1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-04-18 21:44:02 +03:00
2023-03-02 15:59:42 +00:00

1224 lines
32 KiB
C++

#include <my_config.h>
#include <cmath>
#include <iostream>
#include <sstream>
#include <string.h>
using namespace std;
#include "idb_mysql.h"
namespace
{
inline bool isNumeric(int type, const char* attr)
{
if (type == INT_RESULT || type == REAL_RESULT || type == DECIMAL_RESULT)
{
return true;
}
if (strncasecmp("NULL", attr, 4) == 0)
{
return true;
}
return false;
}
inline double cvtArgToDouble(int t, const char* v)
{
double d = 0.0;
switch (t)
{
case INT_RESULT: d = (double)(*((long long*)v)); break;
case REAL_RESULT: d = *((double*)v); break;
case DECIMAL_RESULT:
case STRING_RESULT: d = strtod(v, 0); break;
case ROW_RESULT: break;
}
return d;
}
} // namespace
/****************************************************************************
* UDF function interface for MariaDB connector to recognize is defined in
* this section. MariaDB's UDF function creation guideline needs to be followed.
*
* Three interface need to be defined on the connector for each UDF function.
*
* XXX_init: To allocate the necessary memory for the UDF function and validate
* the input.
* XXX_deinit: To clean up the memory.
* XXX: The function implementation.
* Detailed instruction can be found at MariaDB source directory:
* ~/sql/udf_example.cc.
*
* Please note that the implementation of the function defined on the connector
* will only be called when all the input arguments are constant. e.g.,
* mcs_add(2,3). That way, the function does not run in a distributed fashion
* and could be slow. If there is a need for the UDF function to run with
* pure constant input, then one needs to put a implementation in the XXX
* body, which is very similar to the ones in getXXXval API. If there's no
* such need for a given UDF, then the XXX interface can just return a dummy
* result because this function will never be called.
*/
extern "C"
{
//=======================================================================
/**
* regr_avgx
*/
struct regr_avgx_data
{
long double sumx;
int64_t cnt;
};
my_bool regr_avgx_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_avgx_data* data;
if (args->arg_count != 2)
{
strcpy(message, "regr_avgx() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[1], args->attributes[1])))
{
strcpy(message, "regr_avgx() with a non-numeric independant (second) argument");
return 1;
}
if (initid->decimals != DECIMAL_NOT_SPECIFIED)
{
initid->decimals += 4;
}
if (!(data = (struct regr_avgx_data*)malloc(sizeof(struct regr_avgx_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->sumx = 0;
data->cnt = 0;
initid->ptr = (char*)data;
return 0;
}
void regr_avgx_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void regr_avgx_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_avgx_data* data = (struct regr_avgx_data*)initid->ptr;
data->sumx = 0;
data->cnt = 0;
}
void regr_avgx_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_avgx_data* data = (struct regr_avgx_data*)initid->ptr;
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
++data->cnt;
data->sumx += xval;
}
double regr_avgx(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct regr_avgx_data* data = (struct regr_avgx_data*)initid->ptr;
double valOut = 0;
if (data->cnt > 0)
{
valOut = static_cast<double>(data->sumx / data->cnt);
}
else
{
*is_null = 1;
}
return valOut;
}
//=======================================================================
/**
* regr_avgy
*/
struct regr_avgy_data
{
long double sumy;
int64_t cnt;
};
my_bool regr_avgy_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_avgy_data* data;
if (args->arg_count != 2)
{
strcpy(message, "regr_avgy() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[0], args->attributes[0])))
{
strcpy(message, "regr_avgy() with a non-numeric dependant (first) argument");
return 1;
}
if (initid->decimals != DECIMAL_NOT_SPECIFIED)
{
initid->decimals += 4;
}
if (!(data = (struct regr_avgy_data*)malloc(sizeof(struct regr_avgy_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->sumy = 0;
data->cnt = 0;
initid->ptr = (char*)data;
return 0;
}
void regr_avgy_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void regr_avgy_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_avgy_data* data = (struct regr_avgy_data*)initid->ptr;
data->sumy = 0;
data->cnt = 0;
}
void regr_avgy_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_avgy_data* data = (struct regr_avgy_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
