1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-04-18 21:44:02 +03:00
drrtuy 6445f4dff3
feat(joblist,runtime): this is the first part of the execution model that produces a workload that can be predicted for a given query.
* feat(joblist,runtime): this is the first part of the execution model that produces a workload that can be predicted for a given query.
  - forces to UM join converter to use a value from a configuration
  - replaces a constant used to control a number of outstanding requests with a value depends on column width
  - modifies related Columnstore.xml values
2024-12-03 22:17:49 +00:00

1979 lines
59 KiB
C++

/* Copyright (C) 2014 InfiniDB, Inc.
Copyright (C) 2019 MariaDB Corporation
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; version 2 of
the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "tuplejoiner.h"
#include <algorithm>
#include <vector>
#include <limits>
#include <unordered_set>
#include "hasher.h"
#include "lbidlist.h"
#include "spinlock.h"
#include "vlarray.h"
#include "threadnaming.h"
using namespace std;
using namespace rowgroup;
using namespace utils;
using namespace execplan;
using namespace joblist;
namespace joiner
{
// Typed joiner ctor
TupleJoiner::TupleJoiner(const rowgroup::RowGroup& smallInput, const rowgroup::RowGroup& largeInput,
uint32_t smallJoinColumn, uint32_t largeJoinColumn, JoinType jt,
threadpool::ThreadPool* jsThreadPool, const uint64_t numCores)
: smallRG(smallInput)
, largeRG(largeInput)
, joinAlg(INSERTING)
, joinType(jt)
, threadCount(1)
, typelessJoin(false)
, bSignedUnsignedJoin(false)
, uniqueLimit(100)
, finished(false)
, numCores(numCores)
, jobstepThreadPool(jsThreadPool)
, _convertToDiskJoin(false)
{
uint i;
getBucketCount();
m_bucketLocks.reset(new boost::mutex[bucketCount]);
if (smallRG.getColTypes()[smallJoinColumn] == CalpontSystemCatalog::LONGDOUBLE)
{
ld.reset(new boost::scoped_ptr<ldhash_t>[bucketCount]);
_pool.reset(new boost::shared_ptr<PoolAllocator>[bucketCount]);
for (i = 0; i < bucketCount; i++)
{
STLPoolAllocator<pair<const long double, Row::Pointer>> alloc;
_pool[i] = alloc.getPoolAllocator();
ld[i].reset(new ldhash_t(10, hasher(), ldhash_t::key_equal(), alloc));
}
}
else if (smallRG.usesStringTable())
{
sth.reset(new boost::scoped_ptr<sthash_t>[bucketCount]);
_pool.reset(new boost::shared_ptr<PoolAllocator>[bucketCount]);
for (i = 0; i < bucketCount; i++)
{
STLPoolAllocator<pair<const int64_t, Row::Pointer>> alloc;
_pool[i] = alloc.getPoolAllocator();
sth[i].reset(new sthash_t(10, hasher(), sthash_t::key_equal(), alloc));
}
}
else
{
h.reset(new boost::scoped_ptr<hash_t>[bucketCount]);
_pool.reset(new boost::shared_ptr<PoolAllocator>[bucketCount]);
for (i = 0; i < bucketCount; i++)
{
STLPoolAllocator<pair<const int64_t, uint8_t*>> alloc;
_pool[i] = alloc.getPoolAllocator();
h[i].reset(new hash_t(10, hasher(), hash_t::key_equal(), alloc));
}
}
smallRG.initRow(&smallNullRow);
if (smallOuterJoin() || largeOuterJoin() || semiJoin() || antiJoin())
{
smallNullMemory = RGData(smallRG, 1);
smallRG.setData(&smallNullMemory);
smallRG.getRow(0, &smallNullRow);
smallNullRow.initToNull();
}
smallKeyColumns.push_back(smallJoinColumn);
largeKeyColumns.push_back(largeJoinColumn);
discreteValues.reset(new bool[1]);
cpValues.reset(new vector<int128_t>[1]);
