You've already forked mariadb-columnstore-engine
							
							
				mirror of
				https://github.com/mariadb-corporation/mariadb-columnstore-engine.git
				synced 2025-10-30 07:25:34 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			2694 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2694 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //                 ______  _____                 ______                _________
 | |
| //  ______________ ___  /_ ___(_)_______         ___  /_ ______ ______ ______  /
 | |
| //  __  ___/_  __ \__  __ \__  / __  __ \        __  __ \_  __ \_  __ \_  __  /
 | |
| //  _  /    / /_/ /_  /_/ /_  /  _  / / /        _  / / // /_/ // /_/ // /_/ /
 | |
| //  /_/     \____/ /_.___/ /_/   /_/ /_/ ________/_/ /_/ \____/ \____/ \__,_/
 | |
| //                                      _/_____/
 | |
| //
 | |
| // Fast & memory efficient hashtable based on robin hood hashing for C++11/14/17/20
 | |
| // https://github.com/martinus/robin-hood-hashing
 | |
| //
 | |
| // Licensed under the MIT License <http://opensource.org/licenses/MIT>.
 | |
| // SPDX-License-Identifier: MIT
 | |
| // Copyright (c) 2018-2020 Martin Ankerl <http://martin.ankerl.com>
 | |
| //
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| //
 | |
| // The above copyright notice and this permission notice shall be included in all
 | |
| // copies or substantial portions of the Software.
 | |
| //
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
| // SOFTWARE.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| // see https://semver.org/
 | |
| #define ROBIN_HOOD_VERSION_MAJOR 3   // for incompatible API changes
 | |
| #define ROBIN_HOOD_VERSION_MINOR 10  // for adding functionality in a backwards-compatible manner
 | |
| #define ROBIN_HOOD_VERSION_PATCH 0   // for backwards-compatible bug fixes
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <functional>
 | |
| #include <memory>  // only to support hash of smart pointers
 | |
| #include <stdexcept>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| #if __cplusplus >= 201703L
 | |
| #include <string_view>
 | |
| #endif
 | |
| 
 | |
| // #define ROBIN_HOOD_LOG_ENABLED
 | |
| #ifdef ROBIN_HOOD_LOG_ENABLED
 | |
| #include <iostream>
 | |
| #define ROBIN_HOOD_LOG(...) std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl;
 | |
| #else
 | |
| #define ROBIN_HOOD_LOG(x)
 | |
| #endif
 | |
| 
 | |
| // #define ROBIN_HOOD_TRACE_ENABLED
 | |
| #ifdef ROBIN_HOOD_TRACE_ENABLED
 | |
| #include <iostream>
 | |
| #define ROBIN_HOOD_TRACE(...) \
 | |
|   std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl;
 | |
| #else
 | |
| #define ROBIN_HOOD_TRACE(x)
 | |
| #endif
 | |
| 
 | |
| // #define ROBIN_HOOD_COUNT_ENABLED
 | |
| #ifdef ROBIN_HOOD_COUNT_ENABLED
 | |
| #include <iostream>
 | |
| #define ROBIN_HOOD_COUNT(x) ++counts().x;
 | |
| namespace robin_hood
 | |
| {
 | |
| struct Counts
 | |
| {
 | |
|   uint64_t shiftUp{};
 | |
|   uint64_t shiftDown{};
 | |
| };
 | |
| inline std::ostream& operator<<(std::ostream& os, Counts const& c)
 | |
| {
 | |
|   return os << c.shiftUp << " shiftUp" << std::endl << c.shiftDown << " shiftDown" << std::endl;
 | |
| }
 | |
| 
 | |
| static Counts& counts()
 | |
| {
 | |
|   static Counts counts{};
 | |
|   return counts;
 | |
| }
 | |
| }  // namespace robin_hood
 | |
| #else
 | |
| #define ROBIN_HOOD_COUNT(x)
 | |
| #endif
 | |
| 
 | |
| // all non-argument macros should use this facility. See
 | |
| // https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/
 | |
| #define ROBIN_HOOD(x) ROBIN_HOOD_PRIVATE_DEFINITION_##x()
 | |
| 
 | |
| // mark unused members with this macro
 | |
| #define ROBIN_HOOD_UNUSED(identifier)
 | |
| 
 | |
| // bitness
 | |
| #if SIZE_MAX == UINT32_MAX
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 32
 | |
| #elif SIZE_MAX == UINT64_MAX
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 64
 | |
| #else
 | |
| #error Unsupported bitness
 | |
| #endif
 | |
| 
 | |
| // endianess
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
 | |
| 
 | |
| // inline
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __attribute__((noinline))
 | |
| 
 | |
| // exceptions
 | |
| #if !defined(__cpp_exceptions) && !defined(__EXCEPTIONS) && !defined(_CPPUNWIND)
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 0
 | |
| #else
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 1
 | |
| #endif
 | |
| 
 | |
| // count leading/trailing bits
 | |
| #if !defined(ROBIN_HOOD_DISABLE_INTRINSICS)
 | |
| #if ROBIN_HOOD(BITNESS) == 32
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzl
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzl
 | |
| #else
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzll
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzll
 | |
| #endif
 | |
| #define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) ((x) ? ROBIN_HOOD(CLZ)(x) : ROBIN_HOOD(BITNESS))
 | |
| #define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS))
 | |
| #endif
 | |
| 
 | |
| // fallthrough
 | |
| #ifndef __has_cpp_attribute  // For backwards compatibility
 | |
| #define __has_cpp_attribute(x) 0
 | |
| #endif
 | |
| #if __has_cpp_attribute(clang::fallthrough)
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[clang::fallthrough]]
 | |
| #elif __has_cpp_attribute(gnu::fallthrough)
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[gnu::fallthrough]]
 | |
| #else
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH()
 | |
| #endif
 | |
| 
 | |
| // likely/unlikely
 | |
| #define ROBIN_HOOD_LIKELY(condition) __builtin_expect(condition, 1)
 | |
| #define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(condition, 0)
 | |
| 
 | |
| // detect if native wchar_t type is availiable in MSVC
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1
 | |
| 
 | |
| #define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
 | |
| 
 | |
| // helpers for C++ versions, see https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX() __cplusplus
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX98() 199711L
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX11() 201103L
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX14() 201402L
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX17() 201703L
 | |
| 
 | |
| #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17)
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() [[nodiscard]]
 | |
| #else
 | |
| #define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD()
 | |
| #endif
 | |
| 
 | |
| namespace robin_hood
 | |
| {
 | |
| #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
 | |
| #define ROBIN_HOOD_STD std
 | |
| #else
 | |
| 
 | |
| // c++11 compatibility layer
 | |
| namespace ROBIN_HOOD_STD
 | |
| {
 | |
| template <class T>
 | |
| struct alignment_of : std::integral_constant<std::size_t, alignof(typename std::remove_all_extents<T>::type)>
 | |
| {
 | |
| };
 | |
| 
 | |
| template <class T, T... Ints>
 | |
| class integer_sequence
 | |
| {
 | |
|  public:
 | |
|   using value_type = T;
 | |
|   static_assert(std::is_integral<value_type>::value, "not integral type");
 | |
|   static constexpr std::size_t size() noexcept
 | |
|   {
 | |
|     return sizeof...(Ints);
 | |
|   }
 | |
| };
 | |
| template <std::size_t... Inds>
 | |
| using index_sequence = integer_sequence<std::size_t, Inds...>;
 | |
| 
 | |
| namespace detail_
 | |
| {
 | |
| template <class T, T Begin, T End, bool>
 | |
| struct IntSeqImpl
 | |
| {
 | |
|   using TValue = T;
 | |
|   static_assert(std::is_integral<TValue>::value, "not integral type");
 | |
|   static_assert(Begin >= 0 && Begin < End, "unexpected argument (Begin<0 || Begin<=End)");
 | |
| 
 | |
|   template <class, class>
 | |
|   struct IntSeqCombiner;
 | |
| 
 | |
|   template <TValue... Inds0, TValue... Inds1>
 | |
|   struct IntSeqCombiner<integer_sequence<TValue, Inds0...>, integer_sequence<TValue, Inds1...>>
 | |
|   {
 | |
|     using TResult = integer_sequence<TValue, Inds0..., Inds1...>;
 | |
|   };
 | |
| 
 | |
|   using TResult = typename IntSeqCombiner<
 | |
|       typename IntSeqImpl<TValue, Begin, Begin + (End - Begin) / 2, (End - Begin) / 2 == 1>::TResult,
 | |
|       typename IntSeqImpl<TValue, Begin + (End - Begin) / 2, End,
 | |
|                           (End - Begin + 1) / 2 == 1>::TResult>::TResult;
 | |
| };
 | |
| 
 | |
| template <class T, T Begin>
 | |
| struct IntSeqImpl<T, Begin, Begin, false>
 | |
| {
 | |
|   using TValue = T;
 | |
|   static_assert(std::is_integral<TValue>::value, "not integral type");
 | |
|   static_assert(Begin >= 0, "unexpected argument (Begin<0)");
 | |
|   using TResult = integer_sequence<TValue>;
 | |
| };
 | |
| 
 | |
| template <class T, T Begin, T End>
 | |
| struct IntSeqImpl<T, Begin, End, true>
 | |
| {
 | |
|   using TValue = T;
 | |
|   static_assert(std::is_integral<TValue>::value, "not integral type");
 | |
|   static_assert(Begin >= 0, "unexpected argument (Begin<0)");
 | |
|   using TResult = integer_sequence<TValue, Begin>;
 | |
| };
 | |
| }  // namespace detail_
 | |
| 
 | |
| template <class T, T N>
 | |
| using make_integer_sequence = typename detail_::IntSeqImpl<T, 0, N, (N - 0) == 1>::TResult;
 | |
| 
 | |
| template <std::size_t N>
 | |
| using make_index_sequence = make_integer_sequence<std::size_t, N>;
 | |
| 
 | |
| template <class... T>
 | |
| using index_sequence_for = make_index_sequence<sizeof...(T)>;
 | |
| 
 | |
| }  // namespace ROBIN_HOOD_STD
 | |
| 
 | |
| #endif
 | |
| 
 | |
| namespace detail
 | |
| {
 | |
| // make sure we static_cast to the correct type for hash_int
 | |
| #if ROBIN_HOOD(BITNESS) == 64
 | |
| using SizeT = uint64_t;
 | |
| #else
 | |
| using SizeT = uint32_t;
 | |
| #endif
 | |
| 
 | |
| template <typename T>
 | |
| T rotr(T x, unsigned k)
 | |
| {
 | |
|   return (x >> k) | (x << (8U * sizeof(T) - k));
 | |
| }
 | |
| 
 | |
| // This cast gets rid of warnings like "cast from 'uint8_t*' {aka 'unsigned char*'} to
 | |
| // 'uint64_t*' {aka 'long unsigned int*'} increases required alignment of target type". Use with
 | |
| // care!
 | |
| template <typename T>
 | |
| inline T reinterpret_cast_no_cast_align_warning(void* ptr) noexcept
 | |
| {
 | |
|   return reinterpret_cast<T>(ptr);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept
 | |
| {
 | |
|   return reinterpret_cast<T>(ptr);
 | |
| }
 | |
| 
 | |
| // make sure this is not inlined as it is slow and dramatically enlarges code, thus making other
 | |
| // inlinings more difficult. Throws are also generally the slow path.
 | |
| template <typename E, typename... Args>
 | |
| [[noreturn]] ROBIN_HOOD(NOINLINE)
 | |
| #if ROBIN_HOOD(HAS_EXCEPTIONS)
 | |
|     void doThrow(Args&&... args)
 | |
| {
 | |
|   // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-array-to-pointer-decay)
 | |
|   throw E(std::forward<Args>(args)...);
 | |
| }
 | |
| #else
 | |
|     void doThrow(Args&&... ROBIN_HOOD_UNUSED(args) /*unused*/)
 | |
| {
 | |
|   abort();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| template <typename E, typename T, typename... Args>
 | |
| T* assertNotNull(T* t, Args&&... args)
 | |
| {
 | |
|   if (ROBIN_HOOD_UNLIKELY(nullptr == t))
 | |
|   {
 | |
|     doThrow<E>(std::forward<Args>(args)...);
 | |
|   }
 | |
|   return t;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline T unaligned_load(void const* ptr) noexcept
 | |
| {
 | |
|   // using memcpy so we don't get into unaligned load problems.
 | |
|   // compiler should optimize this very well anyways.
 | |
|   T t;
 | |
|   std::memcpy(&t, ptr, sizeof(T));
 | |
|   return t;
 | |
| }
 | |
| 
 | |
| // Allocates bulks of memory for objects of type T. This deallocates the memory in the destructor,
 | |
| // and keeps a linked list of the allocated memory around. Overhead per allocation is the size of a
 | |
| // pointer.
