1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-07-29 08:21:15 +03:00
Files
mariadb-columnstore-engine/dbcon/joblist/tdriver-zdl.cpp
2022-01-21 16:43:49 +00:00

980 lines
29 KiB
C++

/* Copyright (C) 2014 InfiniDB, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; version 2 of
the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
/***********************************************************************
* $Id: tdriver-zdl.cpp 9210 2013-01-21 14:10:42Z rdempsey $
*
*
***********************************************************************/
#include <iostream>
#include <sstream>
#include <fstream>
#include <list>
#include <vector>
#include <pthread.h>
#include <time.h>
#include <sys/time.h>
#include <cppunit/extensions/HelperMacros.h>
#include <cppunit/extensions/TestFactoryRegistry.h>
#include <cppunit/ui/text/TestRunner.h>
#include "fifo.h"
#include "wsdl.h"
#include "constantdatalist.h"
#include "bucketdl.h"
#include "bandeddl.h"
#include "elementtype.h"
#include "zdl.h"
#include "stopwatch.cpp"
// #undef CPPUNIT_ASSERT
// #define CPPUNIT_ASSERT(x)
using namespace std;
using namespace joblist;
Stopwatch timer;
// dmc-uint64_t count = 20000000/*1000000*/;
uint64_t count1Set = 2000000;
uint64_t countMulSet = 8000000;
int maxElements = 16000000 /*50000*/; // max elements in memory at once for the benchmarks
int id_sw = -1;
pthread_mutex_t writeLock;
const int NUM_PRODUCERS = 8;
const int NUM_CONSUMERS = 4;
uint64_t readCounts[NUM_CONSUMERS];
struct ThreadParms
{
void* zdl;
unsigned int threadNumber;
uint64_t count; // for producer this is the number of elements
// each producer is to write
// for consumer this is not currently used
};
//------------------------------------------------------------------------------
void timespec_sub(const struct timespec& tv1, const struct timespec& tv2, struct timespec& diff)
{
if (tv2.tv_nsec < tv1.tv_nsec)
{
diff.tv_sec = tv2.tv_sec - tv1.tv_sec - 1;
diff.tv_nsec = tv1.tv_nsec - tv2.tv_nsec;
}
else
{
diff.tv_sec = tv2.tv_sec - tv1.tv_sec;
diff.tv_nsec = tv2.tv_nsec - tv1.tv_nsec;
}
}
//------------------------------------------------------------------------------
// thread callbacks for SWSDL testing
//------------------------------------------------------------------------------
template <typename ElemT>
void* SWSDL_producer_1set_seq(void* arg)
{
pthread_mutex_lock(&writeLock);
id_sw++;
pthread_mutex_unlock(&writeLock);
SWSDL<ElemT>* sw = reinterpret_cast<SWSDL<ElemT>*>(arg);
for (uint64_t i = id_sw; i < (::count1Set * NUM_PRODUCERS) - ((NUM_PRODUCERS - 1) - id_sw);
i = i + NUM_PRODUCERS)
{
sw->insert(ElemT(i, i));
}
return NULL;
}
template <typename ElemT>
void* SWSDL_producer_mulSet_seq(void* arg)
{
pthread_mutex_lock(&writeLock);
id_sw++;
pthread_mutex_unlock(&writeLock);
SWSDL<ElemT>* sw = reinterpret_cast<SWSDL<ElemT>*>(arg);
for (uint64_t i = id_sw; i < (::countMulSet * NUM_PRODUCERS) - ((NUM_PRODUCERS - 1) - id_sw);
i = i + NUM_PRODUCERS)
{
sw->insert(ElemT(i, i));
}
return NULL;
}
template <typename ElemT>
void* SWSDL_producer_1set_rand(void* arg)
{
SWSDL<ElemT>* sw = reinterpret_cast<SWSDL<ElemT>*>(arg);
for (uint64_t i = 0; i < ::count1Set; i++)
{
sw->insert(ElemT((uint64_t)(::count1Set * rand() / (RAND_MAX + 1.0)), i));
}
return NULL;
}
template <typename ElemT>
void* SWSDL_producer_mulSet_rand(void* arg)