discreteValues[0] = false;
if (smallRG.isUnsigned(smallKeyColumns[0]))
{
if (datatypes::isWideDecimalType(smallRG.getColType(smallKeyColumns[0]),
smallRG.getColumnWidth(smallKeyColumns[0])))
{
cpValues[0].push_back((int128_t)-1);
cpValues[0].push_back(0);
}
else
{
cpValues[0].push_back((int128_t)numeric_limits<uint64_t>::max());
cpValues[0].push_back(0);
}
}
else
{
if (datatypes::isWideDecimalType(smallRG.getColType(smallKeyColumns[0]),
smallRG.getColumnWidth(smallKeyColumns[0])))
{
cpValues[0].push_back(utils::maxInt128);
cpValues[0].push_back(utils::minInt128);
}
else
{
cpValues[0].push_back((int128_t)numeric_limits<int64_t>::max());
cpValues[0].push_back((int128_t)numeric_limits<int64_t>::min());
}
}
if (smallRG.isUnsigned(smallJoinColumn) != largeRG.isUnsigned(largeJoinColumn))
bSignedUnsignedJoin = true;
nullValueForJoinColumn = smallNullRow.getSignedNullValue(smallJoinColumn);
}
// Typeless joiner ctor
TupleJoiner::TupleJoiner(const rowgroup::RowGroup& smallInput, const rowgroup::RowGroup& largeInput,
const vector<uint32_t>& smallJoinColumns, const vector<uint32_t>& largeJoinColumns,
JoinType jt, threadpool::ThreadPool* jsThreadPool, const uint64_t numCores)
: smallRG(smallInput)
, largeRG(largeInput)
, joinAlg(INSERTING)
, joinType(jt)
, threadCount(1)
, typelessJoin(true)
, smallKeyColumns(smallJoinColumns)
, largeKeyColumns(largeJoinColumns)
, bSignedUnsignedJoin(false)
, uniqueLimit(100)
, finished(false)
, numCores(numCores)
, jobstepThreadPool(jsThreadPool)
, _convertToDiskJoin(false)
{
uint i;
getBucketCount();
_pool.reset(new boost::shared_ptr<PoolAllocator>[bucketCount]);
ht.reset(new boost::scoped_ptr<typelesshash_t>[bucketCount]);
for (i = 0; i < bucketCount; i++)
{
STLPoolAllocator<pair<const TypelessData, Row::Pointer>> alloc;
_pool[i] = alloc.getPoolAllocator();
ht[i].reset(new typelesshash_t(10, hasher(), typelesshash_t::key_equal(), alloc));
}
m_bucketLocks.reset(new boost::mutex[bucketCount]);
smallRG.initRow(&smallNullRow);
if (smallOuterJoin() || largeOuterJoin() || semiJoin() || antiJoin())
{
smallNullMemory = RGData(smallRG, 1);
smallRG.setData(&smallNullMemory);
smallRG.getRow(0, &smallNullRow);
smallNullRow.initToNull();
}
keyLength = calculateKeyLength(smallKeyColumns, smallRG, &largeKeyColumns, &largeRG);
discreteValues.reset(new bool[smallKeyColumns.size()]);
cpValues.reset(new vector<int128_t>[smallKeyColumns.size()]);
for (i = 0; i < smallKeyColumns.size(); ++i)
{
uint32_t smallKeyColumnsIdx = smallKeyColumns[i];
auto smallSideColType = smallRG.getColTypes()[smallKeyColumnsIdx];
// Set bSignedUnsignedJoin if one or more join columns are signed to unsigned compares.
if (smallRG.isUnsigned(smallKeyColumnsIdx) != largeRG.isUnsigned(largeKeyColumns[i]))
{
bSignedUnsignedJoin = true;
}
discreteValues[i] = false;
if (isUnsigned(smallSideColType))
{
cpValues[i].push_back((int128_t)numeric_limits<uint64_t>::max());
cpValues[i].push_back(0);
}
else
{
if (datatypes::isWideDecimalType(smallSideColType, smallRG.getColumnWidth(smallKeyColumnsIdx)))
{
cpValues[i].push_back(utils::maxInt128);
cpValues[i].push_back(utils::minInt128);
}
else
{
cpValues[i].push_back(numeric_limits<int64_t>::max());
cpValues[i].push_back(numeric_limits<int64_t>::min());
}
}
}
// note, 'numcores' is implied by tuplehashjoin on calls to insertRGData().
