator_type, node_type*> root_;
 | |
| 
 | |
|  private:
 | |
|   // A never instantiated helper function that returns big_ if we have a
 | |
|   // key-compare-to functor or if R is bool and small_ otherwise.
 | |
|   template <typename R>
 | |
|   static
 | |
|       typename if_<if_<is_key_compare_to::value, std::is_same<R, int>, std::is_same<R, bool> >::type::value,
 | |
|                    big_, small_>::type key_compare_checker(R);
 | |
| 
 | |
|   // A never instantiated helper function that returns the key comparison
 | |
|   // functor.
 | |
|   static key_compare key_compare_helper();
 | |
| 
 | |
|   // Verify that key_compare returns a bool. This is similar to the way
 | |
|   // is_convertible in base/type_traits.h works. Note that key_compare_checker
 | |
|   // is never actually invoked. The compiler will select which
 | |
|   // key_compare_checker() to instantiate and then figure out the size of the
 | |
|   // return type of key_compare_checker() at compile time which we then check
 | |
|   // against the sizeof of big_.
 | |
|   COMPILE_ASSERT(sizeof(key_compare_checker(key_compare_helper()(key_type(), key_type()))) == sizeof(big_),
 | |
|                  key_comparison_function_must_return_bool);
 | |
| 
 | |
|   // Note: We insist on kTargetValues, which is computed from
 | |
|   // Params::kTargetNodeSize, must fit the base_fields::field_type.
 | |
|   COMPILE_ASSERT(kNodeValues < (1 << (8 * sizeof(typename base_fields::field_type))),
 | |
|                  target_node_size_too_large);
 | |
| 
 | |
|   // Test the assumption made in setting kNodeValueSpace.
 | |
|   COMPILE_ASSERT(sizeof(base_fields) >= 2 * sizeof(void*), node_space_assumption_incorrect);
 | |
| };
 | |
| 
 | |
| ////
 | |
| // btree_node methods
 | |
| template <typename P>
 | |
| inline void btree_node<P>::insert_value(int i, const value_type& x)
 | |
| {
 | |
|   assert(i <= count());
 | |
|   value_init(count(), x);
 | |
| 
 | |
|   for (int j = count(); j > i; --j)
 | |
|   {
 | |
|     value_swap(j, this, j - 1);
 | |
|   }
 | |
| 
 | |
|   set_count(count() + 1);
 | |
| 
 | |
|   if (!leaf())
 | |
|   {
 | |
|     ++i;
 | |
| 
 | |
|     for (int j = count(); j > i; --j)
 | |
|     {
 | |
|       *mutable_child(j) = child(j - 1);
 | |
|       child(j)->set_position(j);
 | |
|     }
 | |
| 
 | |
|     *mutable_child(i) = NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| inline void btree_node<P>::remove_value(int i)
 | |
| {
 | |
|   if (!leaf())
 | |
|   {
 | |
|     assert(child(i + 1)->count() == 0);
 | |
| 
 | |
|     for (int j = i + 1; j < count(); ++j)
 | |
|     {
 | |
|       *mutable_child(j) = child(j + 1);
 | |
|       child(j)->set_position(j);
 | |
|     }
 | |
| 
 | |
|     *mutable_child(count()) = NULL;
 | |
|   }
 | |
| 
 | |
|   set_count(count() - 1);
 | |
| 
 | |
|   for (; i < count(); ++i)
 | |
|   {
 | |
|     value_swap(i, this, i + 1);
 | |
|   }
 | |
| 
 | |
|   value_destroy(i);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree_node<P>::rebalance_right_to_left(btree_node* src, int to_move)
 | |
| {
 | |
|   assert(parent() == src->parent());
 | |
|   assert(position() + 1 == src->position());
 | |
|   assert(src->count() >= count());
 | |
|   assert(to_move >= 1);
 | |
|   assert(to_move <= src->count());
 | |
| 
 | |
|   // Make room in the left node for the new values.
 | |
|   for (int i = 0; i < to_move; ++i)
 | |
|   {
 | |
|     value_init(i + count());
 | |
|   }
 | |
| 
 | |
|   // Move the delimiting value to the left node and the new delimiting value
 | |
|   // from the right node.
 | |
|   value_swap(count(), parent(), position());
 | |
|   parent()->value_swap(position(), src, to_move - 1);
 | |
| 
 | |
|   // Move the values from the right to the left node.
 | |
|   for (int i = 1; i < to_move; ++i)
 | |
|   {
 | |
|     value_swap(count() + i, src, i - 1);
 | |
|   }
 | |
| 
 | |
|   // Shift the values in the right node to their correct position.
 | |
|   for (int i = to_move; i < src->count(); ++i)
 | |
|   {
 | |
|     src->value_swap(i - to_move, src, i);
 | |
|   }
 | |
| 
 | |
|   for (int i = 1; i <= to_move; ++i)
 | |
|   {
 | |
|     src->value_destroy(src->count() - i);
 | |
|   }
 | |
| 
 | |
|   if (!leaf())
 | |
|   {
 | |
|     // Move the child pointers from the right to the left node.