{
SWSDL<ElemT>* sw = reinterpret_cast<SWSDL<ElemT>*>(arg);
for (uint64_t i = 0; i < ::countMulSet; i++)
{
sw->insert(ElemT((uint64_t)(countMulSet * rand() / (RAND_MAX + 1.0)), i));
}
return NULL;
}
template <typename ElemT>
void* SWSDL_consumer(void* arg)
{
SWSDL<ElemT>* sw = reinterpret_cast<SWSDL<ElemT>*>(arg);
uint64_t id;
bool nextRet;
ElemT e;
id = sw->getIterator();
nextRet = sw->next(id, &e);
while (nextRet)
nextRet = sw->next(id, &e);
return NULL;
}
//------------------------------------------------------------------------------
// thread callbacks and utilities for ZDL testing
//------------------------------------------------------------------------------
template <typename ElemT>
void* ZDL_producer_1set_seq(void* arg)
{
ThreadParms* pThreadParms = reinterpret_cast<ThreadParms*>(arg);
uint64_t tNum = pThreadParms->threadNumber;
ZDL<ElemT>* zdl = reinterpret_cast<ZDL<ElemT>*>(pThreadParms->zdl);
uint64_t elementCount = pThreadParms->count;
for (uint64_t i = tNum; i < (elementCount * NUM_PRODUCERS) - ((NUM_PRODUCERS - 1) - tNum);
i = i + NUM_PRODUCERS)
{
zdl->insert(ElemT(i, i));
}
return NULL;
}
template <typename ElemT>
void* ZDL_producer_mulSet_seq(void* arg)
{
ThreadParms* pThreadParms = reinterpret_cast<ThreadParms*>(arg);
uint64_t tNum = pThreadParms->threadNumber;
ZDL<ElemT>* zdl = reinterpret_cast<ZDL<ElemT>*>(pThreadParms->zdl);
uint64_t elementCount = pThreadParms->count;
for (uint64_t i = tNum; i < (elementCount * NUM_PRODUCERS) - ((NUM_PRODUCERS - 1) - tNum);
i = i + NUM_PRODUCERS)
{
zdl->insert(ElemT(i, i));
}
return NULL;
}
//
// Can't use ZDL_producer_mulSet_seq() to test RID only element type(s)
// because we need an ElemT constructor that takes a single argument.
//
template <typename ElemT>
void* ZDL_producer_mulSet_seq_ridonly(void* arg)
{
ThreadParms* pThreadParms = reinterpret_cast<ThreadParms*>(arg);
uint64_t tNum = pThreadParms->threadNumber;
ZDL<ElemT>* zdl = reinterpret_cast<ZDL<ElemT>*>(pThreadParms->zdl);
uint64_t elementCount = pThreadParms->count;
for (uint64_t i = tNum; i < (elementCount * NUM_PRODUCERS) - ((NUM_PRODUCERS - 1) - tNum);
i = i + NUM_PRODUCERS)
{
zdl->insert(ElemT(i));
}
return NULL;
}
template <typename ElemT>
void* ZDL_producer_1set_rand(void* arg)
{
ThreadParms* pThreadParms = reinterpret_cast<ThreadParms*>(arg);
// uint64_t tNum = pThreadParms->threadNumber;
ZDL<ElemT>* zdl = reinterpret_cast<ZDL<ElemT>*>(pThreadParms->zdl);
uint64_t elementCount = pThreadParms->count;
for (uint64_t i = 0; i < elementCount; i++)
{
zdl->insert(ElemT((uint64_t)(elementCount * rand() / (RAND_MAX + 1.0)), i));
}
return NULL;
}
template <typename ElemT>
void* ZDL_producer_mulSet_rand(void* arg)
{
ThreadParms* pThreadParms = reinterpret_cast<ThreadParms*>(arg);
// uint64_t tNum = pThreadParms->threadNumber;
ZDL<ElemT>* zdl = reinterpret_cast<ZDL<ElemT>*>(pThreadParms->zdl);
uint64_t elementCount = pThreadParms->count;
for (uint64_t i = 0; i < elementCount; i++)
{
zdl->insert(ElemT((uint64_t)(elementCount * rand() / (RAND_MAX + 1.0)), i));
}
return NULL;
}
template <typename ElemT>
void* ZDL_consumer(void* arg)
{
ThreadParms* pThreadParms = reinterpret_cast<ThreadParms*>(arg);
uint64_t tNum = pThreadParms->threadNumber;
ZDL<ElemT>* zdl = reinterpret_cast<ZDL<ElemT>*>(pThreadParms->zdl);
uint64_t id;