// TODO: make it explicit to avoid future confusion.
storedKeyAlloc.reset(new FixedAllocator[numCores]);
for (i = 0; i < (uint)numCores; i++)
storedKeyAlloc[i].setAllocSize(keyLength);
}
TupleJoiner::TupleJoiner()
{
}
TupleJoiner::TupleJoiner(const TupleJoiner& j)
{
throw runtime_error("TupleJoiner(TupleJoiner) shouldn't be called.");
}
TupleJoiner& TupleJoiner::operator=(const TupleJoiner& j)
{
throw runtime_error("TupleJoiner::operator=() shouldn't be called.");
return *this;
}
TupleJoiner::~TupleJoiner()
{
smallNullMemory = RGData();
}
bool TupleJoiner::operator<(const TupleJoiner& tj) const
{
return size() < tj.size();
}
void TupleJoiner::getBucketCount()
{
bucketCount = (numCores == 1 ? 1 : (1 << (32 - __builtin_clz(numCores - 1))));
bucketMask = bucketCount - 1;
}
template <typename buckets_t, typename hash_table_t>
void TupleJoiner::bucketsToTables(buckets_t* buckets, hash_table_t* tables)
{
uint i;
bool done = false, wasProductive;
while (!done)
{
done = true;
wasProductive = false;
for (i = 0; i < bucketCount; i++)
{
if (buckets[i].empty())
continue;
bool gotIt = m_bucketLocks[i].try_lock();
if (!gotIt)
{
done = false;
continue;
}
tables[i]->insert(buckets[i].begin(), buckets[i].end());
m_bucketLocks[i].unlock();
wasProductive = true;
buckets[i].clear();
}
if (!done && !wasProductive)
::usleep(1000 * numCores);
}
}
void TupleJoiner::um_insertTypeless(uint threadID, uint rowCount, Row& r)
{
utils::VLArray<TypelessData> td(rowCount);
utils::VLArray<vector<pair<TypelessData, Row::Pointer>>> v(bucketCount);
uint i;
FixedAllocator* alloc = &storedKeyAlloc[threadID];
for (i = 0; i < rowCount; i++, r.nextRow())
{
td[i] = makeTypelessKey(r, smallKeyColumns, keyLength, alloc, largeRG, largeKeyColumns);
if (td[i].len == 0)
continue;
uint bucket = bucketPicker((char*)td[i].data, td[i].len, bpSeed) & bucketMask;
v[bucket].emplace_back(pair<TypelessData, Row::Pointer>(td[i], r.getPointer()));
}
bucketsToTables(&v[0], ht.get());
}
void TupleJoiner::um_insertLongDouble(uint rowCount, Row& r)
{
utils::VLArray<vector<pair<long double, Row::Pointer>>> v(bucketCount);
uint i;
uint smallKeyColumn = smallKeyColumns[0];
for (i = 0; i < rowCount; i++, r.nextRow())
{
long double smallKey = r.getLongDoubleField(smallKeyColumn);
uint bucket = bucketPicker((char*)&smallKey, 10, bpSeed) &
bucketMask; // change if we decide to support windows again
if (UNLIKELY(smallKey == joblist::LONGDOUBLENULL))
v[bucket].emplace_back(pair<long double, Row::Pointer>(joblist::LONGDOUBLENULL, r.getPointer()));
else
v[bucket].emplace_back(pair<long double, Row::Pointer>(smallKey, r.getPointer()));
}
bucketsToTables(&v[0], ld.get());
}
void TupleJoiner::um_insertInlineRows(uint rowCount, Row& r)
{
uint i;
int64_t smallKey;
utils::VLArray<vector<pair<int64_t, uint8_t*>>> v(bucketCount);
uint smallKeyColumn = smallKeyColumns[0];
for (i = 0; i < rowCount; i++, r.nextRow())
{
if (!r.isUnsigned(smallKeyColumn))
smallKey = r.getIntField(smallKeyColumn);
else
smallKey = (int64_t)r.getUintField(smallKeyColumn);
uint bucket = bucketPicker((char*)&smallKey, sizeof(smallKey), bpSeed) & bucketMask;
if (UNLIKELY(smallKey == nullValueForJoinColumn))
v[bucket].emplace_back(pair<int64_t, uint8_t*>(getJoinNullValue(), r.getData()));
else
v[bucket].emplace_back(pair<int64_t, uint8_t*>(smallKey, r.getData()));
}
bucketsToTables(&v[0], h.get());
}
void TupleJoiner::um_insertStringTable(uint rowCount, Row& r)
{
int64_t smallKey;
uint i;
utils::VLArray<vector<pair<int64_t, Row::Pointer>>> v(bucketCount);
uint smallKeyColumn = smallKeyColumns[0];
for (i = 0; i < rowCount; i++, r.nextRow())
{
if (!r.isUnsigned(smallKeyColumn))
smallKey = r.getIntField(smallKeyColumn);
else
smallKey = (int64_t)r.getUintField(smallKeyColumn);
uint bucket = bucketPicker((char*)&smallKey, sizeof(smallKey), bpSeed) & bucketMask;
