mirror of
https://github.com/mariadb-corporation/mariadb-columnstore-engine.git
synced 2025-04-20 09:07:44 +03:00
652 lines
14 KiB
C++
652 lines
14 KiB
C++
/* Copyright (C) 2014 InfiniDB, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; version 2 of
|
|
the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
/****************************************************************************
|
|
* $Id$
|
|
*
|
|
*
|
|
****************************************************************************/
|
|
|
|
#include <cstdlib>
|
|
#include <string>
|
|
using namespace std;
|
|
|
|
#include "functor_str.h"
|
|
#include "funchelpers.h"
|
|
#include "functioncolumn.h"
|
|
using namespace execplan;
|
|
|
|
#include "sha.h"
|
|
|
|
namespace funcexp
|
|
{
|
|
/*
|
|
* class SHA1 definition
|
|
*
|
|
* Copyright (C) 1998, 2009
|
|
* Paul E. Jones <paulej@packetizer.com>
|
|
* All Rights Reserved.
|
|
*
|
|
* Description:
|
|
* This class implements the Secure Hashing Standard as defined
|
|
* in FIPS PUB 180-1 published April 17, 1995.
|
|
*
|
|
* The Secure Hashing Standard, which uses the Secure Hashing
|
|
* Algorithm (SHA), produces a 160-bit message digest for a
|
|
* given data stream. In theory, it is highly improbable that
|
|
* two messages will produce the same message digest. Therefore,
|
|
* this algorithm can serve as a means of providing a "fingerprint"
|
|
* for a message.
|
|
*
|
|
* Portability Issues:
|
|
* SHA-1 is defined in terms of 32-bit "words". This code was
|
|
* written with the expectation that the processor has at least
|
|
* a 32-bit machine word size. If the machine word size is larger,
|
|
* the code should still function properly. One caveat to that
|
|
* is that the input functions taking characters and character arrays
|
|
* assume that only 8 bits of information are stored in each character.
|
|
*
|
|
* Caveats:
|
|
* SHA-1 is designed to work with messages less than 2^64 bits long.
|
|
* Although SHA-1 allows a message digest to be generated for
|
|
* messages of any number of bits less than 2^64, this implementation
|
|
* only works with messages with a length that is a multiple of 8
|
|
* bits.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* SHA1
|
|
*
|
|
* Description:
|
|
* This is the constructor for the sha1 class.
|
|
*
|
|
* Parameters:
|
|
* None.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
SHA1::SHA1()
|
|
{
|
|
Reset();
|
|
}
|
|
|
|
/*
|
|
* ~SHA1
|
|
*
|
|
* Description:
|
|
* This is the destructor for the sha1 class
|
|
*
|
|
* Parameters:
|
|
* None.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
SHA1::~SHA1()
|
|
{
|
|
// The destructor does nothing
|
|
}
|
|
|
|
/*
|
|
* Reset
|
|
*
|
|
* Description:
|
|
* This function will initialize the sha1 class member variables
|
|
* in preparation for computing a new message digest.
|
|
*
|
|
* Parameters:
|
|
* None.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
void SHA1::Reset()
|
|
{
|
|
Length_Low = 0;
|
|
Length_High = 0;
|
|
Message_Block_Index = 0;
|
|
|
|
H[0] = 0x67452301;
|
|
H[1] = 0xEFCDAB89;
|
|
H[2] = 0x98BADCFE;
|
|
H[3] = 0x10325476;
|
|
H[4] = 0xC3D2E1F0;
|
|
|
|
Computed = false;
|
|
Corrupted = false;
|
|
}
|
|
|
|
/*
|
|
* Result
|
|
*
|
|
* Description:
|
|
* This function will return the 160-bit message digest into the
|
|
* array provided.
|
|
*
|
|
* Parameters:
|
|
* message_digest_array: [out]
|
|
* This is an array of five unsigned integers which will be filled
|
|
* with the message digest that has been computed.