 | |
|     for (int i = 0; i < to_move; ++i)
 | |
|     {
 | |
|       set_child(1 + count() + i, src->child(i));
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i <= src->count() - to_move; ++i)
 | |
|     {
 | |
|       assert(i + to_move <= src->max_count());
 | |
|       src->set_child(i, src->child(i + to_move));
 | |
|       *src->mutable_child(i + to_move) = NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fixup the counts on the src and dest nodes.
 | |
|   set_count(count() + to_move);
 | |
|   src->set_count(src->count() - to_move);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree_node<P>::rebalance_left_to_right(btree_node* dest, int to_move)
 | |
| {
 | |
|   assert(parent() == dest->parent());
 | |
|   assert(position() + 1 == dest->position());
 | |
|   assert(count() >= dest->count());
 | |
|   assert(to_move >= 1);
 | |
|   assert(to_move <= count());
 | |
| 
 | |
|   // Make room in the right node for the new values.
 | |
|   for (int i = 0; i < to_move; ++i)
 | |
|   {
 | |
|     dest->value_init(i + dest->count());
 | |
|   }
 | |
| 
 | |
|   for (int i = dest->count() - 1; i >= 0; --i)
 | |
|   {
 | |
|     dest->value_swap(i, dest, i + to_move);
 | |
|   }
 | |
| 
 | |
|   // Move the delimiting value to the right node and the new delimiting value
 | |
|   // from the left node.
 | |
|   dest->value_swap(to_move - 1, parent(), position());
 | |
|   parent()->value_swap(position(), this, count() - to_move);
 | |
|   value_destroy(count() - to_move);
 | |
| 
 | |
|   // Move the values from the left to the right node.
 | |
|   for (int i = 1; i < to_move; ++i)
 | |
|   {
 | |
|     value_swap(count() - to_move + i, dest, i - 1);
 | |
|     value_destroy(count() - to_move + i);
 | |
|   }
 | |
| 
 | |
|   if (!leaf())
 | |
|   {
 | |
|     // Move the child pointers from the left to the right node.
 | |
|     for (int i = dest->count(); i >= 0; --i)
 | |
|     {
 | |
|       dest->set_child(i + to_move, dest->child(i));
 | |
|       *dest->mutable_child(i) = NULL;
 | |
|     }
 | |
| 
 | |
|     for (int i = 1; i <= to_move; ++i)
 | |
|     {
 | |
|       dest->set_child(i - 1, child(count() - to_move + i));
 | |
|       *mutable_child(count() - to_move + i) = NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fixup the counts on the src and dest nodes.
 | |
|   set_count(count() - to_move);
 | |
|   dest->set_count(dest->count() + to_move);
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree_node<P>::split(btree_node* dest, int insert_position)
 | |
| {
 | |
|   assert(dest->count() == 0);
 | |
| 
 | |
|   // We bias the split based on the position being inserted. If we're
 | |
|   // inserting at the beginning of the left node then bias the split to put
 | |
|   // more values on the right node. If we're inserting at the end of the
 | |
|   // right node then bias the split to put more values on the left node.
 | |
|   if (insert_position == 0)
 | |
|   {
 | |
|     dest->set_count(count() - 1);
 | |
|   }
 | |
|   else if (insert_position == max_count())
 | |
|   {
 | |
|     dest->set_count(0);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     dest->set_count(count() / 2);
 | |
|   }
 | |
| 
 | |
|   set_count(count() - dest->count());
 | |
|   assert(count() >= 1);
 | |
| 
 | |
|   // Move values from the left sibling to the right sibling.
 | |
|   for (int i = 0; i < dest->count(); ++i)
 | |
|   {
 | |
|     dest->value_init(i);
 | |
|     value_swap(count() + i, dest, i);
 | |
|     value_destroy(count() + i);
 | |
|   }
 | |
| 
 | |
|   // The split key is the largest value in the left sibling.
 | |
|   set_count(count() - 1);
 | |
|   parent()->insert_value(position(), value_type());
 | |
|   value_swap(count(), parent(), position());
 | |
|   value_destroy(count());
 | |
|   parent()->set_child(position() + 1, dest);
 | |
| 
 | |
|   if (!leaf())
 | |
|   {
 | |
|     for (int i = 0; i <= dest->count(); ++i)
 | |
|     {
 | |
|       assert(child(count() + i + 1) != NULL);
 | |
|       dest->set_child(i, child(count() + i + 1));
 | |
|       *mutable_child(count() + i + 1) = NULL;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree_node<P>::merge(btree_node* src)
 | |
| {
 | |
|   assert(parent() == src->parent());
 | |
|   assert(position() + 1 == src->position());
 | |
| 
 | |
|   // Move the delimiting value to the left node.
 | |
|   value_init(count());
 | |
|   value_swap(count(), parent(), position());
 | |
| 
 | |
|   // Move the values from the right to the left node.