bool nextRet;
ElemT e;
id = zdl->getIterator();
nextRet = zdl->next(id, &e);
while (nextRet)
{
::readCounts[tNum]++;
nextRet = zdl->next(id, &e);
}
return NULL;
}
template <typename ElemT>
void ZDL_printFileStats(void* arg)
{
ZDL<ElemT>* zdl = reinterpret_cast<ZDL<ElemT>*>(arg);
uint64_t nFiles;
uint64_t nBytes;
zdl->totalFileCounts(nFiles, nBytes);
uint32_t size1st = zdl->getDiskElemSize1st();
uint32_t size2nd = zdl->getDiskElemSize2nd();
cout << "NumberOfFiles: " << nFiles << endl;
cout << "NumberOfBytes: " << nBytes << endl;
cout << "ElementSize: " << size1st << "/" << size2nd << endl;
}
//------------------------------------------------------------------------------
// TestDriver class derived from CppUnit
//------------------------------------------------------------------------------
class DataListDriver : public CppUnit::TestFixture
{
CPPUNIT_TEST_SUITE(DataListDriver);
// CPPUNIT_TEST(configure);
// CPPUNIT_TEST(load_save);
// CPPUNIT_TEST(SWSDL_bench_1set_seq);
// CPPUNIT_TEST(SWSDL_bench_1set_rand);
// CPPUNIT_TEST(SWSDL_bench_mulSet_seq);
// CPPUNIT_TEST(SWSDL_bench_mulSet_rand);
// CPPUNIT_TEST(ZDL_bench_1set_seq);
// CPPUNIT_TEST(ZDL_bench_1set_rand);
CPPUNIT_TEST(ZDL_bench_mulSet_seq_uncompressed);
CPPUNIT_TEST(ZDL_bench_mulSet_seq_compressed_32_32);
CPPUNIT_TEST(ZDL_bench_mulSet_seq_compressed_64_32);
CPPUNIT_TEST(ZDL_bench_mulSet_seq_compressed_32_64);
// CPPUNIT_TEST(ZDL_bench_mulSet_rand);
CPPUNIT_TEST(ZDL_bench_mulSet_seq_ridonly_uncompressed);
CPPUNIT_TEST(ZDL_bench_mulSet_seq_ridonly_compressed_32);
CPPUNIT_TEST_SUITE_END();
ResourceManager fRm;
private:
public:
//--------------------------------------------------------------------------
// setup method run prior to each unit test
//--------------------------------------------------------------------------
void setUp()
{
for (int i = 0; i < NUM_CONSUMERS; i++)
{
::readCounts[i] = 0;
}
}
//--------------------------------------------------------------------------
// validate results from a unit test
//--------------------------------------------------------------------------
void validateResults(uint64_t totalElementsExpected)
{
for (int i = 0; i < NUM_CONSUMERS; i++)
{
cout << "consumer " << i << " read " << ::readCounts[i] << " elements" << endl;
}
cout << endl;
for (int i = 0; i < NUM_CONSUMERS; i++)
{
CPPUNIT_ASSERT(readCounts[i] == totalElementsExpected);
}
}
//--------------------------------------------------------------------------
// SWSDL benchmark functions
//--------------------------------------------------------------------------
void SWSDL_bench_1set_seq()
{
typedef ElementType Element;
id_sw = 0;
uint32_t i;
uint32_t numOfProducers = NUM_PRODUCERS;
uint32_t numOfConsumers = NUM_CONSUMERS;
SWSDL<Element> sw(numOfConsumers, fRm);
sw.setMultipleProducers(true);
pthread_t producer[numOfProducers];
pthread_t consumer[numOfConsumers];
struct timespec ts1, ts2, diff;
clock_gettime(CLOCK_REALTIME, &ts1);
for (i = 0; i < numOfProducers; i++)
pthread_create(&producer[i], NULL, SWSDL_producer_1set_seq<Element>, &sw);
for (i = 0; i < numOfConsumers; i++)
pthread_create(&consumer[i], NULL, SWSDL_consumer<Element>, &sw);
for (i = 0; i < numOfProducers; i++)
pthread_join(producer[i], NULL);
sw.endOfInput();
for (i = 0; i < numOfConsumers; i++)
pthread_join(consumer[i], NULL);