|
|
*
|
|
* Returns:
|
|
* True if successful, false if it failed.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
bool SHA1::Result(unsigned* message_digest_array)
|
|
{
|
|
int i; // Counter
|
|
|
|
if (Corrupted)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (!Computed)
|
|
{
|
|
PadMessage();
|
|
Computed = true;
|
|
}
|
|
|
|
for (i = 0; i < 5; i++)
|
|
{
|
|
message_digest_array[i] = H[i];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Input
|
|
*
|
|
* Description:
|
|
* This function accepts an array of octets as the next portion of
|
|
* the message.
|
|
*
|
|
* Parameters:
|
|
* message_array: [in]
|
|
* An array of characters representing the next portion of the
|
|
* message.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
void SHA1::Input(const unsigned char* message_array, unsigned length)
|
|
{
|
|
if (!length)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (Computed || Corrupted)
|
|
{
|
|
Corrupted = true;
|
|
return;
|
|
}
|
|
|
|
while (length-- && !Corrupted)
|
|
{
|
|
Message_Block[Message_Block_Index++] = (*message_array & 0xFF);
|
|
|
|
Length_Low += 8;
|
|
Length_Low &= 0xFFFFFFFF; // Force it to 32 bits
|
|
|
|
if (Length_Low == 0)
|
|
{
|
|
Length_High++;
|
|
Length_High &= 0xFFFFFFFF; // Force it to 32 bits
|
|
|
|
if (Length_High == 0)
|
|
{
|
|
Corrupted = true; // Message is too long
|
|
}
|
|
}
|
|
|
|
if (Message_Block_Index == 64)
|
|
{
|
|
ProcessMessageBlock();
|
|
}
|
|
|
|
message_array++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Input
|
|
*
|
|
* Description:
|
|
* This function accepts an array of octets as the next portion of
|
|
* the message.
|
|
*
|
|
* Parameters:
|
|
* message_array: [in]
|
|
* An array of characters representing the next portion of the
|
|
* message.
|
|
* length: [in]
|
|
* The length of the message_array
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
void SHA1::Input(const char* message_array, unsigned length)
|
|
{
|
|
Input((unsigned char*)message_array, length);
|
|
}
|
|
|
|
/*
|
|
* Input
|
|
*
|
|
* Description:
|
|
* This function accepts a single octets as the next message element.
|
|
*
|
|
* Parameters:
|
|
* message_element: [in]
|
|
* The next octet in the message.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
void SHA1::Input(unsigned char message_element)
|
|
{
|
|
Input(&message_element, 1);
|
|
}
|
|
|
|
/*
|
|
* Input
|
|
*
|
|
* Description:
|
|
* This function accepts a single octet as the next message element.
|
|
*
|
|
* Parameters:
|
|
* message_element: [in]
|
|
* The next octet in the message.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
void SHA1::Input(char message_element)
|
|
{
|
|
Input((unsigned char*)&message_element, 1);
|
|
}
|
|
|
|
/*
|
|
* operator<<
|
|
*
|
|
* Description:
|
|
* This operator makes it convenient to provide character strings to
|
|
* the SHA1 object for processing.
|
|
*
|
|
* Parameters:
|
|
* message_array: [in]
|
|
* The character array to take as input.
|
|
*
|
|
* Returns:
|
|
* A reference to the SHA1 object.
|
|
*
|
|
* Comments:
|
|
* Each character is assumed to hold 8 bits of information.
|
|
*
|
|
*/
|
|
SHA1& SHA1::operator<<(const char* message_array)
|
|
{
|
|
const char* p = message_array;
|
|
|
|
while (*p)
|
|
{
|
|
Input(*p);
|
|
p++;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
* operator<<
|
|
*
|
|
* Description:
|
|
* This operator makes it convenient to provide character strings to
|
|
* the SHA1 object for processing.
|
|
*
|
|
* Parameters:
|
|
* message_array: [in]
|
|
* The character array to take as input.
|
|
*
|
|
* Returns:
|
|
* A reference to the SHA1 object.
|
|
*
|
|
* Comments:
|
|
* Each character is assumed to hold 8 bits of information.
|
|
*
|
|
*/
|
|
SHA1& SHA1::operator<<(const unsigned char* message_array)
|
|
{
|
|
const unsigned char* p = message_array;
|
|
|
|
while (*p)
|
|
{
|
|
Input(*p);
|
|
p++;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
* operator<<
|
|
*
|
|
* Description:
|
|
* This function provides the next octet in the message.