 | |
| template <typename T, size_t MinNumAllocs = 4, size_t MaxNumAllocs = 256>
 | |
| class BulkPoolAllocator
 | |
| {
 | |
|  public:
 | |
|   BulkPoolAllocator() noexcept = default;
 | |
| 
 | |
|   // does not copy anything, just creates a new allocator.
 | |
|   BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept
 | |
|    : mHead(nullptr), mListForFree(nullptr)
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   BulkPoolAllocator(BulkPoolAllocator&& o) noexcept : mHead(o.mHead), mListForFree(o.mListForFree)
 | |
|   {
 | |
|     o.mListForFree = nullptr;
 | |
|     o.mHead = nullptr;
 | |
|   }
 | |
| 
 | |
|   BulkPoolAllocator& operator=(BulkPoolAllocator&& o) noexcept
 | |
|   {
 | |
|     reset();
 | |
|     mHead = o.mHead;
 | |
|     mListForFree = o.mListForFree;
 | |
|     o.mListForFree = nullptr;
 | |
|     o.mHead = nullptr;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   BulkPoolAllocator&
 | |
|   // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp)
 | |
|   operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept
 | |
|   {
 | |
|     // does not do anything
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   ~BulkPoolAllocator() noexcept
 | |
|   {
 | |
|     reset();
 | |
|   }
 | |
| 
 | |
|   // Deallocates all allocated memory.
 | |
|   void reset() noexcept
 | |
|   {
 | |
|     while (mListForFree)
 | |
|     {
 | |
|       T* tmp = *mListForFree;
 | |
|       ROBIN_HOOD_LOG("std::free")
 | |
|       std::free(mListForFree);
 | |
|       mListForFree = reinterpret_cast_no_cast_align_warning<T**>(tmp);
 | |
|     }
 | |
|     mHead = nullptr;
 | |
|   }
 | |
| 
 | |
|   // allocates, but does NOT initialize. Use in-place new constructor, e.g.
 | |
|   //   T* obj = pool.allocate();
 | |
|   //   ::new (static_cast<void*>(obj)) T();
 | |
|   T* allocate()
 | |
|   {
 | |
|     T* tmp = mHead;
 | |
|     if (!tmp)
 | |
|     {
 | |
|       tmp = performAllocation();
 | |
|     }
 | |
| 
 | |
|     mHead = *reinterpret_cast_no_cast_align_warning<T**>(tmp);
 | |
|     return tmp;
 | |
|   }
 | |
| 
 | |
|   // does not actually deallocate but puts it in store.
 | |
|   // make sure you have already called the destructor! e.g. with
 | |
|   //  obj->~T();
 | |
|   //  pool.deallocate(obj);
 | |
|   void deallocate(T* obj) noexcept
 | |
|   {
 | |
|     *reinterpret_cast_no_cast_align_warning<T**>(obj) = mHead;
 | |
|     mHead = obj;
 | |
|   }
 | |
| 
 | |
|   // Adds an already allocated block of memory to the allocator. This allocator is from now on
 | |
|   // responsible for freeing the data (with free()). If the provided data is not large enough to
 | |
|   // make use of, it is immediately freed. Otherwise it is reused and freed in the destructor.
 | |
|   void addOrFree(void* ptr, const size_t numBytes) noexcept
 | |
|   {
 | |
|     // calculate number of available elements in ptr
 | |
|     if (numBytes < ALIGNMENT + ALIGNED_SIZE)
 | |
|     {
 | |
|       // not enough data for at least one element. Free and return.
 | |
|       ROBIN_HOOD_LOG("std::free")
 | |
|       std::free(ptr);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       ROBIN_HOOD_LOG("add to buffer")
 | |
|       add(ptr, numBytes);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void swap(BulkPoolAllocator<T, MinNumAllocs, MaxNumAllocs>& other) noexcept
 | |
|   {
 | |
|     using std::swap;
 | |
|     swap(mHead, other.mHead);
 | |
|     swap(mListForFree, other.mListForFree);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // iterates the list of allocated memory to calculate how many to alloc next.
 | |
|   // Recalculating this each time saves us a size_t member.
 | |
|   // This ignores the fact that memory blocks might have been added manually with addOrFree. In
 | |
|   // practice, this should not matter much.
 | |
|   ROBIN_HOOD(NODISCARD) size_t calcNumElementsToAlloc() const noexcept
 | |
|   {
 | |
|     auto tmp = mListForFree;
 | |
|     size_t numAllocs = MinNumAllocs;
 | |
| 
 | |
|     while (numAllocs * 2 <= MaxNumAllocs && tmp)
 | |
|     {
 | |
|       auto x = reinterpret_cast<T***>(tmp);
 | |
|       tmp = *x;
 | |
|       numAllocs *= 2;
 | |
|     }
 | |
| 
 | |
|     return numAllocs;
 | |
|   }
 | |
| 
 | |
|   // WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree().
 | |
|   void add(void* ptr, const size_t numBytes) noexcept
 | |
|   {
 | |
|     const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE;
 | |
| 
 | |
|     auto data = reinterpret_cast<T**>(ptr);
 | |
| 
 | |
|     // link free list
 | |
|     auto x = reinterpret_cast<T***>(data);
 | |
|     *x = mListForFree;
 | |
|     mListForFree = data;
 | |
| 
 | |
|     // create linked list for newly allocated data
 | |
|     auto* const headT = reinterpret_cast_no_cast_align_warning<T*>(reinterpret_cast<char*>(ptr) + ALIGNMENT);
 | |
| 
 | |
|     auto* const head = reinterpret_cast<char*>(headT);
 | |
| 
 | |
|     // Visual Studio compiler automatically unrolls this loop, which is pretty cool
 | |
|     for (size_t i = 0; i < numElements; ++i)
 | |
|     {
 | |
|       *reinterpret_cast_no_cast_align_warning<char**>(head + i * ALIGNED_SIZE) =
 | |
|           head + (i + 1) * ALIGNED_SIZE;
 | |
|     }
 | |
| 
 | |
|     // last one points to 0
 | |
|     *reinterpret_cast_no_cast_align_warning<T**>(head + (numElements - 1) * ALIGNED_SIZE) = mHead;
 | |
|     mHead = headT;
 | |
|   }
 | |
| 
 | |
|   // Called when no memory is available (mHead == 0).
 | |
|   // Don't inline this slow path.
 | |
|   ROBIN_HOOD(NOINLINE) T* performAllocation()
 | |
|   {
 | |
|     size_t const numElementsToAlloc = calcNumElementsToAlloc();
 | |
| 
 | |
|     // alloc new memory: [prev |T, T, ... T]
 | |
|     size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc;
 | |
|     ROBIN_HOOD_LOG("std::malloc " << bytes << " = " << ALIGNMENT << " + " << ALIGNED_SIZE << " * "
 | |
|                                   << numElementsToAlloc)
 | |
|     add(assertNotNull<std::bad_alloc>(std::malloc(bytes)), bytes);
 | |
|     return mHead;
 | |
|   }
 | |
| 
 | |
|   // enforce byte alignment of the T's
 | |
| #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
 | |
|   static constexpr size_t ALIGNMENT = (std::max)(std::alignment_of<T>::value, std::alignment_of<T*>::value);
 | |
| #else
 | |
|   static const size_t ALIGNMENT =
 | |
|       (ROBIN_HOOD_STD::alignment_of<T>::value > ROBIN_HOOD_STD::alignment_of<T*>::value)
 | |
|           ? ROBIN_HOOD_STD::alignment_of<T>::value
 | |
|           : +ROBIN_HOOD_STD::alignment_of<T*>::value;  // the + is for walkarround
 | |
| #endif
 | |
| 
 | |
|   static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT;
 | |
| 
 | |
|   static_assert(MinNumAllocs >= 1, "MinNumAllocs");
 | |
|   static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs");
 | |
|   static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE");
 | |
|   static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod");
 | |
|   static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT");
 | |
| 
 | |
|   T* mHead{nullptr};
 | |
|   T** mListForFree{nullptr};
 | |
| };
 | |
| 
 | |
| template <typename T, size_t MinSize, size_t MaxSize, bool IsFlat>
 | |
| struct NodeAllocator;
 | |
| 
 | |
| // dummy allocator that does nothing
 | |
| template <typename T, size_t MinSize, size_t MaxSize>
 | |
| struct NodeAllocator<T, MinSize, MaxSize, true>
 | |
| {
 | |
|   // we are not using the data, so just free it.
 | |
|   void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) noexcept
 | |
|   {
 | |
|     ROBIN_HOOD_LOG("std::free")
 | |
|     std::free(ptr);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T, size_t MinSize, size_t MaxSize>
 | |
| struct NodeAllocator<T, MinSize, MaxSize, false> : public BulkPoolAllocator<T, MinSize, MaxSize>
 | |
| {
 | |
| };
 | |
| 
 | |
| // dummy hash, unsed as mixer when robin_hood::hash is already used
 | |
| template <typename T>
 | |
| struct identity_hash
 | |
| {
 | |
|   constexpr size_t operator()(T const& obj) const noexcept
 | |
|   {
 | |
|     return static_cast<size_t>(obj);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // c++14 doesn't have is_nothrow_swappable, and clang++ 6.0.1 doesn't like it either, so I'm making
 | |
| // my own here.
 | |
| namespace swappable
 | |
| {
 | |
| #if ROBIN_HOOD(CXX) < ROBIN_HOOD(CXX17)
 | |
| using std::swap;
 | |
| template <typename T>
 | |
| struct nothrow
 | |
| {
 | |
|   static const bool value = noexcept(swap(std::declval<T&>(), std::declval<T&>()));
 | |
| };
 | |
| #else
 | |
| template <typename T>
 | |
| struct nothrow
 | |
| {
 | |
|   static const bool value = std::is_nothrow_swappable<T>::value;
 | |
| };
 | |
| #endif
 | |
| }  // namespace swappable
 | |
| 
 | |
| }  // namespace detail
 | |
| 
 | |
| struct is_transparent_tag
 | |
| {
 | |
| };
 | |
| 
 | |
| // A custom pair implementation is used in the map because std::pair is not is_trivially_copyable,
 | |
| // which means it would  not be allowed to be used in std::memcpy. This struct is copyable, which is
 | |
| // also tested.
 | |
| template <typename T1, typename T2>
 | |
| struct pair
 | |
| {
 | |
|   using first_type = T1;
 | |
|   using second_type = T2;
 | |
| 
 | |
|   template <typename U1 = T1, typename U2 = T2,
 | |
|             typename = typename std::enable_if<std::is_default_constructible<U1>::value &&
 | |
|                                                std::is_default_constructible<U2>::value>::type>
 | |
|   constexpr pair() noexcept(noexcept(U1()) && noexcept(U2())) : first(), second()
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
 | |
|   explicit constexpr pair(std::pair<T1, T2> const& o) noexcept(
 | |
|       noexcept(T1(std::declval<T1 const&>())) && noexcept(T2(std::declval<T2 const&>())))
 | |
|    : first(o.first), second(o.second)
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
 | |
|   explicit constexpr pair(std::pair<T1, T2>&& o) noexcept(
 | |
|       noexcept(T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>()))))
 | |
|    : first(std::move(o.first)), second(std::move(o.second))
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   constexpr pair(T1&& a, T2&& b) noexcept(
 | |
|       noexcept(T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>()))))
 | |
|    : first(std::move(a)), second(std::move(b))
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   template <typename U1, typename U2>
 | |
|   constexpr pair(U1&& a, U2&& b) noexcept(noexcept(T1(std::forward<U1>(std::declval<U1&&>()))) && noexcept(
 | |
|       T2(std::forward<U2>(std::declval<U2&&>()))))
 | |
|    : first(std::forward<U1>(a)), second(std::forward<U2>(b))
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   template <typename... U1, typename... U2>
 | |
|   constexpr pair(std::piecewise_construct_t /*unused*/, std::tuple<U1...> a,
 | |
|                  std::tuple<U2...> b) noexcept(noexcept(pair(std::declval<std::tuple<U1...>&>(),
 | |
|                                                              std::declval<std::tuple<U2...>&>(),
 | |
|                                                              ROBIN_HOOD_STD::index_sequence_for<U1...>(),
 | |
|                                                              ROBIN_HOOD_STD::index_sequence_for<U2...>())))
 | |
|    : pair(a, b, ROBIN_HOOD_STD::index_sequence_for<U1...>(), ROBIN_HOOD_STD::index_sequence_for<U2...>())
 | |
|   {
 | |
|   }
 | |
| 
 | |
|   // constructor called from the std::piecewise_construct_t ctor
 | |
|   template <typename... U1, size_t... I1, typename... U2, size_t... I2>
 | |
|   pair(
 | |
|       std::tuple<U1...>& a, std::tuple<U2...>& b, ROBIN_HOOD_STD::index_sequence<I1...> /*unused*/,
 | |
|       ROBIN_HOOD_STD::index_sequence<
 | |
|           I2...> /*unused*/) noexcept(noexcept(T1(std::
 | |
|                                                       forward<U1>(std::get<I1>(
 | |
|                                                           std::declval<std::tuple<
 | |
|                                                               U1...>&>()))...)) && noexcept(T2(std::
 | |
|                                                                                                    forward<
 | |
|                                                                                                        U2>(std::get<
 | |
|                                                                                                            I2>(
 | |
|                                                                                                        std::declval<std::tuple<
 | |
|                                                                                                            U2...>&>()))...)))