clock_gettime(CLOCK_REALTIME, &ts2);
timespec_sub(ts1, ts2, diff);
cout << "# of Producers: " << numOfProducers << endl;
cout << "# of Consumers: " << numOfConsumers << endl;
cout << "SWSDL_bench_1set_seq: producer & consumer passed " << sw.totalSize() << " elements in "
<< diff.tv_sec << "s " << diff.tv_nsec << "ns" << endl;
}
void SWSDL_bench_mulSet_seq()
{
typedef ElementType Element;
id_sw = 0;
uint32_t i;
uint32_t numOfProducers = NUM_PRODUCERS;
uint32_t numOfConsumers = NUM_CONSUMERS;
SWSDL<Element> sw(numOfConsumers, fRm);
sw.setMultipleProducers(true);
pthread_t producer[numOfProducers];
pthread_t consumer[numOfConsumers];
struct timespec ts1, ts2, diff;
timer.start("swsdl-produce");
clock_gettime(CLOCK_REALTIME, &ts1);
for (i = 0; i < numOfProducers; i++)
pthread_create(&producer[i], NULL, SWSDL_producer_mulSet_seq<Element>, &sw);
for (i = 0; i < numOfProducers; i++)
pthread_join(producer[i], NULL);
timer.stop("swsdl-produce");
timer.start("swsdl-endofinput");
sw.endOfInput();
timer.stop("swsdl-endofinput");
// timer.stop("swsdl-produce");
timer.start("swsdl-consume");
for (i = 0; i < numOfConsumers; i++)
pthread_create(&consumer[i], NULL, SWSDL_consumer<Element>, &sw);
for (i = 0; i < numOfConsumers; i++)
pthread_join(consumer[i], NULL);
clock_gettime(CLOCK_REALTIME, &ts2);
timer.stop("swsdl-consume");
timer.finish();
timespec_sub(ts1, ts2, diff);
cout << "# of Producers: " << numOfProducers << endl;
cout << "# of Consumers: " << numOfConsumers << endl;
cout << "SWSDL_bench_mulSet_seq: producer & consumer passed " << sw.totalSize() << " elements in "
<< diff.tv_sec << "s " << diff.tv_nsec << "ns" << endl;
}
void SWSDL_bench_1set_rand()
{
typedef ElementType Element;
id_sw = 0;
uint32_t i;
uint32_t numOfProducers = NUM_PRODUCERS;
uint32_t numOfConsumers = NUM_CONSUMERS;
SWSDL<Element> sw(numOfConsumers, ::maxElements, fRm);
sw.setMultipleProducers(true);
pthread_t producer[numOfProducers];
pthread_t consumer[numOfConsumers];
struct timespec ts1, ts2, diff;
clock_gettime(CLOCK_REALTIME, &ts1);
for (i = 0; i < numOfProducers; i++)
pthread_create(&producer[i], NULL, SWSDL_producer_1set_rand<Element>, &sw);
for (i = 0; i < numOfConsumers; i++)
pthread_create(&consumer[i], NULL, SWSDL_consumer<Element>, &sw);
for (i = 0; i < numOfProducers; i++)
pthread_join(producer[i], NULL);
sw.endOfInput();
for (i = 0; i < numOfConsumers; i++)
pthread_join(consumer[i], NULL);
clock_gettime(CLOCK_REALTIME, &ts2);
timespec_sub(ts1, ts2, diff);
cout << "# of Producers: " << numOfProducers << endl;
cout << "# of Consumers: " << numOfConsumers << endl;
cout << "SWSDL_bench_1set_rand: producer & consumer passed " << sw.totalSize() << " elements in "
<< diff.tv_sec << "s " << diff.tv_nsec << "ns" << endl;
}
void SWSDL_bench_mulSet_rand()
{
typedef ElementType Element;
id_sw = 0;
uint32_t i;
uint32_t numOfProducers = NUM_PRODUCERS;
uint32_t numOfConsumers = NUM_CONSUMERS;
SWSDL<Element> sw(numOfConsumers, ::maxElements, fRm);
sw.setMultipleProducers(true);
pthread_t producer[numOfProducers];
pthread_t consumer[numOfConsumers];
struct timespec ts1, ts2, diff;
clock_gettime(CLOCK_REALTIME, &ts1);
for (i = 0; i < numOfProducers; i++)
pthread_create(&producer[i], NULL, SWSDL_producer_mulSet_rand<Element>, &sw);
for (i = 0; i < numOfConsumers; i++)