|
|
*
|
|
* Parameters:
|
|
* message_element: [in]
|
|
* The next octet in the message
|
|
*
|
|
* Returns:
|
|
* A reference to the SHA1 object.
|
|
*
|
|
* Comments:
|
|
* The character is assumed to hold 8 bits of information.
|
|
*
|
|
*/
|
|
SHA1& SHA1::operator<<(const char message_element)
|
|
{
|
|
Input((unsigned char*)&message_element, 1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
* operator<<
|
|
*
|
|
* Description:
|
|
* This function provides the next octet in the message.
|
|
*
|
|
* Parameters:
|
|
* message_element: [in]
|
|
* The next octet in the message
|
|
*
|
|
* Returns:
|
|
* A reference to the SHA1 object.
|
|
*
|
|
* Comments:
|
|
* The character is assumed to hold 8 bits of information.
|
|
*
|
|
*/
|
|
SHA1& SHA1::operator<<(const unsigned char message_element)
|
|
{
|
|
Input(&message_element, 1);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*
|
|
* ProcessMessageBlock
|
|
*
|
|
* Description:
|
|
* This function will process the next 512 bits of the message
|
|
* stored in the Message_Block array.
|
|
*
|
|
* Parameters:
|
|
* None.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
* Many of the variable names in this function, especially the single
|
|
* character names, were used because those were the names used
|
|
* in the publication.
|
|
*
|
|
*/
|
|
void SHA1::ProcessMessageBlock()
|
|
{
|
|
const unsigned K[] = // Constants defined for SHA-1
|
|
{0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6};
|
|
int t; // Loop counter
|
|
unsigned temp; // Temporary word value
|
|
unsigned W[80]; // Word sequence
|
|
unsigned A, B, C, D, E; // Word buffers
|
|
|
|
/*
|
|
* Initialize the first 16 words in the array W
|
|
*/
|
|
for (t = 0; t < 16; t++)
|
|
{
|
|
W[t] = ((unsigned)Message_Block[t * 4]) << 24;
|
|
W[t] |= ((unsigned)Message_Block[t * 4 + 1]) << 16;
|
|
W[t] |= ((unsigned)Message_Block[t * 4 + 2]) << 8;
|
|
W[t] |= ((unsigned)Message_Block[t * 4 + 3]);
|
|
}
|
|
|
|
for (t = 16; t < 80; t++)
|
|
{
|
|
W[t] = CircularShift(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
|
|
}
|
|
|
|
A = H[0];
|
|
B = H[1];
|
|
C = H[2];
|
|
D = H[3];
|
|
E = H[4];
|
|
|
|
for (t = 0; t < 20; t++)
|
|
{
|
|
temp = CircularShift(5, A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = CircularShift(30, B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
for (t = 20; t < 40; t++)
|
|
{
|
|
temp = CircularShift(5, A) + (B ^ C ^ D) + E + W[t] + K[1];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = CircularShift(30, B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
for (t = 40; t < 60; t++)
|
|
{
|
|
temp = CircularShift(5, A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = CircularShift(30, B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
for (t = 60; t < 80; t++)
|
|
{
|
|
temp = CircularShift(5, A) + (B ^ C ^ D) + E + W[t] + K[3];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = CircularShift(30, B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
H[0] = (H[0] + A) & 0xFFFFFFFF;
|
|
H[1] = (H[1] + B) & 0xFFFFFFFF;
|
|
H[2] = (H[2] + C) & 0xFFFFFFFF;
|
|
H[3] = (H[3] + D) & 0xFFFFFFFF;
|
|
H[4] = (H[4] + E) & 0xFFFFFFFF;
|
|
|
|
Message_Block_Index = 0;
|
|
}
|
|
|
|
/*
|
|
* PadMessage
|
|
*
|
|
* Description:
|
|
* According to the standard, the message must be padded to an even
|
|
* 512 bits. The first padding bit must be a '1'. The last 64 bits
|
|
* represent the length of the original message. All bits in between
|
|
* should be 0. This function will pad the message according to those
|
|
* rules by filling the message_block array accordingly. It will also
|
|
* call ProcessMessageBlock() appropriately. When it returns, it
|
|
* can be assumed that the message digest has been computed.