 | |
|    : first(std::forward<U1>(std::get<I1>(a))...), second(std::forward<U2>(std::get<I2>(b))...)
 | |
|   {
 | |
|     // make visual studio compiler happy about warning about unused a & b.
 | |
|     // Visual studio's pair implementation disables warning 4100.
 | |
|     (void)a;
 | |
|     (void)b;
 | |
|   }
 | |
| 
 | |
|   void swap(pair<T1, T2>& o) noexcept((detail::swappable::nothrow<T1>::value) &&
 | |
|                                       (detail::swappable::nothrow<T2>::value))
 | |
|   {
 | |
|     using std::swap;
 | |
|     swap(first, o.first);
 | |
|     swap(second, o.second);
 | |
|   }
 | |
| 
 | |
|   T1 first;   // NOLINT(misc-non-private-member-variables-in-classes)
 | |
|   T2 second;  // NOLINT(misc-non-private-member-variables-in-classes)
 | |
| };
 | |
| 
 | |
| template <typename A, typename B>
 | |
| inline void swap(pair<A, B>& a, pair<A, B>& b) noexcept(
 | |
|     noexcept(std::declval<pair<A, B>&>().swap(std::declval<pair<A, B>&>())))
 | |
| {
 | |
|   a.swap(b);
 | |
| }
 | |
| 
 | |
| template <typename A, typename B>
 | |
| inline constexpr bool operator==(pair<A, B> const& x, pair<A, B> const& y)
 | |
| {
 | |
|   return (x.first == y.first) && (x.second == y.second);
 | |
| }
 | |
| template <typename A, typename B>
 | |
| inline constexpr bool operator!=(pair<A, B> const& x, pair<A, B> const& y)
 | |
| {
 | |
|   return !(x == y);
 | |
| }
 | |
| template <typename A, typename B>
 | |
| inline constexpr bool operator<(pair<A, B> const& x, pair<A, B> const& y) noexcept(
 | |
|     noexcept(std::declval<A const&>() < std::declval<A const&>()) && noexcept(std::declval<B const&>() <
 | |
|                                                                               std::declval<B const&>()))
 | |
| {
 | |
|   return x.first < y.first || (!(y.first < x.first) && x.second < y.second);
 | |
| }
 | |
| template <typename A, typename B>
 | |
| inline constexpr bool operator>(pair<A, B> const& x, pair<A, B> const& y)
 | |
| {
 | |
|   return y < x;
 | |
| }
 | |
| template <typename A, typename B>
 | |
| inline constexpr bool operator<=(pair<A, B> const& x, pair<A, B> const& y)
 | |
| {
 | |
|   return !(x > y);
 | |
| }
 | |
| template <typename A, typename B>
 | |
| inline constexpr bool operator>=(pair<A, B> const& x, pair<A, B> const& y)
 | |
| {
 | |
|   return !(x < y);
 | |
| }
 | |
| 
 | |
| inline size_t hash_bytes(void const* ptr, size_t len) noexcept
 | |
| {
 | |
|   static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995);
 | |
|   static constexpr uint64_t seed = UINT64_C(0xe17a1465);
 | |
|   static constexpr unsigned int r = 47;
 | |
| 
 | |
|   auto const* const data64 = static_cast<uint64_t const*>(ptr);
 | |
|   uint64_t h = seed ^ (len * m);
 | |
| 
 | |
|   size_t const n_blocks = len / 8;
 | |
|   for (size_t i = 0; i < n_blocks; ++i)
 | |
|   {
 | |
|     auto k = detail::unaligned_load<uint64_t>(data64 + i);
 | |
| 
 | |
|     k *= m;
 | |
|     k ^= k >> r;
 | |
|     k *= m;
 | |
| 
 | |
|     h ^= k;
 | |
|     h *= m;
 | |
|   }
 | |
| 
 | |
|   auto const* const data8 = reinterpret_cast<uint8_t const*>(data64 + n_blocks);
 | |
|   switch (len & 7U)
 | |
|   {
 | |
|     case 7: h ^= static_cast<uint64_t>(data8[6]) << 48U; ROBIN_HOOD(FALLTHROUGH);  // FALLTHROUGH
 | |
|     case 6: h ^= static_cast<uint64_t>(data8[5]) << 40U; ROBIN_HOOD(FALLTHROUGH);  // FALLTHROUGH
 | |
|     case 5: h ^= static_cast<uint64_t>(data8[4]) << 32U; ROBIN_HOOD(FALLTHROUGH);  // FALLTHROUGH
 | |
|     case 4: h ^= static_cast<uint64_t>(data8[3]) << 24U; ROBIN_HOOD(FALLTHROUGH);  // FALLTHROUGH
 | |
|     case 3: h ^= static_cast<uint64_t>(data8[2]) << 16U; ROBIN_HOOD(FALLTHROUGH);  // FALLTHROUGH
 | |
|     case 2: h ^= static_cast<uint64_t>(data8[1]) << 8U; ROBIN_HOOD(FALLTHROUGH);   // FALLTHROUGH
 | |
|     case 1:
 | |
|       h ^= static_cast<uint64_t>(data8[0]);
 | |
|       h *= m;
 | |
|       ROBIN_HOOD(FALLTHROUGH);  // FALLTHROUGH
 | |
|     default: break;
 | |
|   }
 | |
| 
 | |
|   h ^= h >> r;
 | |
|   h *= m;
 | |
|   h ^= h >> r;
 | |
|   return static_cast<size_t>(h);
 | |
| }
 | |
| 
 | |
| inline size_t hash_int(uint64_t x) noexcept
 | |
| {
 | |
|   // inspired by lemire's strongly universal hashing
 | |
|   // https://lemire.me/blog/2018/08/15/fast-strongly-universal-64-bit-hashing-everywhere/
 | |
|   //
 | |
|   // Instead of shifts, we use rotations so we don't lose any bits.
 | |
|   //
 | |
|   // Added a final multiplcation with a constant for more mixing. It is most important that
 | |
|   // the lower bits are well mixed.
 | |
|   auto h1 = x * UINT64_C(0xA24BAED4963EE407);
 | |
|   auto h2 = detail::rotr(x, 32U) * UINT64_C(0x9FB21C651E98DF25);
 | |
|   auto h = detail::rotr(h1 + h2, 32U);
 | |
|   return static_cast<size_t>(h);
 | |
| }
 | |
| 
 | |
| // A thin wrapper around std::hash, performing an additional simple mixing step of the result.
 | |
| template <typename T, typename Enable = void>
 | |
| struct hash : public std::hash<T>
 | |
| {
 | |
|   size_t operator()(T const& obj) const
 | |
|       noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>())))
 | |
|   {
 | |
|     // call base hash
 | |
|     auto result = std::hash<T>::operator()(obj);
 | |
|     // return mixed of that, to be save against identity has
 | |
|     return hash_int(static_cast<detail::SizeT>(result));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename CharT>
 | |
| struct hash<std::basic_string<CharT>>
 | |
| {
 | |
|   size_t operator()(std::basic_string<CharT> const& str) const noexcept
 | |
|   {
 | |
|     return hash_bytes(str.data(), sizeof(CharT) * str.size());
 | |
|   }
 | |
| };
 | |
| 
 | |
| #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17)
 | |
| template <typename CharT>
 | |
| struct hash<std::basic_string_view<CharT>>
 | |
| {
 | |
|   size_t operator()(std::basic_string_view<CharT> const& sv) const noexcept
 | |
|   {
 | |
|     return hash_bytes(sv.data(), sizeof(CharT) * sv.size());
 | |
|   }
 | |
| };
 | |
| #endif
 | |
| 
 | |
| template <class T>
 | |
| struct hash<T*>
 | |
| {
 | |
|   size_t operator()(T* ptr) const noexcept
 | |
|   {
 | |
|     return hash_int(reinterpret_cast<detail::SizeT>(ptr));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| struct hash<std::unique_ptr<T>>
 | |
| {
 | |
|   size_t operator()(std::unique_ptr<T> const& ptr) const noexcept
 | |
|   {
 | |
|     return hash_int(reinterpret_cast<detail::SizeT>(ptr.get()));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| struct hash<std::shared_ptr<T>>
 | |
| {
 | |
|   size_t operator()(std::shared_ptr<T> const& ptr) const noexcept
 | |
|   {
 | |
|     return hash_int(reinterpret_cast<detail::SizeT>(ptr.get()));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Enum>
 | |
| struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type>
 | |
| {
 | |
|   size_t operator()(Enum e) const noexcept
 | |
|   {
 | |
|     using Underlying = typename std::underlying_type<Enum>::type;
 | |
|     return hash<Underlying>{}(static_cast<Underlying>(e));
 | |
|   }
 | |
| };
 | |
| 
 | |
| #define ROBIN_HOOD_HASH_INT(T)                     \
 | |
|   template <>                                      \
 | |
|   struct hash<T>                                   \
 | |
|   {                                                \
 | |
|     size_t operator()(T const& obj) const noexcept \
 | |
|     {                                              \
 | |
|       return hash_int(static_cast<uint64_t>(obj)); \
 | |
|     }                                              \
 | |
|   }
 | |
| 
 | |
| #if defined(__GNUC__) && !defined(__clang__)
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wuseless-cast"
 | |
| #endif
 | |
| // see https://en.cppreference.com/w/cpp/utility/hash
 | |
| ROBIN_HOOD_HASH_INT(bool);
 | |
| ROBIN_HOOD_HASH_INT(char);
 | |
| ROBIN_HOOD_HASH_INT(signed char);
 | |
| ROBIN_HOOD_HASH_INT(unsigned char);
 | |
| ROBIN_HOOD_HASH_INT(char16_t);
 | |
| ROBIN_HOOD_HASH_INT(char32_t);
 | |
| #if ROBIN_HOOD(HAS_NATIVE_WCHART)
 | |
| ROBIN_HOOD_HASH_INT(wchar_t);
 | |
| #endif
 | |
| ROBIN_HOOD_HASH_INT(short);
 | |
| ROBIN_HOOD_HASH_INT(unsigned short);
 | |
| ROBIN_HOOD_HASH_INT(int);
 | |
| ROBIN_HOOD_HASH_INT(unsigned int);
 | |
| ROBIN_HOOD_HASH_INT(long);
 | |
| ROBIN_HOOD_HASH_INT(long long);
 | |
| ROBIN_HOOD_HASH_INT(unsigned long);
 | |
| ROBIN_HOOD_HASH_INT(unsigned long long);
 | |
| #if defined(__GNUC__) && !defined(__clang__)
 | |
| #pragma GCC diagnostic pop
 | |
| #endif
 | |
| namespace detail
 | |
| {
 | |
| template <typename T>
 | |
| struct void_type
 | |
| {
 | |
|   using type = void;
 | |
| };
 | |
| 
 | |
| template <typename T, typename = void>
 | |
| struct has_is_transparent : public std::false_type
 | |
| {
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct has_is_transparent<T, typename void_type<typename T::is_transparent>::type> : public std::true_type
 | |
| {
 | |
| };
 | |
| 
 | |
| // using wrapper classes for hash and key_equal prevents the diamond problem when the same type
 | |
| // is used. see https://stackoverflow.com/a/28771920/48181
 | |
| template <typename T>
 | |
| struct WrapHash : public T
 | |
| {
 | |
|   WrapHash() = default;
 | |
|   explicit WrapHash(T const& o) noexcept(noexcept(T(std::declval<T const&>()))) : T(o)
 | |
|   {
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct WrapKeyEqual : public T
 | |
| {
 | |
|   WrapKeyEqual() = default;
 | |
|   explicit WrapKeyEqual(T const& o) noexcept(noexcept(T(std::declval<T const&>()))) : T(o)
 | |
|   {
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A highly optimized hashmap implementation, using the Robin Hood algorithm.
 | |
| //
 | |
| // In most cases, this map should be usable as a drop-in replacement for std::unordered_map, but
 | |
| // be about 2x faster in most cases and require much less allocations.
 | |
| //
 | |
| // This implementation uses the following memory layout:
 | |
| //
 | |
| // [Node, Node, ... Node | info, info, ... infoSentinel ]
 | |
| //
 | |
| // * Node: either a DataNode that directly has the std::pair<key, val> as member,
 | |
| //   or a DataNode with a pointer to std::pair<key,val>. Which DataNode representation to use
 | |
| //   depends on how fast the swap() operation is. Heuristically, this is automatically choosen
 | |
| //   based on sizeof(). there are always 2^n Nodes.