pthread_create(&consumer[i], NULL, SWSDL_consumer<Element>, &sw);
for (i = 0; i < numOfProducers; i++)
pthread_join(producer[i], NULL);
sw.endOfInput();
for (i = 0; i < numOfConsumers; i++)
pthread_join(consumer[i], NULL);
clock_gettime(CLOCK_REALTIME, &ts2);
timespec_sub(ts1, ts2, diff);
cout << "# of Producers: " << numOfProducers << endl;
cout << "# of Consumers: " << numOfConsumers << endl;
cout << "SWSDL_bench_mulSet_rand: producer & consumer passed " << sw.totalSize() << " elements in "
<< diff.tv_sec << "s " << diff.tv_nsec << "ns" << endl;
}
//--------------------------------------------------------------------------
// ZDL benchmark functions
//--------------------------------------------------------------------------
void ZDL_bench_1set_seq()
{
typedef ElementType Element;
uint32_t i;
uint32_t numOfProducers = NUM_PRODUCERS;
uint32_t numOfConsumers = NUM_CONSUMERS;
ZDL<Element> zdl(numOfConsumers, fRm);
zdl.setMultipleProducers(true);
zdl.setElementMode(1); // RID_VALUE
pthread_t producer[numOfProducers];
pthread_t consumer[numOfConsumers];
ThreadParms producerThreadParms[NUM_PRODUCERS];
ThreadParms consumerThreadParms[NUM_CONSUMERS];
struct timespec ts1, ts2, diff;
timer.start("zdl-produce_1set_seq");
clock_gettime(CLOCK_REALTIME, &ts1);
for (i = 0; i < numOfProducers; i++)
{
producerThreadParms[i].zdl = &zdl;
producerThreadParms[i].threadNumber = i;
producerThreadParms[i].count = ::count1Set;
pthread_create(&producer[i], NULL, ZDL_producer_1set_seq<Element>, &producerThreadParms[i]);
}
for (i = 0; i < numOfProducers; i++)
pthread_join(producer[i], NULL);
zdl.endOfInput();
timer.stop("zdl-produce_1set_seq");
timer.start("zdl-consume_1set_seq");
for (i = 0; i < numOfConsumers; i++)
{
consumerThreadParms[i].zdl = &zdl;
consumerThreadParms[i].threadNumber = i;
consumerThreadParms[i].count = 0;
pthread_create(&consumer[i], NULL, ZDL_consumer<Element>, &consumerThreadParms[i]);
}
for (i = 0; i < numOfConsumers; i++)
pthread_join(consumer[i], NULL);
clock_gettime(CLOCK_REALTIME, &ts2);
timer.stop("zdl-consume_1set_seq");
timer.finish();
timespec_sub(ts1, ts2, diff);
cout << "# of Producers: " << numOfProducers << endl;
cout << "# of Consumers: " << numOfConsumers << endl;
cout << "ZDL_bench_1set_seq: producer & consumer passed " << zdl.totalSize() << " elements in "
<< diff.tv_sec << "s " << diff.tv_nsec << "ns" << endl;
ZDL_printFileStats<Element>(&zdl);
validateResults(::count1Set * NUM_PRODUCERS);
}
void ZDL_bench_mulSet_seq(char* testDesc, bool compress, uint32_t size1st, uint32_t size2nd)
{
typedef ElementType Element;
string produceTag("zdl-produce_");
string eofInputTag("zdl-endofinput_");
string consumeTag("zdl-consume_");
produceTag += testDesc;
eofInputTag += testDesc;
consumeTag += testDesc;
uint32_t i;
uint32_t numOfProducers = NUM_PRODUCERS;
uint32_t numOfConsumers = NUM_CONSUMERS;
ZDL<Element> zdl(numOfConsumers, fRm);
zdl.setMultipleProducers(true);
zdl.setElementMode(1); // RID_VALUE
if (compress)
zdl.setDiskElemSize(size1st, size2nd);
pthread_t producer[numOfProducers];
pthread_t consumer[numOfConsumers];
ThreadParms producerThreadParms[NUM_PRODUCERS];
ThreadParms consumerThreadParms[NUM_CONSUMERS];
struct timespec ts1, ts2, diff;
timer.start(produceTag);
clock_gettime(CLOCK_REALTIME, &ts1);
for (i = 0; i < numOfProducers; i++)
{