|
|
*
|
|
* Parameters:
|
|
* None.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
void SHA1::PadMessage()
|
|
{
|
|
/*
|
|
* Check to see if the current message block is too small to hold
|
|
* the initial padding bits and length. If so, we will pad the
|
|
* block, process it, and then continue padding into a second block.
|
|
*/
|
|
if (Message_Block_Index > 55)
|
|
{
|
|
Message_Block[Message_Block_Index++] = 0x80;
|
|
|
|
while (Message_Block_Index < 64)
|
|
{
|
|
Message_Block[Message_Block_Index++] = 0;
|
|
}
|
|
|
|
ProcessMessageBlock();
|
|
|
|
while (Message_Block_Index < 56)
|
|
{
|
|
Message_Block[Message_Block_Index++] = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Message_Block[Message_Block_Index++] = 0x80;
|
|
|
|
while (Message_Block_Index < 56)
|
|
{
|
|
Message_Block[Message_Block_Index++] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Store the message length as the last 8 octets
|
|
*/
|
|
Message_Block[56] = (Length_High >> 24) & 0xFF;
|
|
Message_Block[57] = (Length_High >> 16) & 0xFF;
|
|
Message_Block[58] = (Length_High >> 8) & 0xFF;
|
|
Message_Block[59] = (Length_High)&0xFF;
|
|
Message_Block[60] = (Length_Low >> 24) & 0xFF;
|
|
Message_Block[61] = (Length_Low >> 16) & 0xFF;
|
|
Message_Block[62] = (Length_Low >> 8) & 0xFF;
|
|
Message_Block[63] = (Length_Low)&0xFF;
|
|
|
|
ProcessMessageBlock();
|
|
}
|
|
|
|
/*
|
|
* CircularShift
|
|
*
|
|
* Description:
|
|
* This member function will perform a circular shifting operation.
|
|
*
|
|
* Parameters:
|
|
* bits: [in]
|
|
* The number of bits to shift (1-31)
|
|
* word: [in]
|
|
* The value to shift (assumes a 32-bit integer)
|
|
*
|
|
* Returns:
|
|
* The shifted value.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
unsigned SHA1::CircularShift(int bits, unsigned word)
|
|
{
|
|
return ((word << bits) & 0xFFFFFFFF) | ((word & 0xFFFFFFFF) >> (32 - bits));
|
|
}
|
|
|
|
/** Definition of class Func_sha */
|
|
|
|
CalpontSystemCatalog::ColType Func_sha::operationType(FunctionParm& fp,
|
|
CalpontSystemCatalog::ColType& resultType)
|
|
{
|
|
return resultType;
|
|
}
|
|
|
|
string Func_sha::getStrVal(rowgroup::Row& row, FunctionParm& parm, bool& isNull,
|
|
CalpontSystemCatalog::ColType&)
|
|
{
|
|
SHA1 sha;
|
|
uint32_t message_digest[5];
|
|
|
|
// Input is always treated as sring
|
|
sha.Reset();
|
|
sha << parm[0]->data()->getStrVal(row, isNull).c_str();
|
|
|
|
// can not compute
|
|
if (!sha.Result(message_digest))
|
|
{
|
|
isNull = true;
|
|
return "";
|
|
}
|
|
|
|
// result length is always 40+1
|
|
char result[41];
|
|
snprintf(result, 41, "%08x", message_digest[0]);
|
|
snprintf(result + 8, 41 - 8, "%08x", message_digest[1]);
|
|
snprintf(result + 16, 41 - 16, "%08x", message_digest[2]);
|
|
snprintf(result + 24, 41 - 24, "%08x", message_digest[3]);
|
|
snprintf(result + 32, 41 - 32, "%08x", message_digest[4]);
|
|
result[40] = 0;
|
|
return result;
|
|
}
|
|
|
|
} // namespace funcexp
|