1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-04-23 07:05:36 +03:00
Denis Khalikov bca300cd11 MCOL-5191 Refacator statistics.
Move uniform distribution to Statitistics constructor, remove rowcount.
2023-03-06 15:06:40 +03:00

606 lines
17 KiB
C++

/* Copyright (C) 2021 MariaDB Corporation
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; version 2 of
the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include <iostream>
#include <atomic>
#include <boost/filesystem.hpp>
#include "IDBPolicy.h"
#include "brmtypes.h"
#include "hasher.h"
#include "messagequeue.h"
#include "configcpp.h"
#include "statistics.h"
using namespace idbdatafile;
using namespace logging;
namespace statistics
{
StatisticsManager* StatisticsManager::instance()
{
static StatisticsManager* sm = new StatisticsManager();
return sm;
}
void StatisticsManager::collectSample(const rowgroup::RowGroup& rowGroup)
{
std::lock_guard<std::mutex> lock(mut);
const auto rowCount = rowGroup.getRowCount();
const auto columnCount = rowGroup.getColumnCount();
if (!rowCount || !columnCount)
return;
const auto& oids = rowGroup.getOIDs();
for (const auto oid : oids)
{
// Initialize a column data with 0.
if (!columnGroups.count(oid))
columnGroups[oid] = std::vector<uint64_t>(maxSampleSize, 0);
}
// Initialize a first row from the given `rowGroup`.
rowgroup::Row r;
rowGroup.initRow(&r);
rowGroup.getRow(0, &r);
// Generate a uniform distribution.
for (uint32_t i = 0; i < rowCount; ++i)
{
if (currentSampleSize < maxSampleSize)
{
for (uint32_t j = 0; j < columnCount; ++j)
{
if (!r.isNullValue(j))
columnGroups[oids[j]][currentSampleSize] = r.getIntField(j);
}
++currentSampleSize;
}
else
{
const uint32_t index = uniformDistribution(gen32);
if (index < maxSampleSize)
{
for (uint32_t j = 0; j < columnCount; ++j)
if (!r.isNullValue(j))
columnGroups[oids[j]][index] = r.getIntField(j);
}
}
r.nextRow();
}
}
void StatisticsManager::analyzeSample(bool traceOn)
{
if (traceOn)
std::cout << "Sample size: " << currentSampleSize << std::endl;
// PK_FK statistics.
for (const auto& [oid, sample] : columnGroups)
keyTypes[oid] = KeyType::PK;
for (const auto& [oid, sample] : columnGroups)
{
std::unordered_set<uint32_t> columnsCache;
std::unordered_map<uint64_t, uint32_t> columnMCV;
for (uint32_t i = 0; i < currentSampleSize; ++i)
{
const auto value = sample[i];
// PK_FK statistics.
if (columnsCache.count(value) && keyTypes[oid] == KeyType::PK)
keyTypes[oid] = KeyType::FK;
else
columnsCache.insert(value);
// MCV statistics.
if (columnMCV.count(value))
columnMCV[value]++;
else
columnMCV.insert({value, 1});
}
// MCV statistics.
std::vector<pair<uint64_t, uint32_t>> mcvList(columnMCV.begin(), columnMCV.end());
std::sort(mcvList.begin(), mcvList.end(),
[](const std::pair<uint64_t, uint32_t>& a, const std::pair<uint64_t, uint32_t>& b) {
return a.second > b.second;
});
// 200 buckets as Microsoft does.
const auto mcvSize = std::min(columnMCV.size(), static_cast<uint64_t>(200));
mcv[oid] = std::unordered_map<uint64_t, uint32_t>(mcvList.begin(), mcvList.begin() + mcvSize);
}
if (traceOn)
output();
// Clear sample.
columnGroups.clear();
currentSampleSize = 0;
}
void StatisticsManager::output()
{
std::cout << "Columns count: " << keyTypes.size() << std::endl;
std::cout << "Statistics type [PK_FK]: " << std::endl;
for (const auto& p : keyTypes)
{
std::cout << "[OID: " << p.first << ": ";
if (static_cast<uint32_t>(p.second) == 0)
std::cout << "PK] ";
else
std::cout << "FK] ";
}
std::cout << "\nStatistics type [MCV]: " << std::endl;
for (const auto& [oid, columnMCV] : mcv)
{
std::cout << "[OID: " << oid << std::endl;
for (const auto& [value, count] : columnMCV)
std::cout << value << ": " << count << ", ";
cout << "]" << endl;
}
}
// Someday it will be a virtual method, based on statistics type we processing.
std::unique_ptr<char[]> StatisticsManager::convertStatsToDataStream(uint64_t& dataStreamSize)
{
// Number of pairs.