if (UNLIKELY(smallKey == nullValueForJoinColumn))
v[bucket].emplace_back(pair<int64_t, Row::Pointer>(getJoinNullValue(), r.getPointer()));
else
v[bucket].emplace_back(pair<int64_t, Row::Pointer>(smallKey, r.getPointer()));
}
bucketsToTables(&v[0], sth.get());
}
void TupleJoiner::insertRGData(RowGroup& rg, uint threadID)
{
uint i, rowCount;
Row r;
rg.initRow(&r);
rowCount = rg.getRowCount();
rg.getRow(0, &r);
m_cpValuesLock.lock();
for (i = 0; i < rowCount; i++, r.nextRow())
{
updateCPData(r);
r.zeroRid();
}
m_cpValuesLock.unlock();
rg.getRow(0, &r);
if (joinAlg == UM)
{
if (typelessJoin)
um_insertTypeless(threadID, rowCount, r);
else if (r.getColType(smallKeyColumns[0]) == execplan::CalpontSystemCatalog::LONGDOUBLE)
um_insertLongDouble(rowCount, r);
else if (!smallRG.usesStringTable())
um_insertInlineRows(rowCount, r);
else
um_insertStringTable(rowCount, r);
}
else
{
// while in PM-join mode, inserting is single-threaded
for (i = 0; i < rowCount; i++, r.nextRow())
rows.push_back(r.getPointer());
}
}
void TupleJoiner::insert(Row& r, bool zeroTheRid)
{
/* when doing a disk-based join, only the first iteration on the large side
will 'zeroTheRid'. The successive iterations will need it unchanged. */
if (zeroTheRid)
r.zeroRid();
updateCPData(r);
if (joinAlg == UM)
{
if (typelessJoin)
{
TypelessData td =
makeTypelessKey(r, smallKeyColumns, keyLength, &storedKeyAlloc[0], largeRG, largeKeyColumns);
if (td.len > 0)
{
uint bucket = bucketPicker((char*)td.data, td.len, bpSeed) & bucketMask;
ht[bucket]->insert(pair<TypelessData, Row::Pointer>(td, r.getPointer()));
}
}
else if (r.getColType(smallKeyColumns[0]) == execplan::CalpontSystemCatalog::LONGDOUBLE)
{
long double smallKey = r.getLongDoubleField(smallKeyColumns[0]);
uint bucket = bucketPicker((char*)&smallKey, 10, bpSeed) &
bucketMask; // change if we decide to support windows again
if (UNLIKELY(smallKey == joblist::LONGDOUBLENULL))
ld[bucket]->insert(pair<long double, Row::Pointer>(joblist::LONGDOUBLENULL, r.getPointer()));
else
ld[bucket]->insert(pair<long double, Row::Pointer>(smallKey, r.getPointer()));
}
else if (!smallRG.usesStringTable())
{
int64_t smallKey;
if (!r.isUnsigned(smallKeyColumns[0]))
smallKey = r.getIntField(smallKeyColumns[0]);
else
smallKey = (int64_t)r.getUintField(smallKeyColumns[0]);
uint bucket = bucketPicker((char*)&smallKey, sizeof(smallKey), bpSeed) & bucketMask;
if (UNLIKELY(smallKey == nullValueForJoinColumn))
h[bucket]->insert(pair<int64_t, uint8_t*>(getJoinNullValue(), r.getData()));
else
h[bucket]->insert(pair<int64_t, uint8_t*>(smallKey, r.getData())); // Normal path for integers
}
else
{
int64_t smallKey;
if (!r.isUnsigned(smallKeyColumns[0]))
smallKey = r.getIntField(smallKeyColumns[0]);
else
smallKey = (int64_t)r.getUintField(smallKeyColumns[0]);
uint bucket = bucketPicker((char*)&smallKey, sizeof(smallKey), bpSeed) & bucketMask;
if (UNLIKELY(smallKey == nullValueForJoinColumn))
sth[bucket]->insert(pair<int64_t, Row::Pointer>(getJoinNullValue(), r.getPointer()));
else
sth[bucket]->insert(pair<int64_t, Row::Pointer>(smallKey, r.getPointer()));
}
}
else
rows.push_back(r.getPointer());
}
void TupleJoiner::match(rowgroup::Row& largeSideRow, uint32_t largeRowIndex, uint32_t threadID,
vector<Row::Pointer>* matches)
{
uint32_t i;
bool isNull = hasNullJoinColumn(largeSideRow);
matches->clear();
if (inPM())
{
vector<uint32_t>& v = pmJoinResults[threadID][largeRowIndex];
uint32_t size = v.size();
for (i = 0; i < size; i++)
if (v[i] < rows.size())
matches->push_back(rows[v[i]]);
if (UNLIKELY((semiJoin() || antiJoin()) && matches->size() == 0))
matches->push_back(smallNullRow.getPointer());
}
else if (LIKELY(!isNull))
{
if (UNLIKELY(typelessJoin))
{
TypelessData largeKey;
thIterator it;
pair<thIterator, thIterator> range;
largeKey = makeTypelessKey(largeSideRow, largeKeyColumns, keyLength, &tmpKeyAlloc[threadID], smallRG,