producerThreadParms[i].zdl = &zdl;
producerThreadParms[i].threadNumber = i;
producerThreadParms[i].count = ::countMulSet;
pthread_create(&producer[i], NULL, ZDL_producer_mulSet_seq<Element>, &producerThreadParms[i]);
}
for (i = 0; i < numOfConsumers; i++)
{
consumerThreadParms[i].zdl = &zdl;
consumerThreadParms[i].threadNumber = i;
consumerThreadParms[i].count = 0;
pthread_create(&consumer[i], NULL, ZDL_consumer<Element>, &consumerThreadParms[i]);
}
for (i = 0; i < numOfProducers; i++)
pthread_join(producer[i], NULL);
timer.stop(produceTag);
timer.start(eofInputTag);
zdl.endOfInput();
timer.stop(eofInputTag);
timer.start(consumeTag);
for (i = 0; i < numOfConsumers; i++)
pthread_join(consumer[i], NULL);
clock_gettime(CLOCK_REALTIME, &ts2);
timer.stop(consumeTag);
timer.finish();
timespec_sub(ts1, ts2, diff);
cout << "compress state: " << (compress ? "on" : "off") << endl;
if (compress)
cout << "size 1st/2nd: " << size1st << "/" << size2nd << endl;
cout << "# of Producers: " << numOfProducers << endl;
cout << "# of Consumers: " << numOfConsumers << endl;
cout << "ZDL_bench_mulSet_seq_" << testDesc << ": producer & consumer passed " << zdl.totalSize()
<< " elements in " << diff.tv_sec << "s " << diff.tv_nsec << "ns" << endl;
ZDL_printFileStats<Element>(&zdl);
validateResults(::countMulSet * NUM_PRODUCERS);
}
void ZDL_bench_mulSet_seq_uncompressed()
{
ZDL_bench_mulSet_seq("uncompressed", false, 0, 0);
}
void ZDL_bench_mulSet_seq_compressed_32_32()
{
ZDL_bench_mulSet_seq("compressed_32_32", true, 4, 4);
}
void ZDL_bench_mulSet_seq_compressed_64_32()
{
ZDL_bench_mulSet_seq("compressed_64_32", true, 8, 4);
}
void ZDL_bench_mulSet_seq_compressed_32_64()
{
ZDL_bench_mulSet_seq("compressed_32_64", true, 4, 8);
}
void ZDL_bench_1set_rand()
{
typedef ElementType Element;
uint32_t i;
uint32_t numOfProducers = NUM_PRODUCERS;
uint32_t numOfConsumers = NUM_CONSUMERS;
ZDL<Element> zdl(numOfConsumers, fRm);
zdl.setMultipleProducers(true);
zdl.setElementMode(1); // RID_VALUE
pthread_t producer[numOfProducers];
pthread_t consumer[numOfConsumers];
ThreadParms producerThreadParms[NUM_PRODUCERS];
ThreadParms consumerThreadParms[NUM_CONSUMERS];
struct timespec ts1, ts2, diff;
clock_gettime(CLOCK_REALTIME, &ts1);
for (i = 0; i < numOfProducers; i++)
{
producerThreadParms[i].zdl = &zdl;
producerThreadParms[i].threadNumber = i;
producerThreadParms[i].count = ::count1Set;
pthread_create(&producer[i], NULL, ZDL_producer_1set_rand<Element>, &producerThreadParms[i]);
}
for (i = 0; i < numOfConsumers; i++)
{
consumerThreadParms[i].zdl = &zdl;
consumerThreadParms[i].threadNumber = i;
consumerThreadParms[i].count = 0;
pthread_create(&consumer[i], NULL, ZDL_consumer<Element>, &consumerThreadParms[i]);
}
for (i = 0; i < numOfProducers; i++)
pthread_join(producer[i], NULL);
zdl.endOfInput();
for (i = 0; i < numOfConsumers; i++)
pthread_join(consumer[i], NULL);
clock_gettime(CLOCK_REALTIME, &ts2);
timespec_sub(ts1, ts2, diff);
cout << "# of Producers: " << numOfProducers << endl;
cout << "# of Consumers: " << numOfConsumers << endl;
cout << "ZDL_bench_1set_rand: producer & consumer passed " << zdl.totalSize() << " elements in "
<< diff.tv_sec << "s " << diff.tv_nsec << "ns" << endl;
ZDL_printFileStats<Element>(&zdl);
validateResults(::count1Set);
}
void ZDL_bench_mulSet_rand()
{