uint64_t count = keyTypes.size();
// count, [[uid, keyType], ... ]
dataStreamSize = sizeof(uint64_t) + count * (sizeof(uint32_t) + sizeof(KeyType));
// Count the size of the MCV.
for (const auto& [oid, mcvColumn] : mcv)
{
// [oid, list size, list [value, count]]
dataStreamSize +=
(sizeof(uint32_t) + sizeof(uint32_t) + ((sizeof(uint64_t) + sizeof(uint32_t)) * mcvColumn.size()));
}
// Allocate memory for data stream.
std::unique_ptr<char[]> dataStreamSmartPtr(new char[dataStreamSize]);
auto* dataStream = dataStreamSmartPtr.get();
// Initialize the data stream.
uint64_t offset = 0;
std::memcpy(dataStream, reinterpret_cast<char*>(&count), sizeof(uint64_t));
offset += sizeof(uint64_t);
// For each pair [oid, key type].
for (const auto& p : keyTypes)
{
uint32_t oid = p.first;
std::memcpy(&dataStream[offset], reinterpret_cast<char*>(&oid), sizeof(uint32_t));
offset += sizeof(uint32_t);
KeyType keyType = p.second;
std::memcpy(&dataStream[offset], reinterpret_cast<char*>(&keyType), sizeof(KeyType));
offset += sizeof(KeyType);
}
// For each [oid, list size, list [value, count]].
for (const auto& p : mcv)
{
// [oid]
uint32_t oid = p.first;
std::memcpy(&dataStream[offset], reinterpret_cast<char*>(&oid), sizeof(uint32_t));
offset += sizeof(uint32_t);
// [list size]
const auto& mcvColumn = p.second;
uint32_t size = mcvColumn.size();
std::memcpy(&dataStream[offset], reinterpret_cast<char*>(&size), sizeof(uint32_t));
offset += sizeof(uint32_t);
// [list [value, count]]
for (const auto& mcvPair : mcvColumn)
{
uint64_t value = mcvPair.first;
std::memcpy(&dataStream[offset], reinterpret_cast<char*>(&value), sizeof(uint64_t));
offset += sizeof(uint64_t);
uint32_t count = mcvPair.second;
std::memcpy(&dataStream[offset], reinterpret_cast<char*>(&count), sizeof(uint32_t));
offset += sizeof(uint32_t);
}
}
return dataStreamSmartPtr;
}
void StatisticsManager::convertStatsFromDataStream(std::unique_ptr<char[]> dataStreamSmartPtr)
{
auto* dataStream = dataStreamSmartPtr.get();
uint64_t count = 0;
std::memcpy(reinterpret_cast<char*>(&count), dataStream, sizeof(uint64_t));
uint64_t offset = sizeof(uint64_t);
// For each pair.
for (uint64_t i = 0; i < count; ++i)
{
uint32_t oid;
KeyType keyType;
std::memcpy(reinterpret_cast<char*>(&oid), &dataStream[offset], sizeof(uint32_t));
offset += sizeof(uint32_t);
std::memcpy(reinterpret_cast<char*>(&keyType), &dataStream[offset], sizeof(KeyType));
offset += sizeof(KeyType);
keyTypes[oid] = keyType;
}
for (uint64_t i = 0; i < count; ++i)
{
uint32_t oid;
std::memcpy(reinterpret_cast<char*>(&oid), &dataStream[offset], sizeof(uint32_t));
offset += sizeof(uint32_t);
uint32_t mcvSize;
std::memcpy(reinterpret_cast<char*>(&mcvSize), &dataStream[offset], sizeof(uint32_t));
offset += sizeof(uint32_t);
std::unordered_map<uint64_t, uint32_t> columnMCV;
for (uint32_t j = 0; j < mcvSize; ++j)
{
uint64_t value;
std::memcpy(reinterpret_cast<char*>(&value), &dataStream[offset], sizeof(uint64_t));
offset += sizeof(uint64_t);
uint32_t count;
std::memcpy(reinterpret_cast<char*>(&count), &dataStream[offset], sizeof(uint32_t));
offset += sizeof(uint32_t);
columnMCV[value] = count;
}
mcv[oid] = std::move(columnMCV);
}
}
void StatisticsManager::saveToFile()
{
std::lock_guard<std::mutex> lock(mut);
const char* fileName = statsFile.c_str();
std::unique_ptr<IDBDataFile> out(
IDBDataFile::open(IDBPolicy::getType(fileName, IDBPolicy::WRITEENG), fileName, "wb", 1));
if (!out)
{
BRM::log_errno("StatisticsManager::saveToFile(): open");
throw ios_base::failure("StatisticsManager::saveToFile(): open failed.");
}
// Compute hash.
uint64_t dataStreamSize = 0;
std::unique_ptr<char[]> dataStreamSmartPtr = convertStatsToDataStream(dataStreamSize);
utils::Hasher128 hasher;
// Prepare a statistics file header.