smallKeyColumns);
if (largeKey.len == 0)
return;
uint bucket = bucketPicker((char*)largeKey.data, largeKey.len, bpSeed) & bucketMask;
range = ht[bucket]->equal_range(largeKey);
if (range.first == range.second && !(joinType & (LARGEOUTER | MATCHNULLS)))
return;
for (; range.first != range.second; ++range.first)
matches->push_back(range.first->second);
}
else if (largeSideRow.getColType(largeKeyColumns[0]) == CalpontSystemCatalog::LONGDOUBLE && ld)
{
// This is a compare of two long double
long double largeKey;
ldIterator it;
pair<ldIterator, ldIterator> range;
Row r;
largeKey = largeSideRow.getLongDoubleField(largeKeyColumns[0]);
uint bucket = bucketPicker((char*)&largeKey, 10, bpSeed) & bucketMask;
range = ld[bucket]->equal_range(largeKey);
if (range.first == range.second && !(joinType & (LARGEOUTER | MATCHNULLS)))
return;
for (; range.first != range.second; ++range.first)
{
matches->push_back(range.first->second);
}
}
else if (!smallRG.usesStringTable())
{
int64_t largeKey;
if (largeSideRow.getColType(largeKeyColumns[0]) == CalpontSystemCatalog::LONGDOUBLE)
{
largeKey = (int64_t)largeSideRow.getLongDoubleField(largeKeyColumns[0]);
}
else if (largeSideRow.isUnsigned(largeKeyColumns[0]))
{
largeKey = (int64_t)largeSideRow.getUintField(largeKeyColumns[0]);
}
else
{
largeKey = largeSideRow.getIntField(largeKeyColumns[0]);
}
if (ld)
{
// Compare against long double
long double ldKey = largeKey;
uint bucket = bucketPicker((char*)&ldKey, 10, bpSeed) & bucketMask;
auto range = ld[bucket]->equal_range(ldKey);
if (range.first == range.second && !(joinType & (LARGEOUTER | MATCHNULLS)))
return;
for (; range.first != range.second; ++range.first)
matches->push_back(range.first->second);
}
else
{
uint bucket = bucketPicker((char*)&largeKey, sizeof(largeKey), bpSeed) & bucketMask;
auto range = h[bucket]->equal_range(largeKey);
if (range.first == range.second && !(joinType & (LARGEOUTER | MATCHNULLS)))
return;
for (; range.first != range.second; ++range.first)
matches->emplace_back(rowgroup::Row::Pointer(range.first->second));
}
}
else
{
int64_t largeKey = largeSideRow.getIntField(largeKeyColumns[0]);
uint bucket = bucketPicker((char*)&largeKey, sizeof(largeKey), bpSeed) & bucketMask;
auto range = sth[bucket]->equal_range(largeKey);
if (range.first == range.second && !(joinType & (LARGEOUTER | MATCHNULLS)))
return;
for (; range.first != range.second; ++range.first)
matches->push_back(range.first->second);
}
}
if (UNLIKELY(largeOuterJoin() && matches->size() == 0))
{
// cout << "Matched the NULL row: " << smallNullRow.toString() << endl;
matches->push_back(smallNullRow.getPointer());
}
if (UNLIKELY(inUM() && (joinType & MATCHNULLS) && !isNull && !typelessJoin))
{
if (largeRG.getColType(largeKeyColumns[0]) == CalpontSystemCatalog::LONGDOUBLE && ld)
{
uint bucket = bucketPicker((char*)&(joblist::LONGDOUBLENULL), sizeof(joblist::LONGDOUBLENULL), bpSeed) &
bucketMask;
pair<ldIterator, ldIterator> range = ld[bucket]->equal_range(joblist::LONGDOUBLENULL);
for (; range.first != range.second; ++range.first)
matches->push_back(range.first->second);
}
else if (!smallRG.usesStringTable())
{
auto nullVal = getJoinNullValue();
uint bucket = bucketPicker((char*)&nullVal, sizeof(nullVal), bpSeed) & bucketMask;
pair<iterator, iterator> range = h[bucket]->equal_range(nullVal);
for (; range.first != range.second; ++range.first)
matches->emplace_back(rowgroup::Row::Pointer(range.first->second));
}
else
{
auto nullVal = getJoinNullValue();
uint bucket = bucketPicker((char*)&nullVal, sizeof(nullVal), bpSeed) & bucketMask;
pair<sthash_t::iterator, sthash_t::iterator> range = sth[bucket]->equal_range(nullVal);
for (; range.first != range.second; ++range.first)
matches->push_back(range.first->second);
}
}
/* Bug 3524. For 'not in' queries this matches everything.