 | |
| //
 | |
| // * info: Each Node in the map has a corresponding info byte, so there are 2^n info bytes.
 | |
| //   Each byte is initialized to 0, meaning the corresponding Node is empty. Set to 1 means the
 | |
| //   corresponding node contains data. Set to 2 means the corresponding Node is filled, but it
 | |
| //   actually belongs to the previous position and was pushed out because that place is already
 | |
| //   taken.
 | |
| //
 | |
| // * infoSentinel: Sentinel byte set to 1, so that iterator's ++ can stop at end() without the
 | |
| //   need for a idx variable.
 | |
| //
 | |
| // According to STL, order of templates has effect on throughput. That's why I've moved the
 | |
| // boolean to the front.
 | |
| // https://www.reddit.com/r/cpp/comments/ahp6iu/compile_time_binary_size_reductions_and_cs_future/eeguck4/
 | |
| template <bool IsFlat, size_t MaxLoadFactor100, typename Key, typename T, typename Hash, typename KeyEqual>
 | |
| class Table : public WrapHash<Hash>,
 | |
|               public WrapKeyEqual<KeyEqual>,
 | |
|               detail::NodeAllocator<
 | |
|                   typename std::conditional<
 | |
|                       std::is_void<T>::value, Key,
 | |
|                       robin_hood::pair<typename std::conditional<IsFlat, Key, Key const>::type, T>>::type,
 | |
|                   4, 16384, IsFlat>
 | |
| {
 | |
|  public:
 | |
|   static constexpr bool is_flat = IsFlat;
 | |
|   static constexpr bool is_map = !std::is_void<T>::value;
 | |
|   static constexpr bool is_set = !is_map;
 | |
|   static constexpr bool is_transparent =
 | |
|       has_is_transparent<Hash>::value && has_is_transparent<KeyEqual>::value;
 | |
| 
 | |
|   using key_type = Key;
 | |
|   using mapped_type = T;
 | |
|   using value_type = typename std::conditional<
 | |
|       is_set, Key, robin_hood::pair<typename std::conditional<is_flat, Key, Key const>::type, T>>::type;
 | |
|   using size_type = size_t;
 | |
|   using hasher = Hash;
 | |
|   using key_equal = KeyEqual;
 | |
|   using Self = Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
 | |
| 
 | |
|  private:
 | |
|   static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100, "MaxLoadFactor100 needs to be >10 && < 100");
 | |
| 
 | |
|   using WHash = WrapHash<Hash>;
 | |
|   using WKeyEqual = WrapKeyEqual<KeyEqual>;
 | |
| 
 | |
|   // configuration defaults
 | |
| 
 | |
|   // make sure we have 8 elements, needed to quickly rehash mInfo
 | |
|   static constexpr size_t InitialNumElements = sizeof(uint64_t);
 | |
|   static constexpr uint32_t InitialInfoNumBits = 5;
 | |
|   static constexpr uint8_t InitialInfoInc = 1U << InitialInfoNumBits;
 | |
|   static constexpr size_t InfoMask = InitialInfoInc - 1U;
 | |
|   static constexpr uint8_t InitialInfoHashShift = 0;
 | |
|   using DataPool = detail::NodeAllocator<value_type, 4, 16384, IsFlat>;
 | |
| 
 | |
|   // type needs to be wider than uint8_t.
 | |
|   using InfoType = uint32_t;
 | |
| 
 | |
|   // DataNode ////////////////////////////////////////////////////////
 | |
| 
 | |
|   // Primary template for the data node. We have special implementations for small and big
 | |
|   // objects. For large objects it is assumed that swap() is fairly slow, so we allocate these
 | |
|   // on the heap so swap merely swaps a pointer.
 | |
|   template <typename M, bool>
 | |
|   class DataNode
 | |
|   {
 | |
|   };
 | |
| 
 | |
|   // Small: just allocate on the stack.
 | |
|   template <typename M>
 | |
|   class DataNode<M, true> final
 | |
|   {
 | |
|    public:
 | |
|     template <typename... Args>
 | |
|     explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/,
 | |
|                       Args&&... args) noexcept(noexcept(value_type(std::forward<Args>(args)...)))
 | |
|      : mData(std::forward<Args>(args)...)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/,
 | |
|              DataNode<M, true>&& n) noexcept(std::is_nothrow_move_constructible<value_type>::value)
 | |
|      : mData(std::move(n.mData))
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     // doesn't do anything
 | |
|     void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) noexcept
 | |
|     {
 | |
|     }
 | |
|     void destroyDoNotDeallocate() noexcept
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     value_type const* operator->() const noexcept
 | |
|     {
 | |
|       return &mData;
 | |
|     }
 | |
|     value_type* operator->() noexcept
 | |
|     {
 | |
|       return &mData;
 | |
|     }
 | |
| 
 | |
|     const value_type& operator*() const noexcept
 | |
|     {
 | |
|       return mData;
 | |
|     }
 | |
| 
 | |
|     value_type& operator*() noexcept
 | |
|     {
 | |
|       return mData;
 | |
|     }
 | |
| 
 | |
|     template <typename VT = value_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept
 | |
|     {
 | |
|       return mData.first;
 | |
|     }
 | |
|     template <typename VT = value_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_set, VT&>::type getFirst() noexcept
 | |
|     {
 | |
|       return mData;
 | |
|     }
 | |
| 
 | |
|     template <typename VT = value_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_map, typename VT::first_type const&>::type getFirst() const noexcept
 | |
|     {
 | |
|       return mData.first;
 | |
|     }
 | |
|     template <typename VT = value_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept
 | |
|     {
 | |
|       return mData;
 | |
|     }
 | |
| 
 | |
|     template <typename MT = mapped_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_map, MT&>::type getSecond() noexcept
 | |
|     {
 | |
|       return mData.second;
 | |
|     }
 | |
| 
 | |
|     template <typename MT = mapped_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_set, MT const&>::type getSecond() const noexcept
 | |
|     {
 | |
|       return mData.second;
 | |
|     }
 | |
| 
 | |
|     void swap(DataNode<M, true>& o) noexcept(
 | |
|         noexcept(std::declval<value_type>().swap(std::declval<value_type>())))
 | |
|     {
 | |
|       mData.swap(o.mData);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     value_type mData;
 | |
|   };
 | |
| 
 | |
|   // big object: allocate on heap.
 | |
|   template <typename M>
 | |
|   class DataNode<M, false>
 | |
|   {
 | |
|    public:
 | |
|     template <typename... Args>
 | |
|     explicit DataNode(M& map, Args&&... args) : mData(map.allocate())
 | |
|     {
 | |
|       ::new (static_cast<void*>(mData)) value_type(std::forward<Args>(args)...);
 | |
|     }
 | |
| 
 | |
|     DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, false>&& n) noexcept
 | |
|      : mData(std::move(n.mData))
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     void destroy(M& map) noexcept
 | |
|     {
 | |
|       // don't deallocate, just put it into list of datapool.
 | |
|       mData->~value_type();
 | |
|       map.deallocate(mData);
 | |
|     }
 | |
| 
 | |
|     void destroyDoNotDeallocate() noexcept
 | |
|     {
 | |
|       mData->~value_type();
 | |
|     }
 | |
| 
 | |
|     value_type const* operator->() const noexcept
 | |
|     {
 | |
|       return mData;
 | |
|     }
 | |
| 
 | |
|     value_type* operator->() noexcept
 | |
|     {
 | |
|       return mData;
 | |
|     }
 | |
| 
 | |
|     const value_type& operator*() const
 | |
|     {
 | |
|       return *mData;
 | |
|     }
 | |
| 
 | |
|     value_type& operator*()
 | |
|     {
 | |
|       return *mData;
 | |
|     }
 | |
| 
 | |
|     template <typename VT = value_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept
 | |
|     {
 | |
|       return mData->first;
 | |
|     }
 | |
|     template <typename VT = value_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_set, VT&>::type getFirst() noexcept
 | |
|     {
 | |
|       return *mData;
 | |
|     }
 | |
| 
 | |
|     template <typename VT = value_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_map, typename VT::first_type const&>::type getFirst() const noexcept
 | |
|     {
 | |
|       return mData->first;
 | |
|     }
 | |
|     template <typename VT = value_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept
 | |
|     {
 | |
|       return *mData;
 | |
|     }
 | |
| 
 | |
|     template <typename MT = mapped_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_map, MT&>::type getSecond() noexcept
 | |
|     {
 | |
|       return mData->second;
 | |
|     }
 | |
| 
 | |
|     template <typename MT = mapped_type>
 | |
|     ROBIN_HOOD(NODISCARD)
 | |
|     typename std::enable_if<is_map, MT const&>::type getSecond() const noexcept
 | |
|     {
 | |
|       return mData->second;
 | |
|     }
 | |
| 
 | |
|     void swap(DataNode<M, false>& o) noexcept
 | |
|     {
 | |
|       using std::swap;
 | |
|       swap(mData, o.mData);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     value_type* mData;
 | |
|   };
 | |
| 
 | |
|   using Node = DataNode<Self, IsFlat>;
 | |
| 
 | |
|   // helpers for doInsert: extract first entry (only const required)
 | |
|   ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(Node const& n) const noexcept
 | |
|   {
 | |
|     return n.getFirst();
 | |
|   }
 | |
| 
 | |
|   // in case we have void mapped_type, we are not using a pair, thus we just route k through.
 | |
|   // No need to disable this because it's just not used if not applicable.
 | |
|   ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(key_type const& k) const noexcept
 | |
|   {
 | |
|     return k;
 | |
|   }
 | |
| 
 | |
|   // in case we have non-void mapped_type, we have a standard robin_hood::pair
 | |
|   template <typename Q = mapped_type>
 | |
|   ROBIN_HOOD(NODISCARD)
 | |
|   typename std::enable_if<!std::is_void<Q>::value, key_type const&>::type
 | |
|       getFirstConst(value_type const& vt) const noexcept
 | |
|   {
 | |
|     return vt.first;
 | |
|   }
 | |
| 
 | |
|   // Cloner //////////////////////////////////////////////////////////
 | |
| 
 | |
|   template <typename M, bool UseMemcpy>
 | |
|   struct Cloner;
 | |
| 
 | |
|   // fast path: Just copy data, without allocating anything.
 | |
|   template <typename M>
 | |
|   struct Cloner<M, true>
 | |
|   {
 | |
|     void operator()(M const& source, M& target) const
 | |
|     {
 | |
|       auto const* const src = reinterpret_cast<char const*>(source.mKeyVals);
 | |
|       auto* tgt = reinterpret_cast<char*>(target.mKeyVals);
 | |
|       auto const numElementsWithBuffer = target.calcNumElementsWithBuffer(target.mMask + 1);
 | |
|       std::copy(src, src + target.calcNumBytesTotal(numElementsWithBuffer), tgt);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template <typename M>
 | |
|   struct Cloner<M, false>
 | |
|   {
 | |
|     void operator()(M const& s, M& t) const
 | |
|     {
 | |
|       auto const numElementsWithBuffer = t.calcNumElementsWithBuffer(t.mMask + 1);
 | |
|       std::copy(s.mInfo, s.mInfo + t.calcNumBytesInfo(numElementsWithBuffer), t.mInfo);
 | |
| 
 | |
|       for (size_t i = 0; i < numElementsWithBuffer; ++i)
 | |
|       {
 | |
|         if (t.mInfo[i])
 | |
|         {
 | |
|           ::new (static_cast<void*>(t.mKeyVals + i)) Node(t, *s.mKeyVals[i]);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Destroyer ///////////////////////////////////////////////////////
 | |
| 
 | |
|   template <typename M, bool IsFlatAndTrivial>
 | |
|   struct Destroyer
 | |
|   {
 | |
|   };
 | |
| 
 | |
|   template <typename M>
 | |
|   struct Destroyer<M, true>
 | |
|   {
 | |
|     void nodes(M& m) const noexcept
 | |
|     {
 | |
|       m.mNumElements = 0;
 | |
|     }
 | |
| 
 | |
|     void nodesDoNotDeallocate(M& m) const noexcept
 | |
|     {
 | |
|       m.mNumElements = 0;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template <typename M>
 | |
|   struct Destroyer<M, false>
 | |
|   {
 | |
|     void nodes(M& m) const noexcept
 | |
|     {
 | |
|       m.mNumElements = 0;
 | |
|       // clear also resets mInfo to 0, that's sometimes not necessary.
 | |
|       auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);
 | |
| 
 | |
|       for (size_t idx = 0; idx < numElementsWithBuffer; ++idx)
 | |
|       {
 | |
|         if (0 != m.mInfo[idx])
 | |
|         {
 | |
|           Node& n = m.mKeyVals[idx];
 | |
|           n.destroy(m);
 | |
|           n.~Node();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void nodesDoNotDeallocate(M& m) const noexcept
 | |
|     {
 | |
|       m.mNumElements = 0;
 | |
|       // clear also resets mInfo to 0, that's sometimes not necessary.