const uint32_t headerSize = sizeof(StatisticsFileHeader);
StatisticsFileHeader fileHeader;
std::memset(&fileHeader, 0, headerSize);
fileHeader.version = version;
fileHeader.epoch = epoch;
fileHeader.dataSize = dataStreamSize;
// Compute hash from the data.
fileHeader.dataHash = hasher(dataStreamSmartPtr.get(), dataStreamSize);
// Write statistics file header.
uint64_t size = out->write(reinterpret_cast<char*>(&fileHeader), headerSize);
if (size != headerSize)
{
auto rc = IDBPolicy::remove(fileName);
if (rc == -1)
std::cerr << "Cannot remove file " << fileName << std::endl;
throw ios_base::failure("StatisticsManager::saveToFile(): write failed. ");
}
// Write data.
size = out->write(dataStreamSmartPtr.get(), dataStreamSize);
if (size != dataStreamSize)
{
auto rc = IDBPolicy::remove(fileName);
if (rc == -1)
std::cerr << "Cannot remove file " << fileName << std::endl;
throw ios_base::failure("StatisticsManager::saveToFile(): write failed. ");
}
}
void StatisticsManager::loadFromFile()
{
std::lock_guard<std::mutex> lock(mut);
// Check that stats file does exist.
if (!boost::filesystem::exists(statsFile))
return;
const char* fileName = statsFile.c_str();
std::unique_ptr<IDBDataFile> in(
IDBDataFile::open(IDBPolicy::getType(fileName, IDBPolicy::WRITEENG), fileName, "rb", 1));
if (!in)
{
BRM::log_errno("StatisticsManager::loadFromFile(): open");
throw ios_base::failure("StatisticsManager::loadFromFile(): open failed. Check the error log.");
}
// Read the file header.
StatisticsFileHeader fileHeader;
const uint32_t headerSize = sizeof(StatisticsFileHeader);
int64_t size = in->read(reinterpret_cast<char*>(&fileHeader), headerSize);
if (size != headerSize)
throw ios_base::failure("StatisticsManager::loadFromFile(): read failed. ");
// Initialize fields from the file header.
version = fileHeader.version;
epoch = fileHeader.epoch;
const auto dataHash = fileHeader.dataHash;
const auto dataStreamSize = fileHeader.dataSize;
// Allocate the memory for the file data.
std::unique_ptr<char[]> dataStreamSmartPtr(new char[dataStreamSize]);
auto* dataStream = dataStreamSmartPtr.get();
// Read the data.
uint64_t dataOffset = 0;
auto sizeToRead = dataStreamSize;
size = in->read(dataStream, sizeToRead);
sizeToRead -= size;
dataOffset += size;
while (sizeToRead > 0)
{
size = in->read(dataStream + dataOffset, sizeToRead);
if (size < 0)
throw ios_base::failure("StatisticsManager::loadFromFile(): read failed. ");
sizeToRead -= size;
dataOffset += size;
}
utils::Hasher128 hasher;
auto computedDataHash = hasher(dataStream, dataStreamSize);
if (dataHash != computedDataHash)
throw ios_base::failure("StatisticsManager::loadFromFile(): invalid file hash. ");
convertStatsFromDataStream(std::move(dataStreamSmartPtr));
}
uint64_t StatisticsManager::computeHashFromStats()
{
utils::Hasher128 hasher;
uint64_t dataStreamSize = 0;
std::unique_ptr<char[]> dataStreamSmartPtr = convertStatsToDataStream(dataStreamSize);
return hasher(dataStreamSmartPtr.get(), dataStreamSize);
}
void StatisticsManager::serialize(messageqcpp::ByteStream& bs)
{
uint64_t count = keyTypes.size();
bs << version;
bs << epoch;
bs << count;
// PK_FK
for (const auto& keyType : keyTypes)
{
bs << keyType.first;
bs << (uint32_t)keyType.second;
}
// MCV
for (const auto& p : mcv)
{
bs << p.first;
const auto& mcvColumn = p.second;
bs << static_cast<uint32_t>(mcvColumn.size());
for (const auto& mcvPair : mcvColumn)
{
bs << mcvPair.first;
bs << mcvPair.second;
}
}
}
void StatisticsManager::unserialize(messageqcpp::ByteStream& bs)
{
uint64_t count;
bs >> version;
bs >> epoch;
bs >> count;
// PK_FK
for (uint32_t i = 0; i < count; ++i)
{
uint32_t oid, keyType;
bs >> oid;
bs >> keyType;
keyTypes[oid] = static_cast<KeyType>(keyType);
}
// MCV
for (uint32_t i = 0; i < count; ++i)
{
uint32_t oid, mcvSize;
bs >> oid;
bs >> mcvSize;
std::unordered_map<uint64_t, uint32_t> mcvColumn;
for (uint32_t j = 0; j < mcvSize; ++j)
{
uint64_t value;
uint32_t count;
bs >> value;
bs >> count;
mcvColumn[value] = count;
}
mcv[oid] = std::move(mcvColumn);
}
}
bool StatisticsManager::hasKey(uint32_t oid)
{
return keyTypes.count(oid) > 0 ? true : false;
}
KeyType StatisticsManager::getKeyType(uint32_t oid)
{
return keyTypes[oid];
}
StatisticsDistributor* StatisticsDistributor::instance()
{
static StatisticsDistributor* sd = new StatisticsDistributor();
return sd;
}
void StatisticsDistributor::distributeStatistics()
{
countClients();
{
std::lock_guard<std::mutex> lock(mut);
// No clients.