*/
if (UNLIKELY(inUM() && isNull && antiJoin() && (joinType & MATCHNULLS)))
{
if (!typelessJoin)
{
if (smallRG.getColType(smallKeyColumns[0]) == CalpontSystemCatalog::LONGDOUBLE)
{
ldIterator it;
for (uint i = 0; i < bucketCount; i++)
for (it = ld[i]->begin(); it != ld[i]->end(); ++it)
matches->push_back(it->second);
}
else if (!smallRG.usesStringTable())
{
iterator it;
for (uint i = 0; i < bucketCount; i++)
for (it = h[i]->begin(); it != h[i]->end(); ++it)
matches->emplace_back(rowgroup::Row::Pointer(it->second));
}
else
{
sthash_t::iterator it;
for (uint i = 0; i < bucketCount; i++)
for (it = sth[i]->begin(); it != sth[i]->end(); ++it)
matches->push_back(it->second);
}
}
else
{
thIterator it;
for (uint i = 0; i < bucketCount; i++)
for (it = ht[i]->begin(); it != ht[i]->end(); ++it)
matches->push_back(it->second);
}
}
}
using unordered_set_int128 = std::unordered_set<int128_t, utils::Hash128, utils::Equal128>;
void TupleJoiner::doneInserting()
{
// a minor textual cleanup
#ifdef TJ_DEBUG
#define CHECKSIZE \
if (uniquer.size() > uniqueLimit) \
{ \
cout << "too many discrete values\n"; \
return; \
}
#else
#define CHECKSIZE \
if (uniquer.size() > uniqueLimit) \
return;
#endif
uint32_t col;
/* Put together the discrete values for the runtime casual partitioning restriction */
finished = true;
for (col = 0; col < smallKeyColumns.size(); col++)
{
unordered_set_int128 uniquer;
unordered_set_int128::iterator uit;
sthash_t::iterator sthit;
hash_t::iterator hit;
ldhash_t::iterator ldit;
typelesshash_t::iterator thit;
uint32_t i, pmpos = 0, rowCount;
Row smallRow;
auto smallSideColIdx = smallKeyColumns[col];
auto smallSideColType = smallRG.getColType(smallSideColIdx);
smallRG.initRow(&smallRow);
if (smallRow.isCharType(smallSideColIdx))
continue;
rowCount = size();
uint bucket = 0;
if (joinAlg == PM)
pmpos = 0;
else if (typelessJoin)
thit = ht[bucket]->begin();
else if (isLongDouble(smallRG.getColType(smallKeyColumns[0])))
ldit = ld[bucket]->begin();
else if (!smallRG.usesStringTable())
hit = h[bucket]->begin();
else
sthit = sth[bucket]->begin();
for (i = 0; i < rowCount; i++)
{
if (joinAlg == PM)
smallRow.setPointer(rows[pmpos++]);
else if (typelessJoin)
{
while (thit == ht[bucket]->end())
thit = ht[++bucket]->begin();
smallRow.setPointer(thit->second);
++thit;
}
else if (isLongDouble(smallSideColType))
{
while (ldit == ld[bucket]->end())
ldit = ld[++bucket]->begin();
smallRow.setPointer(ldit->second);
++ldit;
}
else if (!smallRG.usesStringTable())
{
while (hit == h[bucket]->end())
hit = h[++bucket]->begin();
smallRow.setPointer(rowgroup::Row::Pointer(hit->second));
++hit;
}
else
{
while (sthit == sth[bucket]->end())
sthit = sth[++bucket]->begin();
smallRow.setPointer(sthit->second);
++sthit;
}
if (isLongDouble(smallSideColType))
{
double dval = (double)roundl(smallRow.getLongDoubleField(smallSideColIdx));
switch (largeRG.getColType(largeKeyColumns[col]))
{
case CalpontSystemCatalog::DOUBLE:
case CalpontSystemCatalog::UDOUBLE:
case CalpontSystemCatalog::FLOAT:
case CalpontSystemCatalog::UFLOAT:
{
uniquer.insert(*(int64_t*)&dval);
break;
}
default:
{
uniquer.insert((int64_t)dval);
}
}
}
else if (datatypes::isWideDecimalType(smallSideColType, smallRow.getColumnWidth(smallSideColIdx)))
{
uniquer.insert(smallRow.getTSInt128Field(smallSideColIdx).getValue());
}
else if (smallRow.isUnsigned(smallSideColIdx))
{
uniquer.insert((int64_t)smallRow.getUintField(smallSideColIdx));
}
else
{
uniquer.insert(smallRow.getIntField(smallSideColIdx));
}
CHECKSIZE;
}
discreteValues[col] = true;
cpValues[col].clear();
#ifdef TJ_DEBUG
cout << "inserting " << uniquer.size() << " discrete values\n";
#endif
for (uit = uniquer.begin(); uit != uniquer.end(); ++uit)
cpValues[col].push_back(*uit);
}
}
void TupleJoiner::setInPM()
{
joinAlg = PM;
}
void TupleJoiner::umJoinConvert(size_t begin, size_t end)
{
utils::setThreadName("TJUMJoinConvert1");
Row smallRow;
smallRG.initRow(&smallRow);
while (begin < end)
{
smallRow.setPointer(rows[begin++]);
insert(smallRow);
}
}
void TupleJoiner::setInUM()
{
vector<Row::Pointer> empty;
Row smallRow;
uint32_t i, size;
if (joinAlg == UM)
return;
joinAlg = UM;
size = rows.size();
size_t chunkSize =
((size / numCores) + 1 < 50000 ? 50000
: (size / numCores) + 1); // don't start a thread to process < 50k rows
utils::VLArray<uint64_t> jobs(numCores);
i = 0;
for (size_t firstRow = 0; i < (uint)numCores && firstRow < size; i++, firstRow += chunkSize)
jobs[i] = jobstepThreadPool->invoke(
[this, firstRow, chunkSize, size]
{ this->umJoinConvert(firstRow, (firstRow + chunkSize < size ? firstRow + chunkSize : size)); });
for (uint j = 0; j < i; j++)
jobstepThreadPool->join(jobs[j]);
#ifdef TJ_DEBUG
cout << "done\n";
#endif
rows.swap(empty);
if (typelessJoin)
{
tmpKeyAlloc.reset(new FixedAllocator[threadCount]);
for (i = 0; i < threadCount; i++)
tmpKeyAlloc[i] = FixedAllocator(keyLength, true);
}
}
void TupleJoiner::umJoinConvert(uint threadID, vector<RGData>& rgs, size_t begin, size_t end)
{
utils::setThreadName("TJUMJoinConvert2");
RowGroup l_smallRG(smallRG);
while (begin < end)
{
l_smallRG.setData(&(rgs[begin++]));
insertRGData(l_smallRG, threadID);
}
}
void TupleJoiner::setInUM(vector<RGData>& rgs)
{
Row smallRow;
uint32_t i, size;
if (joinAlg == UM)
return;
{ // don't need rows anymore, free the mem
vector<Row::Pointer> empty;
rows.swap(empty);
}
joinAlg = UM;
size = rgs.size();
size_t chunkSize =
((size / numCores) + 1 < 10 ? 10 : (size / numCores) + 1); // don't issue jobs for < 10 rowgroups
utils::VLArray<uint64_t> jobs(numCores);
i = 0;
for (size_t firstRow = 0; i < (uint)numCores && firstRow < size; i++, firstRow += chunkSize)
jobs[i] = jobstepThreadPool->invoke(
[this, firstRow, chunkSize, size, i, &rgs] {
this->umJoinConvert(i, rgs, firstRow, (firstRow + chunkSize < size ? firstRow + chunkSize : size));
});
for (uint j = 0; j < i; j++)
jobstepThreadPool->join(jobs[j]);
#ifdef TJ_DEBUG
cout << "done\n";