++data->cnt;
data->sumy += yval;
}
double regr_avgy(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct regr_avgy_data* data = (struct regr_avgy_data*)initid->ptr;
double valOut = 0;
if (data->cnt > 0)
{
valOut = static_cast<double>(data->sumy / data->cnt);
}
else
{
*is_null = 1;
}
return valOut;
}
//=======================================================================
/**
* regr_count
*/
struct regr_count_data
{
int64_t cnt;
};
my_bool regr_count_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_count_data* data;
if (args->arg_count != 2)
{
strcpy(message, "regr_count() requires two arguments");
return 1;
}
if (!(data = (struct regr_count_data*)malloc(sizeof(struct regr_count_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
initid->ptr = (char*)data;
return 0;
}
void regr_count_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void regr_count_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_count_data* data = (struct regr_count_data*)initid->ptr;
data->cnt = 0;
}
void regr_count_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_count_data* data = (struct regr_count_data*)initid->ptr;
++data->cnt;
}
long long regr_count(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct regr_count_data* data = (struct regr_count_data*)initid->ptr;
return data->cnt;
}
//=======================================================================
/**
* regr_slope
*/
struct regr_slope_data
{
int64_t cnt;
long double sumx;
long double sumx2; // sum of (x squared)
long double sumy;
long double sumxy; // sum of (x*y)
};
my_bool regr_slope_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_slope_data* data;
if (args->arg_count != 2)
{
strcpy(message, "regr_slope() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[0], args->attributes[0]) &&
isNumeric(args->arg_type[1], args->attributes[1])))
{
strcpy(message, "regr_slope() with non-numeric arguments");
return 1;
}
initid->decimals = DECIMAL_NOT_SPECIFIED;
if (!(data = (struct regr_slope_data*)malloc(sizeof(struct regr_slope_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
void regr_slope_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void regr_slope_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_slope_data* data = (struct regr_slope_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
void regr_slope_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_slope_data* data = (struct regr_slope_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumx2 += xval * xval;
data->sumxy += xval * yval;
++data->cnt;
}
double regr_slope(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct regr_slope_data* data = (struct regr_slope_data*)initid->ptr;
double N = data->cnt;
double valOut = 0;
*is_null = 1;
if (N > 0)
{
long double sumx = data->sumx;
long double sumy = data->sumy;
long double sumx2 = data->sumx2;
long double sumxy = data->sumxy;
long double covar_pop = N * sumxy - sumx * sumy;
long double var_pop = N * sumx2 - sumx * sumx;
if (var_pop > 0)
{
valOut = static_cast<double>(covar_pop / var_pop);
*is_null = 0;
}
}
return valOut;
}
//=======================================================================
/**
* regr_intercept
*/
struct regr_intercept_data
{
int64_t cnt;
long double sumx;
long double sumx2; // sum of (x squared)
long double sumy;
long double sumxy; // sum of (x*y)
};
my_bool regr_intercept_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_intercept_data* data;
if (args->arg_count != 2)
{
strcpy(message, "regr_intercept() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[0], args->attributes[0]) &&
isNumeric(args->arg_type[1], args->attributes[1])))
{
strcpy(message, "regr_intercept() with non-numeric arguments");
return 1;
}
initid->decimals = DECIMAL_NOT_SPECIFIED;
if (!(data = (struct regr_intercept_data*)malloc(sizeof(struct regr_intercept_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
void regr_intercept_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void regr_intercept_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_intercept_data* data = (struct regr_intercept_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
void regr_intercept_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_intercept_data* data = (struct regr_intercept_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumx2 += xval * xval;
data->sumxy += xval * yval;
++data->cnt;
}
double regr_intercept(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct regr_intercept_data* data = (struct regr_intercept_data*)initid->ptr;