if (clientsCount == 0)
return;
#ifdef DEBUG_STATISTICS
std::cout << "Distribute statistics from ExeMgr(Server) to ExeMgr(Clients) " << std::endl;
#endif
messageqcpp::ByteStream msg, statsHash, statsBs;
// Current hash.
statsHash << statistics::StatisticsManager::instance()->computeHashFromStats();
// Statistics.
statistics::StatisticsManager::instance()->serialize(statsBs);
for (uint32_t i = 0; i < clientsCount; ++i)
{
try
{
messageqcpp::ByteStream::quadbyte qb = ANALYZE_TABLE_REC_STATS;
msg << qb;
auto exeMgrID = "ExeMgr" + std::to_string(i + 2);
// Create a client.
std::unique_ptr<messageqcpp::MessageQueueClient> exemgrClient(
new messageqcpp::MessageQueueClient(exeMgrID));
#ifdef DEBUG_STATISTICS
std::cout << "Try to connect to " << exeMgrID << std::endl;
#endif
// Try to connect to the client.
if (!exemgrClient->connect())
{
msg.restart();
#ifdef DEBUG_STATISTICS
std::cout << "Unable to connect to " << exeMgrID << std::endl;
#endif
continue;
}
#ifdef DEBUG_STATISTICS
std::cout << "Write flag ANALYZE_TABLE_REC_STATS from ExeMgr(Server) to ExeMgr(Clients) "
<< std::endl;
#endif
// Write a flag to client ExeMgr.
exemgrClient->write(msg);
#ifdef DEBUG_STATISTICS
std::cout << "Write statistics hash from ExeMgr(Server) to ExeMgr(Clients) " << std::endl;
#endif
// Write a hash of the stats.
exemgrClient->write(statsHash);
// Read the state from Client.
msg.restart();
msg = exemgrClient->read();
msg >> qb;
// Do not need a stats.
if (qb == ANALYZE_TABLE_SUCCESS)
{
msg.restart();
continue;
}
#ifdef DEBUG_STATISTICS
std::cout << "Write statistics bytestream from ExeMgr(Server) to ExeMgr(Clients) " << std::endl;
#endif
// Write a statistics to client ExeMgr.
exemgrClient->write(statsBs);
// Read the flag back from the client ExeMgr.
msg.restart();
msg = exemgrClient->read();
if (msg.length() == 0)
throw runtime_error("Lost conection to ExeMgr.");
#ifdef DEBUG_STATISTICS
std::cout << "Read flag on ExeMgr(Server) from ExeMgr(Client) " << std::endl;
#endif
msg.restart();
}
catch (std::exception& e)
{
msg.restart();
std::cerr << "distributeStatistics() failed with error: " << e.what() << std::endl;
}
catch (...)
{
msg.restart();
std::cerr << "distributeStatistics() failed with unknown error." << std::endl;
}
}
}
}
void StatisticsDistributor::countClients()
{
#ifdef DEBUG_STATISTICS
std::cout << "count clients to distribute statistics " << std::endl;
#endif
auto* config = config::Config::makeConfig();
// Starting from the ExeMgr2, since the Server starts on the ExeMgr1.
std::atomic<uint32_t> exeMgrNumber(2);
try
{
while (true)
{
auto exeMgrID = "ExeMgr" + std::to_string(exeMgrNumber);
auto exeMgrIP = config->getConfig(exeMgrID, "IPAddr");
if (exeMgrIP == "")
break;
#ifdef DEBUG_STATISTICS
std::cout << "Client: " << exeMgrID << std::endl;
#endif
++exeMgrNumber;
}
}
catch (std::exception& e)
{
std::cerr << "countClients() failed with error: " << e.what() << std::endl;
}
catch (...)
{
std::cerr << "countClients() failed with unknown error: ";
}
clientsCount = exeMgrNumber - 2;
#ifdef DEBUG_STATISTICS
std::cout << "Number of clients: " << clientsCount << std::endl;
#endif
}
} // namespace statistics