 | |
|   for (int i = 0; i < src->count(); ++i)
 | |
|   {
 | |
|     value_init(1 + count() + i);
 | |
|     value_swap(1 + count() + i, src, i);
 | |
|     src->value_destroy(i);
 | |
|   }
 | |
| 
 | |
|   if (!leaf())
 | |
|   {
 | |
|     // Move the child pointers from the right to the left node.
 | |
|     for (int i = 0; i <= src->count(); ++i)
 | |
|     {
 | |
|       set_child(1 + count() + i, src->child(i));
 | |
|       *src->mutable_child(i) = NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fixup the counts on the src and dest nodes.
 | |
|   set_count(1 + count() + src->count());
 | |
|   src->set_count(0);
 | |
| 
 | |
|   // Remove the value on the parent node.
 | |
|   parent()->remove_value(position());
 | |
| }
 | |
| 
 | |
| template <typename P>
 | |
| void btree_node<P>::swap(btree_node* x)
 | |
| {
 | |
|   assert(leaf() == x->leaf());
 | |
| 
 | |
|   // Swap the values.
 | |
|   for (int i = count(); i < x->count(); ++i)
 | |
|   {
 | |
|     value_init(i);
 | |
|   }
 | |
| 
 | |
|   for (int i = x->count(); i < count(); ++i)
 | |
|   {
 | |
|     x->value_init(i);
 | |
|   }
 | |
| 
 | |
|   int n = std::max(count(), x->count());
 | |
| 
 | |
|   for (int i = 0; i < n; ++i)
 | |
|   {
 | |
|     value_swap(i, x, i);
 | |
|   }
 | |
| 
 | |
|   for (int i = count(); i < x->count(); ++i)
 | |
|   {
 | |
|     x->value_destroy(i);
 | |
|   }
 | |
| 
 | |
|   for (int i = x->count(); i < count(); ++i)
 | |
|   {
 | |
|     value_destroy(i);
 | |
|   }
 | |
| 
 | |
|   if (!leaf())
 | |
|   {
 | |
|     // Swap the child pointers.
 | |
|     for (int i = 0; i <= n; ++i)
 | |
|     {
 | |
|       btree_swap_helper(*mutable_child(i), *x->mutable_child(i));
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i <= count(); ++i)
 | |
|     {
 | |
|       x->child(i)->fields_.parent = x;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i <= x->count(); ++i)
 | |
|     {
 | |
|       child(i)->fields_.parent = this;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Swap the counts.
 | |
|   btree_swap_helper(fields_.count, x->fields_.count);
 | |
| }
 | |
| 
 | |
| ////
 | |
| // btree_iterator methods
 | |
| template <typename N, typename R, typename P>
 | |
| void btree_iterator<N, R, P>::increment_slow()
 | |
| {
 | |
|   if (node->leaf())
 | |
|   {
 | |
|     assert(position >= node->count());
 | |
|     self_type save(*this);
 | |
| 
 | |
|     while (position == node->count() && !node->is_root())
 | |
|     {
 | |
|       assert(node->parent()->child(node->position()) == node);
 | |
|       position = node->position();
 | |
|       node = node->parent();
 | |
|     }
 | |
| 
 | |
|     if (position == node->count())
 | |
|     {
 | |
|       *this = save;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     assert(position < node->count());
 | |
|     node = node->child(position + 1);
 | |
| 
 | |
|     while (!node->leaf())
 | |
|     {
 | |
|       node = node->child(0);
 | |
|     }
 | |
| 
 | |
|     position = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename N, typename R, typename P>
 | |
| void btree_iterator<N, R, P>::increment_by(int count)
 | |
| {
 | |
|   while (count > 0)
 | |
|   {
 | |
|     if (node->leaf())
 | |
|     {
 | |
|       int rest = node->count() - position;
 | |
|       position += std::min(rest, count);
 | |
|       count = count - rest;
 | |
| 
 | |
|       if (position < node->count())
 | |
|       {
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       --count;
 | |
|     }
 | |
| 
 | |
|     increment_slow();
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename N, typename R, typename P>
 | |
| void btree_iterator<N, R, P>::decrement_slow()
 | |
| {
 | |
|   if (node->leaf())
 | |
|   {
 | |
|     assert(position <= -1);
 | |
|     self_type save(*this);
 | |
| 
 | |
|     while (position < 0 && !node->is_root())
 | |
|     {
 | |
|       assert(node->parent()->child(node->position()) == node);
 | |
|       position = node->position() - 1;
 | |
|       node = node->parent();
 | |
|     }
 | |
| 
 | |
|     if (position < 0)
 | |
|     {
 | |
|       *this = save;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     assert(position >= 0);
 | |
|     node = node->child(position);
 | |
| 
 | |
|     while (!node->leaf())
 | |
|     {
 | |
|       node = node->child(node->count());
 | |
|     }
 | |
| 
 | |
|     position = node->count() - 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace btree
 |