 | |
|       auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);
 | |
|       for (size_t idx = 0; idx < numElementsWithBuffer; ++idx)
 | |
|       {
 | |
|         if (0 != m.mInfo[idx])
 | |
|         {
 | |
|           Node& n = m.mKeyVals[idx];
 | |
|           n.destroyDoNotDeallocate();
 | |
|           n.~Node();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Iter ////////////////////////////////////////////////////////////
 | |
| 
 | |
|   struct fast_forward_tag
 | |
|   {
 | |
|   };
 | |
| 
 | |
|   // generic iterator for both const_iterator and iterator.
 | |
|   template <bool IsConst>
 | |
|   // NOLINTNEXTLINE(hicpp-special-member-functions,cppcoreguidelines-special-member-functions)
 | |
|   class Iter
 | |
|   {
 | |
|    private:
 | |
|     using NodePtr = typename std::conditional<IsConst, Node const*, Node*>::type;
 | |
| 
 | |
|    public:
 | |
|     using difference_type = std::ptrdiff_t;
 | |
|     using value_type = typename Self::value_type;
 | |
|     using reference = typename std::conditional<IsConst, value_type const&, value_type&>::type;
 | |
|     using pointer = typename std::conditional<IsConst, value_type const*, value_type*>::type;
 | |
|     using iterator_category = std::forward_iterator_tag;
 | |
| 
 | |
|     // default constructed iterator can be compared to itself, but WON'T return true when
 | |
|     // compared to end().
 | |
|     Iter() = default;
 | |
| 
 | |
|     // Rule of zero: nothing specified. The conversion constructor is only enabled for
 | |
|     // iterator to const_iterator, so it doesn't accidentally work as a copy ctor.
 | |
| 
 | |
|     // Conversion constructor from iterator to const_iterator.
 | |
|     template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
 | |
|     // NOLINTNEXTLINE(hicpp-explicit-conversions)
 | |
|     Iter(Iter<OtherIsConst> const& other) noexcept : mKeyVals(other.mKeyVals), mInfo(other.mInfo)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     Iter(NodePtr valPtr, uint8_t const* infoPtr) noexcept : mKeyVals(valPtr), mInfo(infoPtr)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     Iter(NodePtr valPtr, uint8_t const* infoPtr, fast_forward_tag ROBIN_HOOD_UNUSED(tag) /*unused*/) noexcept
 | |
|      : mKeyVals(valPtr), mInfo(infoPtr)
 | |
|     {
 | |
|       fastForward();
 | |
|     }
 | |
| 
 | |
|     template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
 | |
|     Iter& operator=(Iter<OtherIsConst> const& other) noexcept
 | |
|     {
 | |
|       mKeyVals = other.mKeyVals;
 | |
|       mInfo = other.mInfo;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // prefix increment. Undefined behavior if we are at end()!
 | |
|     Iter& operator++() noexcept
 | |
|     {
 | |
|       mInfo++;
 | |
|       mKeyVals++;
 | |
|       fastForward();
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     Iter operator++(int) noexcept
 | |
|     {
 | |
|       Iter tmp = *this;
 | |
|       ++(*this);
 | |
|       return tmp;
 | |
|     }
 | |
| 
 | |
|     reference operator*() const
 | |
|     {
 | |
|       return **mKeyVals;
 | |
|     }
 | |
| 
 | |
|     pointer operator->() const
 | |
|     {
 | |
|       return &**mKeyVals;
 | |
|     }
 | |
| 
 | |
|     template <bool O>
 | |
|     bool operator==(Iter<O> const& o) const noexcept
 | |
|     {
 | |
|       return mKeyVals == o.mKeyVals;
 | |
|     }
 | |
| 
 | |
|     template <bool O>
 | |
|     bool operator!=(Iter<O> const& o) const noexcept
 | |
|     {
 | |
|       return mKeyVals != o.mKeyVals;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     // fast forward to the next non-free info byte
 | |
|     // I've tried a few variants that don't depend on intrinsics, but unfortunately they are
 | |
|     // quite a bit slower than this one. So I've reverted that change again. See map_benchmark.
 | |
|     void fastForward() noexcept
 | |
|     {
 | |
|       size_t n = 0;
 | |
|       while (0U == (n = detail::unaligned_load<size_t>(mInfo)))
 | |
|       {
 | |
|         mInfo += sizeof(size_t);
 | |
|         mKeyVals += sizeof(size_t);
 | |
|       }
 | |
| #if defined(ROBIN_HOOD_DISABLE_INTRINSICS)
 | |
|       // we know for certain that within the next 8 bytes we'll find a non-zero one.
 | |
|       if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint32_t>(mInfo)))
 | |
|       {
 | |
|         mInfo += 4;
 | |
|         mKeyVals += 4;
 | |
|       }
 | |
|       if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint16_t>(mInfo)))
 | |
|       {
 | |
|         mInfo += 2;
 | |
|         mKeyVals += 2;
 | |
|       }
 | |
|       if (ROBIN_HOOD_UNLIKELY(0U == *mInfo))
 | |
|       {
 | |
|         mInfo += 1;
 | |
|         mKeyVals += 1;
 | |
|       }
 | |
| #else
 | |
| #if ROBIN_HOOD(LITTLE_ENDIAN)
 | |
|       auto inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8;
 | |
| #else
 | |
|       auto inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8;
 | |
| #endif
 | |
|       mInfo += inc;
 | |
|       mKeyVals += inc;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     friend class Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
 | |
|     NodePtr mKeyVals{nullptr};
 | |
|     uint8_t const* mInfo{nullptr};
 | |
|   };
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|   // highly performance relevant code.
 | |
|   // Lower bits are used for indexing into the array (2^n size)
 | |
|   // The upper 1-5 bits need to be a reasonable good hash, to save comparisons.
 | |
|   template <typename HashKey>
 | |
|   void keyToIdx(HashKey&& key, size_t* idx, InfoType* info) const
 | |
|   {
 | |
|     // for a user-specified hash that is *not* robin_hood::hash, apply robin_hood::hash as
 | |
|     // an additional mixing step. This serves as a bad hash prevention, if the given data is
 | |
|     // badly mixed.
 | |
|     using Mix = typename std::conditional<std::is_same<::robin_hood::hash<key_type>, hasher>::value,
 | |
|                                           ::robin_hood::detail::identity_hash<size_t>,
 | |
|                                           ::robin_hood::hash<size_t>>::type;
 | |
| 
 | |
|     // the lower InitialInfoNumBits are reserved for info.
 | |
|     auto h = Mix{}(WHash::operator()(key));
 | |
|     *info = mInfoInc + static_cast<InfoType>((h & InfoMask) >> mInfoHashShift);
 | |
|     *idx = (h >> InitialInfoNumBits) & mMask;
 | |
|   }
 | |
| 
 | |
|   // forwards the index by one, wrapping around at the end
 | |
|   void next(InfoType* info, size_t* idx) const noexcept
 | |
|   {
 | |
|     *idx = *idx + 1;
 | |
|     *info += mInfoInc;
 | |
|   }
 | |
| 
 | |
|   void nextWhileLess(InfoType* info, size_t* idx) const noexcept
 | |
|   {
 | |
|     // unrolling this by hand did not bring any speedups.
 | |
|     while (*info < mInfo[*idx])
 | |
|     {
 | |
|       next(info, idx);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Shift everything up by one element. Tries to move stuff around.
 | |
|   void shiftUp(size_t startIdx,
 | |
|                size_t const insertion_idx) noexcept(std::is_nothrow_move_assignable<Node>::value)
 | |
|   {
 | |
|     auto idx = startIdx;
 | |
|     ::new (static_cast<void*>(mKeyVals + idx)) Node(std::move(mKeyVals[idx - 1]));
 | |
|     while (--idx != insertion_idx)
 | |
|     {
 | |
|       mKeyVals[idx] = std::move(mKeyVals[idx - 1]);
 | |
|     }
 | |
| 
 | |
|     idx = startIdx;
 | |
|     while (idx != insertion_idx)
 | |
|     {
 | |
|       ROBIN_HOOD_COUNT(shiftUp)
 | |
|       mInfo[idx] = static_cast<uint8_t>(mInfo[idx - 1] + mInfoInc);
 | |
|       if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF))
 | |
|       {
 | |
|         mMaxNumElementsAllowed = 0;
 | |
|       }
 | |
|       --idx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void shiftDown(size_t idx) noexcept(std::is_nothrow_move_assignable<Node>::value)
 | |
|   {
 | |
|     // until we find one that is either empty or has zero offset.
 | |
|     // TODO(martinus) we don't need to move everything, just the last one for the same
 | |
|     // bucket.
 | |
|     mKeyVals[idx].destroy(*this);
 | |
| 
 | |
|     // until we find one that is either empty or has zero offset.
 | |
|     while (mInfo[idx + 1] >= 2 * mInfoInc)
 | |
|     {
 | |
|       ROBIN_HOOD_COUNT(shiftDown)
 | |
|       mInfo[idx] = static_cast<uint8_t>(mInfo[idx + 1] - mInfoInc);
 | |
|       mKeyVals[idx] = std::move(mKeyVals[idx + 1]);
 | |
|       ++idx;
 | |
|     }
 | |
| 
 | |
|     mInfo[idx] = 0;
 | |
|     // don't destroy, we've moved it
 | |
|     // mKeyVals[idx].destroy(*this);
 | |
|     mKeyVals[idx].~Node();
 | |
|   }
 | |
| 
 | |
|   // copy of find(), except that it returns iterator instead of const_iterator.
 | |
|   template <typename Other>
 | |
|   ROBIN_HOOD(NODISCARD)
 | |
|   size_t findIdx(Other const& key) const
 | |
|   {
 | |
|     size_t idx{};
 | |
|     InfoType info{};
 | |
|     keyToIdx(key, &idx, &info);
 | |
| 
 | |
|     do
 | |
|     {
 | |
|       // unrolling this twice gives a bit of a speedup. More unrolling did not help.
 | |
|       if (info == mInfo[idx] && ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst())))
 | |
|       {
 | |
|         return idx;
 | |
|       }
 | |
|       next(&info, &idx);
 | |
|       if (info == mInfo[idx] && ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst())))
 | |
|       {
 | |
|         return idx;
 | |
|       }
 | |
|       next(&info, &idx);
 | |
|     } while (info <= mInfo[idx]);
 | |
| 
 | |
|     // nothing found!
 | |
|     return mMask == 0 ? 0
 | |
|                       : static_cast<size_t>(
 | |
|                             std::distance(mKeyVals, reinterpret_cast_no_cast_align_warning<Node*>(mInfo)));
 | |
|   }
 | |
| 
 | |
|   void cloneData(const Table& o)
 | |
|   {
 | |
|     Cloner<Table, IsFlat && ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(Node)>()(o, *this);
 | |
|   }
 | |
| 
 | |
|   // inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized.
 | |
|   // @return index where the element was created
 | |
|   size_t insert_move(Node&& keyval)
 | |
|   {
 | |
|     // we don't retry, fail if overflowing
 | |
|     // don't need to check max num elements
 | |
|     if (0 == mMaxNumElementsAllowed && !try_increase_info())
 | |
|     {
 | |
|       throwOverflowError();  // impossible to reach LCOV_EXCL_LINE
 | |
|     }
 | |
| 
 | |
|     size_t idx{};
 | |
|     InfoType info{};
 | |
|     keyToIdx(keyval.getFirst(), &idx, &info);
 | |
| 
 | |
|     // skip forward. Use <= because we are certain that the element is not there.
 | |
|     while (info <= mInfo[idx])
 | |
|     {
 | |
|       idx = idx + 1;
 | |
|       info += mInfoInc;
 | |
|     }
 | |
| 
 | |
|     // key not found, so we are now exactly where we want to insert it.
 | |
|     auto const insertion_idx = idx;
 | |
|     auto const insertion_info = static_cast<uint8_t>(info);
 | |
|     if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF))
 | |
|     {
 | |
|       mMaxNumElementsAllowed = 0;
 | |
|     }
 | |
| 
 | |
|     // find an empty spot
 | |
|     while (0 != mInfo[idx])
 | |
|     {
 | |
|       next(&info, &idx);
 | |
|     }
 | |
| 
 | |
|     auto& l = mKeyVals[insertion_idx];
 | |
|     if (idx == insertion_idx)
 | |
|     {
 | |
|       ::new (static_cast<void*>(&l)) Node(std::move(keyval));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       shiftUp(idx, insertion_idx);
 | |
|       l = std::move(keyval);
 | |
|     }
 | |
| 
 | |
|     // put at empty spot
 | |
|     mInfo[insertion_idx] = insertion_info;
 | |
| 
 | |
|     ++mNumElements;
 | |
|     return insertion_idx;
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   using iterator = Iter<false>;
 | |
|   using const_iterator = Iter<true>;
 | |
| 
 | |
|   Table() noexcept(noexcept(Hash()) && noexcept(KeyEqual())) : WHash(), WKeyEqual()
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|   }
 | |
| 
 | |
|   // Creates an empty hash map. Nothing is allocated yet, this happens at the first insert.