double N = data->cnt;
double valOut = 0;
*is_null = 1;
if (N > 0)
{
long double sumx = data->sumx;
long double sumy = data->sumy;
long double sumx2 = data->sumx2;
long double sumxy = data->sumxy;
long double numerator = sumy * sumx2 - sumx * sumxy;
long double var_pop = (N * sumx2) - (sumx * sumx);
if (var_pop > 0)
{
valOut = static_cast<double>(numerator / var_pop);
*is_null = 0;
}
}
return valOut;
}
//=======================================================================
/**
* regr_r2
*/
struct regr_r2_data
{
int64_t cnt;
long double sumx;
long double sumx2; // sum of (x squared)
long double sumy;
long double sumy2; // sum of (y squared)
long double sumxy; // sum of (x*y)
};
my_bool regr_r2_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_r2_data* data;
if (args->arg_count != 2)
{
strcpy(message, "regr_r2() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[0], args->attributes[0]) &&
isNumeric(args->arg_type[1], args->attributes[1])))
{
strcpy(message, "regr_r2() with non-numeric arguments");
return 1;
}
initid->decimals = DECIMAL_NOT_SPECIFIED;
if (!(data = (struct regr_r2_data*)malloc(sizeof(struct regr_r2_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumy2 = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
void regr_r2_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void regr_r2_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_r2_data* data = (struct regr_r2_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumy2 = 0.0;
data->sumxy = 0.0;
}
void regr_r2_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_r2_data* data = (struct regr_r2_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumx2 += xval * xval;
data->sumy2 += yval * yval;
data->sumxy += xval * yval;
++data->cnt;
}
double regr_r2(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct regr_r2_data* data = (struct regr_r2_data*)initid->ptr;
double N = data->cnt;
double valOut = 0;
if (N > 0)
{
long double sumx = data->sumx;
long double sumy = data->sumy;
long double sumx2 = data->sumx2;
long double sumy2 = data->sumy2;
long double sumxy = data->sumxy;
long double var_popx = (sumx2 - (sumx * sumx / N)) / N;
if (var_popx <= 0) // Catch -0
{
// When var_popx is 0, NULL is the result.
*is_null = 1;
return 0;
}
long double var_popy = (sumy2 - (sumy * sumy / N)) / N;
if (var_popy <= 0) // Catch -0
{
// When var_popy is 0, 1 is the result
return 1;
}
long double std_popx = sqrt(var_popx);
long double std_popy = sqrt(var_popy);
long double covar_pop = (sumxy - ((sumx * sumy) / N)) / N;
long double corr = covar_pop / (std_popy * std_popx);
valOut = static_cast<double>(corr * corr);
}
else
{
*is_null = 1;
}
return valOut;
}
//=======================================================================
/**
* corr
*/
struct corr_data
{
int64_t cnt;
long double sumx;
long double sumx2; // sum of (x squared)
long double sumy;
long double sumy2; // sum of (y squared)
long double sumxy; // sum of (x*y)
};
my_bool corr_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct corr_data* data;
if (args->arg_count != 2)
{
strcpy(message, "corr() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[0], args->attributes[0]) &&
isNumeric(args->arg_type[1], args->attributes[1])))
{
strcpy(message, "corr() with non-numeric arguments");
return 1;
}
initid->decimals = DECIMAL_NOT_SPECIFIED;
if (!(data = (struct corr_data*)malloc(sizeof(struct corr_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumy2 = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
void corr_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void corr_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct corr_data* data = (struct corr_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumy2 = 0.0;
data->sumxy = 0.0;
}
void corr_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct corr_data* data = (struct corr_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumx2 += xval * xval;
data->sumy2 += yval * yval;
data->sumxy += xval * yval;
++data->cnt;
}
double corr(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct corr_data* data = (struct corr_data*)initid->ptr;
double N = data->cnt;
double valOut = 0;
if (N > 0)
{
long double sumx = data->sumx;
long double sumy = data->sumy;
long double sumx2 = data->sumx2;
long double sumy2 = data->sumy2;
long double sumxy = data->sumxy;
long double var_popx = (sumx2 - (sumx * sumx / N)) / N;
if (var_popx <= 0) // Catch -0
{
// When var_popx is 0, NULL is the result.