typedef ElementType Element;
uint32_t i;
uint32_t numOfProducers = NUM_PRODUCERS;
uint32_t numOfConsumers = NUM_CONSUMERS;
ZDL<Element> zdl(numOfConsumers, fRm);
zdl.setMultipleProducers(true);
zdl.setElementMode(1); // RID_VALUE
pthread_t producer[numOfProducers];
pthread_t consumer[numOfConsumers];
ThreadParms producerThreadParms[NUM_PRODUCERS];
ThreadParms consumerThreadParms[NUM_CONSUMERS];
struct timespec ts1, ts2, diff;
clock_gettime(CLOCK_REALTIME, &ts1);
for (i = 0; i < numOfProducers; i++)
{
producerThreadParms[i].zdl = &zdl;
producerThreadParms[i].threadNumber = i;
producerThreadParms[i].count = ::countMulSet;
pthread_create(&producer[i], NULL, ZDL_producer_mulSet_rand<Element>, &producerThreadParms[i]);
}
for (i = 0; i < numOfConsumers; i++)
{
consumerThreadParms[i].zdl = &zdl;
consumerThreadParms[i].threadNumber = i;
consumerThreadParms[i].count = 0;
pthread_create(&consumer[i], NULL, ZDL_consumer<Element>, &consumerThreadParms[i]);
}
for (i = 0; i < numOfProducers; i++)
pthread_join(producer[i], NULL);
zdl.endOfInput();
for (i = 0; i < numOfConsumers; i++)
pthread_join(consumer[i], NULL);
clock_gettime(CLOCK_REALTIME, &ts2);
timespec_sub(ts1, ts2, diff);
cout << "# of Producers: " << numOfProducers << endl;
cout << "# of Consumers: " << numOfConsumers << endl;
cout << "ZDL_bench_mulSet_rand: producer & consumer passed " << zdl.totalSize() << " elements in "
<< diff.tv_sec << "s " << diff.tv_nsec << "ns" << endl;
ZDL_printFileStats<Element>(&zdl);
validateResults(::countMulSet);
}
void ZDL_bench_mulSet_seq_ridonly(char* testDesc, bool compress, uint32_t size1st)
{
typedef RIDElementType Element;
uint32_t size2nd = 0;
string produceTag("zdl-produce_ridonly");
string eofInputTag("zdl-endofinput_ridonly");
string consumeTag("zdl-consume_ridonly");
produceTag += testDesc;
eofInputTag += testDesc;
consumeTag += testDesc;
uint32_t i;
uint32_t numOfProducers = NUM_PRODUCERS;
uint32_t numOfConsumers = NUM_CONSUMERS;
ZDL<Element> zdl(numOfConsumers, fRm);
zdl.setMultipleProducers(true);
if (compress)
zdl.setDiskElemSize(size1st, size2nd);
pthread_t producer[numOfProducers];
pthread_t consumer[numOfConsumers];
ThreadParms producerThreadParms[NUM_PRODUCERS];
ThreadParms consumerThreadParms[NUM_CONSUMERS];
struct timespec ts1, ts2, diff;
timer.start(produceTag);
clock_gettime(CLOCK_REALTIME, &ts1);
for (i = 0; i < numOfProducers; i++)
{
producerThreadParms[i].zdl = &zdl;
producerThreadParms[i].threadNumber = i;
producerThreadParms[i].count = ::countMulSet;
pthread_create(&producer[i], NULL, ZDL_producer_mulSet_seq_ridonly<Element>, &producerThreadParms[i]);
}
for (i = 0; i < numOfConsumers; i++)
{
consumerThreadParms[i].zdl = &zdl;
consumerThreadParms[i].threadNumber = i;
consumerThreadParms[i].count = 0;
pthread_create(&consumer[i], NULL, ZDL_consumer<Element>, &consumerThreadParms[i]);
}
for (i = 0; i < numOfProducers; i++)
pthread_join(producer[i], NULL);
timer.stop(produceTag);
timer.start(eofInputTag);
zdl.endOfInput();
timer.stop(eofInputTag);
timer.start(consumeTag);
for (i = 0; i < numOfConsumers; i++)
pthread_join(consumer[i], NULL);
clock_gettime(CLOCK_REALTIME, &ts2);
timer.stop(consumeTag);
timer.finish();
timespec_sub(ts1, ts2, diff);
cout << "compress state: " << (compress ? "on" : "off") << endl;
if (compress)