 | |
|   // This tremendously speeds up ctor & dtor of a map that never receives an element. The
 | |
|   // penalty is payed at the first insert, and not before. Lookup of this empty map works
 | |
|   // because everybody points to DummyInfoByte::b. parameter bucket_count is dictated by the
 | |
|   // standard, but we can ignore it.
 | |
|   explicit Table(size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/, const Hash& h = Hash{},
 | |
|                  const KeyEqual& equal = KeyEqual{}) noexcept(noexcept(Hash(h)) && noexcept(KeyEqual(equal)))
 | |
|    : WHash(h), WKeyEqual(equal)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|   }
 | |
| 
 | |
|   template <typename Iter>
 | |
|   Table(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{},
 | |
|         const KeyEqual& equal = KeyEqual{})
 | |
|    : WHash(h), WKeyEqual(equal)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     insert(first, last);
 | |
|   }
 | |
| 
 | |
|   Table(std::initializer_list<value_type> initlist, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0,
 | |
|         const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{})
 | |
|    : WHash(h), WKeyEqual(equal)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     insert(initlist.begin(), initlist.end());
 | |
|   }
 | |
| 
 | |
|   Table(Table&& o) noexcept
 | |
|    : WHash(std::move(static_cast<WHash&>(o)))
 | |
|    , WKeyEqual(std::move(static_cast<WKeyEqual&>(o)))
 | |
|    , DataPool(std::move(static_cast<DataPool&>(o)))
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     if (o.mMask)
 | |
|     {
 | |
|       mKeyVals = std::move(o.mKeyVals);
 | |
|       mInfo = std::move(o.mInfo);
 | |
|       mNumElements = std::move(o.mNumElements);
 | |
|       mMask = std::move(o.mMask);
 | |
|       mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
 | |
|       mInfoInc = std::move(o.mInfoInc);
 | |
|       mInfoHashShift = std::move(o.mInfoHashShift);
 | |
|       // set other's mask to 0 so its destructor won't do anything
 | |
|       o.init();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Table& operator=(Table&& o) noexcept
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     if (&o != this)
 | |
|     {
 | |
|       if (o.mMask)
 | |
|       {
 | |
|         // only move stuff if the other map actually has some data
 | |
|         destroy();
 | |
|         mKeyVals = std::move(o.mKeyVals);
 | |
|         mInfo = std::move(o.mInfo);
 | |
|         mNumElements = std::move(o.mNumElements);
 | |
|         mMask = std::move(o.mMask);
 | |
|         mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
 | |
|         mInfoInc = std::move(o.mInfoInc);
 | |
|         mInfoHashShift = std::move(o.mInfoHashShift);
 | |
|         WHash::operator=(std::move(static_cast<WHash&>(o)));
 | |
|         WKeyEqual::operator=(std::move(static_cast<WKeyEqual&>(o)));
 | |
|         DataPool::operator=(std::move(static_cast<DataPool&>(o)));
 | |
| 
 | |
|         o.init();
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         // nothing in the other map => just clear us.
 | |
|         clear();
 | |
|       }
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   Table(const Table& o)
 | |
|    : WHash(static_cast<const WHash&>(o))
 | |
|    , WKeyEqual(static_cast<const WKeyEqual&>(o))
 | |
|    , DataPool(static_cast<const DataPool&>(o))
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     if (!o.empty())
 | |
|     {
 | |
|       // not empty: create an exact copy. it is also possible to just iterate through all
 | |
|       // elements and insert them, but copying is probably faster.
 | |
| 
 | |
|       auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
 | |
|       auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
 | |
| 
 | |
|       ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" << numElementsWithBuffer
 | |
|                                     << ")")
 | |
|       mKeyVals = static_cast<Node*>(detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal)));
 | |
|       // no need for calloc because clonData does memcpy
 | |
|       mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
 | |
|       mNumElements = o.mNumElements;
 | |
|       mMask = o.mMask;
 | |
|       mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
 | |
|       mInfoInc = o.mInfoInc;
 | |
|       mInfoHashShift = o.mInfoHashShift;
 | |
|       cloneData(o);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Creates a copy of the given map. Copy constructor of each entry is used.
 | |
|   // Not sure why clang-tidy thinks this doesn't handle self assignment, it does
 | |
|   // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp)
 | |
|   Table& operator=(Table const& o)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     if (&o == this)
 | |
|     {
 | |
|       // prevent assigning of itself
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // we keep using the old allocator and not assign the new one, because we want to keep
 | |
|     // the memory available. when it is the same size.
 | |
|     if (o.empty())
 | |
|     {
 | |
|       if (0 == mMask)
 | |
|       {
 | |
|         // nothing to do, we are empty too
 | |
|         return *this;
 | |
|       }
 | |
| 
 | |
|       // not empty: destroy what we have there
 | |
|       // clear also resets mInfo to 0, that's sometimes not necessary.
 | |
|       destroy();
 | |
|       init();
 | |
|       WHash::operator=(static_cast<const WHash&>(o));
 | |
|       WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
 | |
|       DataPool::operator=(static_cast<DataPool const&>(o));
 | |
| 
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // clean up old stuff
 | |
|     Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
 | |
| 
 | |
|     if (mMask != o.mMask)
 | |
|     {
 | |
|       // no luck: we don't have the same array size allocated, so we need to realloc.
 | |
|       if (0 != mMask)
 | |
|       {
 | |
|         // only deallocate if we actually have data!
 | |
|         ROBIN_HOOD_LOG("std::free")
 | |
|         std::free(mKeyVals);
 | |
|       }
 | |
| 
 | |
|       auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
 | |
|       auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
 | |
|       ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" << numElementsWithBuffer
 | |
|                                     << ")")
 | |
|       mKeyVals = static_cast<Node*>(detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal)));
 | |
| 
 | |
|       // no need for calloc here because cloneData performs a memcpy.
 | |
|       mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
 | |
|       // sentinel is set in cloneData
 | |
|     }
 | |
|     WHash::operator=(static_cast<const WHash&>(o));
 | |
|     WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
 | |
|     DataPool::operator=(static_cast<DataPool const&>(o));
 | |
|     mNumElements = o.mNumElements;
 | |
|     mMask = o.mMask;
 | |
|     mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
 | |
|     mInfoInc = o.mInfoInc;
 | |
|     mInfoHashShift = o.mInfoHashShift;
 | |
|     cloneData(o);
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Swaps everything between the two maps.
 | |
|   void swap(Table& o)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     using std::swap;
 | |
|     swap(o, *this);
 | |
|   }
 | |
| 
 | |
|   // Clears all data, without resizing.
 | |
|   void clear()
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     if (empty())
 | |
|     {
 | |
|       // don't do anything! also important because we don't want to write to
 | |
|       // DummyInfoByte::b, even though we would just write 0 to it.
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
 | |
| 
 | |
|     auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
 | |
|     // clear everything, then set the sentinel again
 | |
|     uint8_t const z = 0;
 | |
|     std::fill(mInfo, mInfo + calcNumBytesInfo(numElementsWithBuffer), z);
 | |
|     mInfo[numElementsWithBuffer] = 1;
 | |
| 
 | |
|     mInfoInc = InitialInfoInc;
 | |
|     mInfoHashShift = InitialInfoHashShift;
 | |
|   }
 | |
| 
 | |
|   // Destroys the map and all it's contents.
 | |
|   ~Table()
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     destroy();
 | |
|   }
 | |
| 
 | |
|   // Checks if both tables contain the same entries. Order is irrelevant.
 | |
|   bool operator==(const Table& other) const
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     if (other.size() != size())
 | |
|     {
 | |
|       return false;
 | |
|     }
 | |
|     for (auto const& otherEntry : other)
 | |
|     {
 | |
|       if (!has(otherEntry))
 | |
|       {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const Table& other) const
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return !operator==(other);
 | |
|   }
 | |
| 
 | |
|   template <typename Q = mapped_type>
 | |
|   typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](const key_type& key)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return doCreateByKey(key);
 | |
|   }
 | |
| 
 | |
|   template <typename Q = mapped_type>
 | |
|   typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](key_type&& key)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return doCreateByKey(std::move(key));
 | |
|   }
 | |
| 
 | |
|   template <typename Iter>
 | |
|   void insert(Iter first, Iter last)
 | |
|   {
 | |
|     for (; first != last; ++first)
 | |
|     {
 | |
|       // value_type ctor needed because this might be called with std::pair's
 | |
|       insert(value_type(*first));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   std::pair<iterator, bool> emplace(Args&&... args)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     Node n{*this, std::forward<Args>(args)...};
 | |
|     auto r = doInsert(std::move(n));
 | |
|     if (!r.second)
 | |
|     {
 | |
|       // insertion not possible: destroy node
 | |
|       // NOLINTNEXTLINE(bugprone-use-after-move)
 | |
|       n.destroy(*this);
 | |
|     }
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   std::pair<iterator, bool> try_emplace(const key_type& key, Args&&... args)
 | |
|   {
 | |
|     return try_emplace_impl(key, std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   std::pair<iterator, bool> try_emplace(key_type&& key, Args&&... args)
 | |
|   {
 | |
|     return try_emplace_impl(std::move(key), std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   std::pair<iterator, bool> try_emplace(const_iterator hint, const key_type& key, Args&&... args)
 | |
|   {
 | |
|     (void)hint;
 | |
|     return try_emplace_impl(key, std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   template <typename... Args>
 | |
|   std::pair<iterator, bool> try_emplace(const_iterator hint, key_type&& key, Args&&... args)
 | |
|   {
 | |
|     (void)hint;
 | |
|     return try_emplace_impl(std::move(key), std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   template <typename Mapped>
 | |
|   std::pair<iterator, bool> insert_or_assign(const key_type& key, Mapped&& obj)
 | |
|   {
 | |
|     return insert_or_assign_impl(key, std::forward<Mapped>(obj));
 | |
|   }
 | |
| 
 | |
|   template <typename Mapped>
 | |
|   std::pair<iterator, bool> insert_or_assign(key_type&& key, Mapped&& obj)
 | |
|   {
 | |
|     return insert_or_assign_impl(std::move(key), std::forward<Mapped>(obj));
 | |
|   }
 | |
| 
 | |
|   template <typename Mapped>
 | |
|   std::pair<iterator, bool> insert_or_assign(const_iterator hint, const key_type& key, Mapped&& obj)
 | |
|   {
 | |
|     (void)hint;
 | |
|     return insert_or_assign_impl(key, std::forward<Mapped>(obj));
 | |
|   }
 | |
| 
 | |
|   template <typename Mapped>
 | |
|   std::pair<iterator, bool> insert_or_assign(const_iterator hint, key_type&& key, Mapped&& obj)
 | |
|   {
 | |
|     (void)hint;
 | |
|     return insert_or_assign_impl(std::move(key), std::forward<Mapped>(obj));
 | |
|   }
 | |
| 
 | |
|   std::pair<iterator, bool> insert(const value_type& keyval)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return doInsert(keyval);
 | |
|   }
 | |
| 
 | |
|   std::pair<iterator, bool> insert(value_type&& keyval)
 | |
|   {
 | |
|     return doInsert(std::move(keyval));
 | |
|   }
 | |
| 
 | |
|   // Returns 1 if key is found, 0 otherwise.
 | |
|   size_t count(const key_type& key) const
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     auto kv = mKeyVals + findIdx(key);
 | |
|     if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo))
 | |
|     {
 | |
|       return 1;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   template <typename OtherKey, typename Self_ = Self>
 | |
|   // NOLINTNEXTLINE(modernize-use-nodiscard)
 | |
|   typename std::enable_if<Self_::is_transparent, size_t>::type count(const OtherKey& key) const
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     auto kv = mKeyVals + findIdx(key);
 | |
|     if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo))
 | |
|     {
 | |
|       return 1;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   bool contains(const key_type& key) const
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     return 1U == count(key);
 | |
|   }
 | |
| 
 | |
|   template <typename OtherKey, typename Self_ = Self>
 | |
|   // NOLINTNEXTLINE(modernize-use-nodiscard)
 | |
|   typename std::enable_if<Self_::is_transparent, bool>::type contains(const OtherKey& key) const
 | |
|   {
 | |
|     return 1U == count(key);
 | |
|   }
 | |
| 
 | |
|   // Returns a reference to the value found for key.
 | |
|   // Throws std::out_of_range if element cannot be found
 | |
|   template <typename Q = mapped_type>
 | |
|   // NOLINTNEXTLINE(modernize-use-nodiscard)
 | |
|   typename std::enable_if<!std::is_void<Q>::value, Q&>::type at(key_type const& key)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     auto kv = mKeyVals + findIdx(key);
 | |
|     if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo))
 | |
|     {
 | |
|       doThrow<std::out_of_range>("key not found");
 | |
|     }
 | |
|     return kv->getSecond();
 | |
|   }
 | |
| 
 | |
|   // Returns a reference to the value found for key.