*is_null = 1;
return 0;
}
long double var_popy = (sumy2 - (sumy * sumy / N)) / N;
if (var_popy <= 0) // Catch -0
{
// When var_popy is 0, 1 is the result
return 1;
}
long double std_popx = sqrt(var_popx);
long double std_popy = sqrt(var_popy);
long double covar_pop = (sumxy - ((sumx * sumy) / N)) / N;
long double corr = covar_pop / (std_popy * std_popx);
return static_cast<double>(corr);
}
else
{
*is_null = 1;
}
return valOut;
}
//=======================================================================
/**
* regr_sxx
*/
struct regr_sxx_data
{
int64_t cnt;
long double sumx;
long double sumx2; // sum of (x squared)
};
my_bool regr_sxx_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_sxx_data* data;
if (args->arg_count != 2)
{
strcpy(message, "regr_sxx() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[1], args->attributes[1])))
{
strcpy(message, "regr_avgx() with a non-numeric independant (second) argument");
return 1;
}
initid->decimals = DECIMAL_NOT_SPECIFIED;
if (!(data = (struct regr_sxx_data*)malloc(sizeof(struct regr_sxx_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
initid->ptr = (char*)data;
return 0;
}
void regr_sxx_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void regr_sxx_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_sxx_data* data = (struct regr_sxx_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
}
void regr_sxx_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_sxx_data* data = (struct regr_sxx_data*)initid->ptr;
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumx += xval;
data->sumx2 += xval * xval;
++data->cnt;
}
double regr_sxx(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct regr_sxx_data* data = (struct regr_sxx_data*)initid->ptr;
double N = data->cnt;
double valOut = 0;
if (N > 0)
{
long double sumx = data->sumx;
long double sumx2 = data->sumx2;
long double sxx = (sumx2 - (sumx * sumx / N));
if (sxx < 0) // catch -0
sxx = 0;
valOut = static_cast<double>(sxx);
}
else
{
*is_null = 1;
}
return valOut;
}
//=======================================================================
/**
* regr_syy
*/
struct regr_syy_data
{
int64_t cnt;
long double sumy;
long double sumy2; // sum of (y squared)
};
my_bool regr_syy_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_syy_data* data;
if (args->arg_count != 2)
{
strcpy(message, "regr_syy() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[0], args->attributes[0])))
{
strcpy(message, "regr_syy() with a non-numeric dependant (first) argument");
return 1;
}
initid->decimals = DECIMAL_NOT_SPECIFIED;
if (!(data = (struct regr_syy_data*)malloc(sizeof(struct regr_syy_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumy = 0.0;
data->sumy2 = 0.0;
initid->ptr = (char*)data;
return 0;
}
void regr_syy_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void regr_syy_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_syy_data* data = (struct regr_syy_data*)initid->ptr;
data->cnt = 0;
data->sumy = 0.0;
data->sumy2 = 0.0;
}
void regr_syy_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_syy_data* data = (struct regr_syy_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
data->sumy += yval;
data->sumy2 += yval * yval;
++data->cnt;
}
double regr_syy(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct regr_syy_data* data = (struct regr_syy_data*)initid->ptr;
double N = data->cnt;
double valOut = 0;
if (N > 0)
{
long double sumy = data->sumy;
long double sumy2 = data->sumy2;
long double syy = (sumy2 - (sumy * sumy / N));
if (syy < 0) // might be -0
syy = 0;
valOut = static_cast<double>(syy);
}
else
{
*is_null = 1;
}
return valOut;
}
//=======================================================================
/**
* regr_sxy
*/
struct regr_sxy_data
{
int64_t cnt;
long double sumx;
long double sumy;
long double sumxy; // sum of (x*y)
};
my_bool regr_sxy_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct regr_sxy_data* data;
if (args->arg_count != 2)
{
strcpy(message, "regr_sxy() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[0], args->attributes[0]) &&
isNumeric(args->arg_type[1], args->attributes[1])))
{
strcpy(message, "regr_sxy() with non-numeric arguments");
return 1;
}
initid->decimals = DECIMAL_NOT_SPECIFIED;
if (!(data = (struct regr_sxy_data*)malloc(sizeof(struct regr_sxy_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