cout << "size 1st/2nd: " << size1st << "/" << size2nd << endl;
cout << "# of Producers: " << numOfProducers << endl;
cout << "# of Consumers: " << numOfConsumers << endl;
cout << "ZDL_bench_mulSet_seq_ridonly_" << testDesc << ": producer & consumer passed " << zdl.totalSize()
<< " elements in " << diff.tv_sec << "s " << diff.tv_nsec << "ns" << endl;
ZDL_printFileStats<Element>(&zdl);
validateResults(::countMulSet * NUM_PRODUCERS);
}
void ZDL_bench_mulSet_seq_ridonly_uncompressed()
{
ZDL_bench_mulSet_seq_ridonly("uncompressed", false, 0);
}
void ZDL_bench_mulSet_seq_ridonly_compressed_32()
{
ZDL_bench_mulSet_seq_ridonly("compressed_32", true, 4);
}
//--------------------------------------------------------------------------
// test the saving and loading of a zdl file
//--------------------------------------------------------------------------
void load_save()
{
typedef ElementType Element;
vector<Element> v;
for (uint32_t i = 0; i < ::count1Set * 8; i++)
v.push_back(Element(i, i));
vector<Element> v1;
vector<Element> v2;
vector<Element> v3;
// save
ofstream f1;
ifstream f;
string filename = "zdl.txt";
uint64_t ctn = v.size();
f1.open(filename.c_str(), std::ios::binary);
f1.write((char*)&ctn, sizeof(ctn));
f1.write((char*)(v.begin().operator->()), sizeof(Element) * ctn);
f.close();
// load
v1.push_back(Element(3, 4));
f.open(filename.c_str(), std::ios::binary);
timer.start("read");
v1.resize(v1.size() + ::count1Set * 8);
f.read((char*)((v1.begin() + 1).operator->()), ctn * sizeof(Element));
cout << v1.size() << endl;
timer.stop("read");
cout << "E1: " << v1[0].first << endl;
f.close();
f.open(filename.c_str(), std::ios::binary);
timer.start("assign");
v2.assign(std::istream_iterator<Element>(f), std::istream_iterator<Element>());
cout << v2.size() << endl;
timer.stop("assign");
f.close();
f.open(filename.c_str(), std::ios::binary);
timer.start("insert");
v3.insert(v3.end(), std::istream_iterator<Element>(f), std::istream_iterator<Element>());
cout << v3.size() << endl;
timer.stop("insert");
f.close();
timer.finish();
}
//--------------------------------------------------------------------------
// test the reading of zdl configuration parameters
//--------------------------------------------------------------------------
void configure()
{
config::Config* config = config::Config::makeConfig();
std::string strVal;
strVal = config->getConfig("ZDL", "MaxMemConsumption");
uint64_t maxMemConsumption;
timer.start("configure");
for (int i = 0; i < 20; i++)
{
if (strVal.size() > 0)
{
maxMemConsumption = config::Config::uFromText(strVal);
if ((maxMemConsumption - 1) & maxMemConsumption)
throw std::runtime_error(
"ZDL: maxMemConsumption "
"should be a power of 2.");
}
else
maxMemConsumption = 1000000;
}
timer.stop("configure");
timer.finish();
}
};
CPPUNIT_TEST_SUITE_REGISTRATION(DataListDriver);
//------------------------------------------------------------------------------
// main entry point
//------------------------------------------------------------------------------
int main(int argc, char** argv)
{
pthread_mutex_init(&writeLock, NULL);
CppUnit::TextUi::TestRunner runner;
CppUnit::TestFactoryRegistry& registry = CppUnit::TestFactoryRegistry::getRegistry();
runner.addTest(registry.makeTest());
bool wasSuccessful = runner.run("", false);
return (wasSuccessful ? 0 : 1);
}