 | |
|   // Throws std::out_of_range if element cannot be found
 | |
|   template <typename Q = mapped_type>
 | |
|   // NOLINTNEXTLINE(modernize-use-nodiscard)
 | |
|   typename std::enable_if<!std::is_void<Q>::value, Q const&>::type at(key_type const& key) const
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     auto kv = mKeyVals + findIdx(key);
 | |
|     if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo))
 | |
|     {
 | |
|       doThrow<std::out_of_range>("key not found");
 | |
|     }
 | |
|     return kv->getSecond();
 | |
|   }
 | |
| 
 | |
|   const_iterator find(const key_type& key) const
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     const size_t idx = findIdx(key);
 | |
|     return const_iterator{mKeyVals + idx, mInfo + idx};
 | |
|   }
 | |
| 
 | |
|   template <typename OtherKey>
 | |
|   const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     const size_t idx = findIdx(key);
 | |
|     return const_iterator{mKeyVals + idx, mInfo + idx};
 | |
|   }
 | |
| 
 | |
|   template <typename OtherKey, typename Self_ = Self>
 | |
|   typename std::enable_if<Self_::is_transparent,  // NOLINT(modernize-use-nodiscard)
 | |
|                           const_iterator>::type   // NOLINT(modernize-use-nodiscard)
 | |
|   find(const OtherKey& key) const
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     const size_t idx = findIdx(key);
 | |
|     return const_iterator{mKeyVals + idx, mInfo + idx};
 | |
|   }
 | |
| 
 | |
|   iterator find(const key_type& key)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     const size_t idx = findIdx(key);
 | |
|     return iterator{mKeyVals + idx, mInfo + idx};
 | |
|   }
 | |
| 
 | |
|   template <typename OtherKey>
 | |
|   iterator find(const OtherKey& key, is_transparent_tag /*unused*/)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     const size_t idx = findIdx(key);
 | |
|     return iterator{mKeyVals + idx, mInfo + idx};
 | |
|   }
 | |
| 
 | |
|   template <typename OtherKey, typename Self_ = Self>
 | |
|   typename std::enable_if<Self_::is_transparent, iterator>::type find(const OtherKey& key)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     const size_t idx = findIdx(key);
 | |
|     return iterator{mKeyVals + idx, mInfo + idx};
 | |
|   }
 | |
| 
 | |
|   iterator begin()
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     if (empty())
 | |
|     {
 | |
|       return end();
 | |
|     }
 | |
|     return iterator(mKeyVals, mInfo, fast_forward_tag{});
 | |
|   }
 | |
|   const_iterator begin() const
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return cbegin();
 | |
|   }
 | |
|   const_iterator cbegin() const
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     if (empty())
 | |
|     {
 | |
|       return cend();
 | |
|     }
 | |
|     return const_iterator(mKeyVals, mInfo, fast_forward_tag{});
 | |
|   }
 | |
| 
 | |
|   iterator end()
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     // no need to supply valid info pointer: end() must not be dereferenced, and only node
 | |
|     // pointer is compared.
 | |
|     return iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
 | |
|   }
 | |
|   const_iterator end() const
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return cend();
 | |
|   }
 | |
|   const_iterator cend() const
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return const_iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
 | |
|   }
 | |
| 
 | |
|   iterator erase(const_iterator pos)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     // its safe to perform const cast here
 | |
|     // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
 | |
|     return erase(iterator{const_cast<Node*>(pos.mKeyVals), const_cast<uint8_t*>(pos.mInfo)});
 | |
|   }
 | |
| 
 | |
|   // Erases element at pos, returns iterator to the next element.
 | |
|   iterator erase(iterator pos)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     // we assume that pos always points to a valid entry, and not end().
 | |
|     auto const idx = static_cast<size_t>(pos.mKeyVals - mKeyVals);
 | |
| 
 | |
|     shiftDown(idx);
 | |
|     --mNumElements;
 | |
| 
 | |
|     if (*pos.mInfo)
 | |
|     {
 | |
|       // we've backward shifted, return this again
 | |
|       return pos;
 | |
|     }
 | |
| 
 | |
|     // no backward shift, return next element
 | |
|     return ++pos;
 | |
|   }
 | |
| 
 | |
|   size_t erase(const key_type& key)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     size_t idx{};
 | |
|     InfoType info{};
 | |
|     keyToIdx(key, &idx, &info);
 | |
| 
 | |
|     // check while info matches with the source idx
 | |
|     do
 | |
|     {
 | |
|       if (info == mInfo[idx] && WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))
 | |
|       {
 | |
|         shiftDown(idx);
 | |
|         --mNumElements;
 | |
|         return 1;
 | |
|       }
 | |
|       next(&info, &idx);
 | |
|     } while (info <= mInfo[idx]);
 | |
| 
 | |
|     // nothing found to delete
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // reserves space for the specified number of elements. Makes sure the old data fits.
 | |
|   // exactly the same as reserve(c).
 | |
|   void rehash(size_t c)
 | |
|   {
 | |
|     // forces a reserve
 | |
|     reserve(c, true);
 | |
|   }
 | |
| 
 | |
|   // reserves space for the specified number of elements. Makes sure the old data fits.
 | |
|   // Exactly the same as rehash(c). Use rehash(0) to shrink to fit.
 | |
|   void reserve(size_t c)
 | |
|   {
 | |
|     // reserve, but don't force rehash
 | |
|     reserve(c, false);
 | |
|   }
 | |
| 
 | |
|   // If possible reallocates the map to a smaller one. This frees the underlying table.
 | |
|   // Does not do anything if load_factor is too large for decreasing the table's size.
 | |
|   void compact()
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     auto newSize = InitialNumElements;
 | |
|     while (calcMaxNumElementsAllowed(newSize) < mNumElements && newSize != 0)
 | |
|     {
 | |
|       newSize *= 2;
 | |
|     }
 | |
|     if (ROBIN_HOOD_UNLIKELY(newSize == 0))
 | |
|     {
 | |
|       throwOverflowError();
 | |
|     }
 | |
| 
 | |
|     ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1")
 | |
| 
 | |
|     // only actually do anything when the new size is bigger than the old one. This prevents to
 | |
|     // continuously allocate for each reserve() call.
 | |
|     if (newSize < mMask + 1)
 | |
|     {
 | |
|       rehashPowerOfTwo(newSize, true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   size_type size() const noexcept
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return mNumElements;
 | |
|   }
 | |
| 
 | |
|   size_type max_size() const noexcept
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return static_cast<size_type>(-1);
 | |
|   }
 | |
| 
 | |
|   ROBIN_HOOD(NODISCARD) bool empty() const noexcept
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return 0 == mNumElements;
 | |
|   }
 | |
| 
 | |
|   float max_load_factor() const noexcept
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return MaxLoadFactor100 / 100.0F;
 | |
|   }
 | |
| 
 | |
|   // Average number of elements per bucket. Since we allow only 1 per bucket
 | |
|   float load_factor() const noexcept
 | |
|   {  // NOLINT(modernize-use-nodiscard)
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return static_cast<float>(size()) / static_cast<float>(mMask + 1);
 | |
|   }
 | |
| 
 | |
|   ROBIN_HOOD(NODISCARD) size_t mask() const noexcept
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return mMask;
 | |
|   }
 | |
| 
 | |
|   ROBIN_HOOD(NODISCARD) size_t calcMaxNumElementsAllowed(size_t maxElements) const noexcept
 | |
|   {
 | |
|     if (ROBIN_HOOD_LIKELY(maxElements <= (std::numeric_limits<size_t>::max)() / 100))
 | |
|     {
 | |
|       return maxElements * MaxLoadFactor100 / 100;
 | |
|     }
 | |
| 
 | |
|     // we might be a bit inprecise, but since maxElements is quite large that doesn't matter
 | |
|     return (maxElements / 100) * MaxLoadFactor100;
 | |
|   }
 | |
| 
 | |
|   ROBIN_HOOD(NODISCARD) size_t calcNumBytesInfo(size_t numElements) const noexcept
 | |
|   {
 | |
|     // we add a uint64_t, which houses the sentinel (first byte) and padding so we can load
 | |
|     // 64bit types.
 | |
|     return numElements + sizeof(uint64_t);
 | |
|   }
 | |
| 
 | |
|   ROBIN_HOOD(NODISCARD)
 | |
|   size_t calcNumElementsWithBuffer(size_t numElements) const noexcept
 | |
|   {
 | |
|     auto maxNumElementsAllowed = calcMaxNumElementsAllowed(numElements);
 | |
|     return numElements + (std::min)(maxNumElementsAllowed, (static_cast<size_t>(0xFF)));
 | |
|   }
 | |
| 
 | |
|   // calculation only allowed for 2^n values
 | |
|   ROBIN_HOOD(NODISCARD) size_t calcNumBytesTotal(size_t numElements) const
 | |
|   {
 | |
| #if ROBIN_HOOD(BITNESS) == 64
 | |
|     return numElements * sizeof(Node) + calcNumBytesInfo(numElements);
 | |
| #else
 | |
|     // make sure we're doing 64bit operations, so we are at least safe against 32bit overflows.
 | |
|     auto const ne = static_cast<uint64_t>(numElements);
 | |
|     auto const s = static_cast<uint64_t>(sizeof(Node));
 | |
|     auto const infos = static_cast<uint64_t>(calcNumBytesInfo(numElements));
 | |
| 
 | |
|     auto const total64 = ne * s + infos;
 | |
|     auto const total = static_cast<size_t>(total64);
 | |
| 
 | |
|     if (ROBIN_HOOD_UNLIKELY(static_cast<uint64_t>(total) != total64))
 | |
|     {
 | |
|       throwOverflowError();
 | |
|     }
 | |
|     return total;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename Q = mapped_type>
 | |
|   ROBIN_HOOD(NODISCARD)
 | |
|   typename std::enable_if<!std::is_void<Q>::value, bool>::type has(const value_type& e) const
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     auto it = find(e.first);
 | |
|     return it != end() && it->second == e.second;
 | |
|   }
 | |
| 
 | |
|   template <typename Q = mapped_type>
 | |
|   ROBIN_HOOD(NODISCARD)
 | |
|   typename std::enable_if<std::is_void<Q>::value, bool>::type has(const value_type& e) const
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     return find(e) != end();
 | |
|   }
 | |
| 
 | |
|   void reserve(size_t c, bool forceRehash)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     auto const minElementsAllowed = (std::max)(c, mNumElements);
 | |
|     auto newSize = InitialNumElements;
 | |
|     while (calcMaxNumElementsAllowed(newSize) < minElementsAllowed && newSize != 0)
 | |
|     {
 | |
|       newSize *= 2;
 | |
|     }
 | |
|     if (ROBIN_HOOD_UNLIKELY(newSize == 0))
 | |
|     {
 | |
|       throwOverflowError();
 | |
|     }
 | |
| 
 | |
|     ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1")
 | |
| 
 | |
|     // only actually do anything when the new size is bigger than the old one. This prevents to
 | |
|     // continuously allocate for each reserve() call.
 | |
|     if (forceRehash || newSize > mMask + 1)
 | |
|     {
 | |
|       rehashPowerOfTwo(newSize, false);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // reserves space for at least the specified number of elements.
 | |
|   // only works if numBuckets if power of two
 | |
|   void rehashPowerOfTwo(size_t numBuckets, bool forceFree)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
| 
 | |
|     Node* const oldKeyVals = mKeyVals;
 | |
|     uint8_t const* const oldInfo = mInfo;
 | |
| 
 | |
|     const size_t oldMaxElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
 | |
| 
 | |
|     // resize operation: move stuff
 | |
|     init_data(numBuckets);
 | |
|     if (oldMaxElementsWithBuffer > 1)
 | |
|     {
 | |
|       for (size_t i = 0; i < oldMaxElementsWithBuffer; ++i)
 | |
|       {
 | |
|         if (oldInfo[i] != 0)
 | |
|         {
 | |
|           insert_move(std::move(oldKeyVals[i]));
 | |
|           // destroy the node but DON'T destroy the data.
 | |
|           oldKeyVals[i].~Node();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // this check is not necessary as it's guarded by the previous if, but it helps silence
 | |
|       // g++'s overeager "attempt to free a non-heap object 'map'
 | |
|       // [-Werror=free-nonheap-object]" warning.