void regr_sxy_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void regr_sxy_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct regr_sxy_data* data = (struct regr_sxy_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
void regr_sxy_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct regr_sxy_data* data = (struct regr_sxy_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumxy += xval * yval;
++data->cnt;
}
double regr_sxy(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct regr_sxy_data* data = (struct regr_sxy_data*)initid->ptr;
double N = data->cnt;
double valOut = 0;
if (N > 0)
{
long double sumx = data->sumx;
long double sumy = data->sumy;
long double sumxy = data->sumxy;
long double regr_sxy = (sumxy - ((sumx * sumy) / N));
valOut = static_cast<double>(regr_sxy);
}
else
{
*is_null = 1;
}
return valOut;
}
//=======================================================================
/**
* covar_pop
*/
struct covar_pop_data
{
int64_t cnt;
long double sumx;
long double sumy;
long double sumxy; // sum of (x*y)
};
my_bool covar_pop_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct covar_pop_data* data;
if (args->arg_count != 2)
{
strcpy(message, "covar_pop() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[0], args->attributes[0]) &&
isNumeric(args->arg_type[1], args->attributes[1])))
{
strcpy(message, "covar_pop() with non-numeric arguments");
return 1;
}
initid->decimals = DECIMAL_NOT_SPECIFIED;
if (!(data = (struct covar_pop_data*)malloc(sizeof(struct covar_pop_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
void covar_pop_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void covar_pop_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct covar_pop_data* data = (struct covar_pop_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
void covar_pop_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct covar_pop_data* data = (struct covar_pop_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumxy += xval * yval;
++data->cnt;
}
double covar_pop(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct covar_pop_data* data = (struct covar_pop_data*)initid->ptr;
double N = data->cnt;
double valOut = 0;
if (N > 0)
{
long double sumx = data->sumx;
long double sumy = data->sumy;
long double sumxy = data->sumxy;
long double covar_pop = (sumxy - ((sumx * sumy) / N)) / N;
valOut = static_cast<double>(covar_pop);
}
else
{
*is_null = 1;
}
return valOut;
}
//=======================================================================
/**
* covar_samp
*/
struct covar_samp_data
{
int64_t cnt;
long double sumx;
long double sumy;
long double sumxy; // sum of (x*y)
};
my_bool covar_samp_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct covar_samp_data* data;
if (args->arg_count != 2)
{
strcpy(message, "covar_samp() requires two arguments");
return 1;
}
if (!(isNumeric(args->arg_type[0], args->attributes[0]) &&
isNumeric(args->arg_type[1], args->attributes[1])))
{
strcpy(message, "covar_samp() with non-numeric arguments");
return 1;
}
initid->decimals = DECIMAL_NOT_SPECIFIED;
if (!(data = (struct covar_samp_data*)malloc(sizeof(struct covar_samp_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
initid->ptr = (char*)data;
return 0;
}
void covar_samp_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void covar_samp_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct covar_samp_data* data = (struct covar_samp_data*)initid->ptr;
data->cnt = 0;
data->sumx = 0.0;
data->sumy = 0.0;
data->sumxy = 0.0;
}
void covar_samp_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null,
char* message __attribute__((unused)))
{
// Test for NULL in x and y
if (args->args[0] == 0 || args->args[1] == 0)
{
return;
}
struct covar_samp_data* data = (struct covar_samp_data*)initid->ptr;
double yval = cvtArgToDouble(args->arg_type[0], args->args[0]);
double xval = cvtArgToDouble(args->arg_type[1], args->args[1]);
data->sumy += yval;
data->sumx += xval;
data->sumxy += xval * yval;
++data->cnt;
}
double covar_samp(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null,
char* error __attribute__((unused)))
{
struct covar_samp_data* data = (struct covar_samp_data*)initid->ptr;
double N = data->cnt;
double valOut = 0;
if (N > 0)
{
long double sumx = data->sumx;
long double sumy = data->sumy;
long double sumxy = data->sumxy;
long double covar_samp = (sumxy - ((sumx * sumy) / N)) / (N - 1);
valOut = static_cast<double>(covar_samp);
}
else
{
*is_null = 1;
}
return valOut;
}
}