 | |
|       if (oldKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask))
 | |
|       {
 | |
|         // don't destroy old data: put it into the pool instead
 | |
|         if (forceFree)
 | |
|         {
 | |
|           std::free(oldKeyVals);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElementsWithBuffer));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ROBIN_HOOD(NOINLINE) void throwOverflowError() const
 | |
|   {
 | |
| #if ROBIN_HOOD(HAS_EXCEPTIONS)
 | |
|     throw std::overflow_error("robin_hood::map overflow");
 | |
| #else
 | |
|     abort();
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   template <typename OtherKey, typename... Args>
 | |
|   std::pair<iterator, bool> try_emplace_impl(OtherKey&& key, Args&&... args)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     auto it = find(key);
 | |
|     if (it == end())
 | |
|     {
 | |
|       return emplace(std::piecewise_construct, std::forward_as_tuple(std::forward<OtherKey>(key)),
 | |
|                      std::forward_as_tuple(std::forward<Args>(args)...));
 | |
|     }
 | |
|     return {it, false};
 | |
|   }
 | |
| 
 | |
|   template <typename OtherKey, typename Mapped>
 | |
|   std::pair<iterator, bool> insert_or_assign_impl(OtherKey&& key, Mapped&& obj)
 | |
|   {
 | |
|     ROBIN_HOOD_TRACE(this)
 | |
|     auto it = find(key);
 | |
|     if (it == end())
 | |
|     {
 | |
|       return emplace(std::forward<OtherKey>(key), std::forward<Mapped>(obj));
 | |
|     }
 | |
|     it->second = std::forward<Mapped>(obj);
 | |
|     return {it, false};
 | |
|   }
 | |
| 
 | |
|   void init_data(size_t max_elements)
 | |
|   {
 | |
|     mNumElements = 0;
 | |
|     mMask = max_elements - 1;
 | |
|     mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements);
 | |
| 
 | |
|     auto const numElementsWithBuffer = calcNumElementsWithBuffer(max_elements);
 | |
| 
 | |
|     // calloc also zeroes everything
 | |
|     auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
 | |
|     ROBIN_HOOD_LOG("std::calloc " << numBytesTotal << " = calcNumBytesTotal(" << numElementsWithBuffer << ")")
 | |
|     mKeyVals = reinterpret_cast<Node*>(detail::assertNotNull<std::bad_alloc>(std::calloc(1, numBytesTotal)));
 | |
|     mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
 | |
| 
 | |
|     // set sentinel
 | |
|     mInfo[numElementsWithBuffer] = 1;
 | |
| 
 | |
|     mInfoInc = InitialInfoInc;
 | |
|     mInfoHashShift = InitialInfoHashShift;
 | |
|   }
 | |
| 
 | |
|   template <typename Arg, typename Q = mapped_type>
 | |
|   typename std::enable_if<!std::is_void<Q>::value, Q&>::type doCreateByKey(Arg&& key)
 | |
|   {
 | |
|     while (true)
 | |
|     {
 | |
|       size_t idx{};
 | |
|       InfoType info{};
 | |
|       keyToIdx(key, &idx, &info);
 | |
|       nextWhileLess(&info, &idx);
 | |
| 
 | |
|       // while we potentially have a match. Can't do a do-while here because when mInfo is
 | |
|       // 0 we don't want to skip forward
 | |
|       while (info == mInfo[idx])
 | |
|       {
 | |
|         if (WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))
 | |
|         {
 | |
|           // key already exists, do not insert.
 | |
|           return mKeyVals[idx].getSecond();
 | |
|         }
 | |
|         next(&info, &idx);
 | |
|       }
 | |
| 
 | |
|       // unlikely that this evaluates to true
 | |
|       if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed))
 | |
|       {
 | |
|         increase_size();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // key not found, so we are now exactly where we want to insert it.
 | |
|       auto const insertion_idx = idx;
 | |
|       auto const insertion_info = info;
 | |
|       if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF))
 | |
|       {
 | |
|         mMaxNumElementsAllowed = 0;
 | |
|       }
 | |
| 
 | |
|       // find an empty spot
 | |
|       while (0 != mInfo[idx])
 | |
|       {
 | |
|         next(&info, &idx);
 | |
|       }
 | |
| 
 | |
|       auto& l = mKeyVals[insertion_idx];
 | |
|       if (idx == insertion_idx)
 | |
|       {
 | |
|         // put at empty spot. This forwards all arguments into the node where the object
 | |
|         // is constructed exactly where it is needed.
 | |
|         ::new (static_cast<void*>(&l))
 | |
|             Node(*this, std::piecewise_construct, std::forward_as_tuple(std::forward<Arg>(key)),
 | |
|                  std::forward_as_tuple());
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         shiftUp(idx, insertion_idx);
 | |
|         l = Node(*this, std::piecewise_construct, std::forward_as_tuple(std::forward<Arg>(key)),
 | |
|                  std::forward_as_tuple());
 | |
|       }
 | |
| 
 | |
|       // mKeyVals[idx].getFirst() = std::move(key);
 | |
|       mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
 | |
| 
 | |
|       ++mNumElements;
 | |
|       return mKeyVals[insertion_idx].getSecond();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This is exactly the same code as operator[], except for the return values
 | |
|   template <typename Arg>
 | |
|   std::pair<iterator, bool> doInsert(Arg&& keyval)
 | |
|   {
 | |
|     while (true)
 | |
|     {
 | |
|       size_t idx{};
 | |
|       InfoType info{};
 | |
|       keyToIdx(getFirstConst(keyval), &idx, &info);
 | |
|       nextWhileLess(&info, &idx);
 | |
| 
 | |
|       // while we potentially have a match
 | |
|       while (info == mInfo[idx])
 | |
|       {
 | |
|         if (WKeyEqual::operator()(getFirstConst(keyval), mKeyVals[idx].getFirst()))
 | |
|         {
 | |
|           // key already exists, do NOT insert.
 | |
|           // see http://en.cppreference.com/w/cpp/container/unordered_map/insert
 | |
|           return std::make_pair<iterator, bool>(iterator(mKeyVals + idx, mInfo + idx), false);
 | |
|         }
 | |
|         next(&info, &idx);
 | |
|       }
 | |
| 
 | |
|       // unlikely that this evaluates to true
 | |
|       if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed))
 | |
|       {
 | |
|         increase_size();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // key not found, so we are now exactly where we want to insert it.
 | |
|       auto const insertion_idx = idx;
 | |
|       auto const insertion_info = info;
 | |
|       if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF))
 | |
|       {
 | |
|         mMaxNumElementsAllowed = 0;
 | |
|       }
 | |
| 
 | |
|       // find an empty spot
 | |
|       while (0 != mInfo[idx])
 | |
|       {
 | |
|         next(&info, &idx);
 | |
|       }
 | |
| 
 | |
|       auto& l = mKeyVals[insertion_idx];
 | |
|       if (idx == insertion_idx)
 | |
|       {
 | |
|         ::new (static_cast<void*>(&l)) Node(*this, std::forward<Arg>(keyval));
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         shiftUp(idx, insertion_idx);
 | |
|         l = Node(*this, std::forward<Arg>(keyval));
 | |
|       }
 | |
| 
 | |
|       // put at empty spot
 | |
|       mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
 | |
| 
 | |
|       ++mNumElements;
 | |
|       return std::make_pair(iterator(mKeyVals + insertion_idx, mInfo + insertion_idx), true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool try_increase_info()
 | |
|   {
 | |
|     ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements
 | |
|                                << ", maxNumElementsAllowed=" << calcMaxNumElementsAllowed(mMask + 1))
 | |
|     if (mInfoInc <= 2)
 | |
|     {
 | |
|       // need to be > 2 so that shift works (otherwise undefined behavior!)
 | |
|       return false;
 | |
|     }
 | |
|     // we got space left, try to make info smaller
 | |
|     mInfoInc = static_cast<uint8_t>(mInfoInc >> 1U);
 | |
| 
 | |
|     // remove one bit of the hash, leaving more space for the distance info.
 | |
|     // This is extremely fast because we can operate on 8 bytes at once.
 | |
|     ++mInfoHashShift;
 | |
|     auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
 | |
| 
 | |
|     for (size_t i = 0; i < numElementsWithBuffer; i += 8)
 | |
|     {
 | |
|       auto val = unaligned_load<uint64_t>(mInfo + i);
 | |
|       val = (val >> 1U) & UINT64_C(0x7f7f7f7f7f7f7f7f);
 | |
|       std::memcpy(mInfo + i, &val, sizeof(val));
 | |
|     }
 | |
|     // update sentinel, which might have been cleared out!
 | |
|     mInfo[numElementsWithBuffer] = 1;
 | |
| 
 | |
|     mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   void increase_size()
 | |
|   {
 | |
|     // nothing allocated yet? just allocate InitialNumElements
 | |
|     if (0 == mMask)
 | |
|     {
 | |
|       init_data(InitialNumElements);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
 | |
|     if (mNumElements < maxNumElementsAllowed && try_increase_info())
 | |
|     {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     ROBIN_HOOD_LOG(
 | |
|         "mNumElements=" << mNumElements << ", maxNumElementsAllowed=" << maxNumElementsAllowed << ", load="
 | |
|                         << (static_cast<double>(mNumElements) * 100.0 / (static_cast<double>(mMask) + 1)))
 | |
|     // it seems we have a really bad hash function! don't try to resize again
 | |
|     if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1))
 | |
|     {
 | |
|       throwOverflowError();
 | |
|     }
 | |
| 
 | |
|     rehashPowerOfTwo((mMask + 1) * 2, false);
 | |
|   }
 | |
| 
 | |
|   void destroy()
 | |
|   {
 | |
|     if (0 == mMask)
 | |
|     {
 | |
|       // don't deallocate!
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodesDoNotDeallocate(*this);
 | |
| 
 | |
|     // This protection against not deleting mMask shouldn't be needed as it's sufficiently
 | |
|     // protected with the 0==mMask check, but I have this anyways because g++ 7 otherwise
 | |
|     // reports a compile error: attempt to free a non-heap object 'fm'
 | |
|     // [-Werror=free-nonheap-object]
 | |
|     if (mKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask))
 | |
|     {
 | |
|       ROBIN_HOOD_LOG("std::free")
 | |
|       std::free(mKeyVals);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void init() noexcept
 | |
|   {
 | |
|     mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask);
 | |
|     mInfo = reinterpret_cast<uint8_t*>(&mMask);
 | |
|     mNumElements = 0;
 | |
|     mMask = 0;
 | |
|     mMaxNumElementsAllowed = 0;
 | |
|     mInfoInc = InitialInfoInc;
 | |
|     mInfoHashShift = InitialInfoHashShift;
 | |
|   }
 | |
| 
 | |
|   // members are sorted so no padding occurs
 | |
|   Node* mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask);  // 8 byte  8
 | |
|   uint8_t* mInfo = reinterpret_cast<uint8_t*>(&mMask);                     // 8 byte 16
 | |
|   size_t mNumElements = 0;                                                 // 8 byte 24
 | |
|   size_t mMask = 0;                                                        // 8 byte 32
 | |
|   size_t mMaxNumElementsAllowed = 0;                                       // 8 byte 40
 | |
|   InfoType mInfoInc = InitialInfoInc;                                      // 4 byte 44
 | |
|   InfoType mInfoHashShift = InitialInfoHashShift;                          // 4 byte 48
 | |
|                                                                            // 16 byte 56 if NodeAllocator
 | |
| };
 | |
| 
 | |
| }  // namespace detail
 | |
| 
 | |
| // map
 | |
| 
 | |
| template <typename Key, typename T, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
 | |
|           size_t MaxLoadFactor100 = 80>
 | |
| using unordered_flat_map = detail::Table<true, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
 | |
| 
 | |
| template <typename Key, typename T, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
 | |
|           size_t MaxLoadFactor100 = 80>
 | |
| using unordered_node_map = detail::Table<false, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
 | |
| 
 | |
| template <typename Key, typename T, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
 | |
|           size_t MaxLoadFactor100 = 80>
 | |
| using unordered_map = detail::Table<sizeof(robin_hood::pair<Key, T>) <= sizeof(size_t) * 6 &&
 | |
|                                         std::is_nothrow_move_constructible<robin_hood::pair<Key, T>>::value &&
 | |
|                                         std::is_nothrow_move_assignable<robin_hood::pair<Key, T>>::value,
 | |
|                                     MaxLoadFactor100, Key, T, Hash, KeyEqual>;
 | |
| 
 | |
| // set
 | |
| 
 | |
| template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
 | |
|           size_t MaxLoadFactor100 = 80>
 | |
| using unordered_flat_set = detail::Table<true, MaxLoadFactor100, Key, void, Hash, KeyEqual>;
 | |
| 
 | |
| template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
 | |
|           size_t MaxLoadFactor100 = 80>
 | |
| using unordered_node_set = detail::Table<false, MaxLoadFactor100, Key, void, Hash, KeyEqual>;
 | |
| 
 | |
| template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
 | |
|           size_t MaxLoadFactor100 = 80>
 | |
| using unordered_set =
 | |
|     detail::Table<sizeof(Key) <= sizeof(size_t) * 6 && std::is_nothrow_move_constructible<Key>::value &&
 | |
|                       std::is_nothrow_move_assignable<Key>::value,
 | |
|                   MaxLoadFactor100, Key, void, Hash, KeyEqual>;
 | |
| 
 | |
| }  // namespace robin_hood
 |