#endif
if (typelessJoin)
{
tmpKeyAlloc.reset(new FixedAllocator[threadCount]);
for (i = 0; i < threadCount; i++)
tmpKeyAlloc[i] = FixedAllocator(keyLength, true);
}
}
void TupleJoiner::setPMJoinResults(std::shared_ptr<vector<uint32_t>[]> jr, uint32_t threadID)
{
pmJoinResults[threadID] = jr;
}
void TupleJoiner::markMatches(uint32_t threadID, uint32_t rowCount)
{
std::shared_ptr<vector<uint32_t>[]> matches = pmJoinResults[threadID];
uint32_t i, j;
for (i = 0; i < rowCount; i++)
for (j = 0; j < matches[i].size(); j++)
{
if (matches[i][j] < rows.size())
{
smallRow[threadID].setPointer(rows[matches[i][j]]);
smallRow[threadID].markRow();
}
}
}
void TupleJoiner::markMatches(uint32_t threadID, const vector<Row::Pointer>& matches)
{
uint32_t rowCount = matches.size();
uint32_t i;
for (i = 0; i < rowCount; i++)
{
smallRow[threadID].setPointer(matches[i]);
smallRow[threadID].markRow();
}
}
std::shared_ptr<std::vector<uint32_t>[]> TupleJoiner::getPMJoinArrays(uint32_t threadID)
{
return pmJoinResults[threadID];
}
void TupleJoiner::setThreadCount(uint32_t cnt)
{
threadCount = cnt;
pmJoinResults.reset(new std::shared_ptr<vector<uint32_t>[]>[cnt]);
smallRow.reset(new Row[cnt]);
for (uint32_t i = 0; i < cnt; i++)
smallRG.initRow(&smallRow[i]);
if (typelessJoin)
{
tmpKeyAlloc.reset(new FixedAllocator[threadCount]);
for (uint32_t i = 0; i < threadCount; i++)
tmpKeyAlloc[i] = FixedAllocator(keyLength, true);
}
if (fe)
{
fes.reset(new funcexp::FuncExpWrapper[cnt]);
for (uint32_t i = 0; i < cnt; i++)
fes[i] = *fe;
}
}
void TupleJoiner::getUnmarkedRows(vector<Row::Pointer>* out)
{
Row smallR;
smallRG.initRow(&smallR);
out->clear();
if (inPM())
{
uint32_t i, size;
size = rows.size();
for (i = 0; i < size; i++)
{
smallR.setPointer(rows[i]);
if (!smallR.isMarked())
out->push_back(rows[i]);
}
}
else
{
if (typelessJoin)
{
typelesshash_t::iterator it;
for (uint i = 0; i < bucketCount; i++)
for (it = ht[i]->begin(); it != ht[i]->end(); ++it)
{
smallR.setPointer(it->second);
if (!smallR.isMarked())
out->push_back(it->second);
}
}
else if (smallRG.getColType(smallKeyColumns[0]) == CalpontSystemCatalog::LONGDOUBLE)
{
ldIterator it;
for (uint i = 0; i < bucketCount; i++)
for (it = ld[i]->begin(); it != ld[i]->end(); ++it)
{
smallR.setPointer(it->second);
if (!smallR.isMarked())
out->push_back(it->second);
}
}
else if (!smallRG.usesStringTable())
{
iterator it;
for (uint i = 0; i < bucketCount; i++)
for (it = h[i]->begin(); it != h[i]->end(); ++it)
{
smallR.setPointer(rowgroup::Row::Pointer(it->second));
if (!smallR.isMarked())
out->emplace_back(rowgroup::Row::Pointer(it->second));
}
}
else
{
sthash_t::iterator it;
for (uint i = 0; i < bucketCount; i++)
for (it = sth[i]->begin(); it != sth[i]->end(); ++it)
{
smallR.setPointer(it->second);
if (!smallR.isMarked())
out->push_back(it->second);
}
}
}
}
uint64_t TupleJoiner::getMemUsage() const
{
if (inUM() && typelessJoin)
{
size_t ret = 0;
for (uint i = 0; i < bucketCount; i++)
ret += _pool[i]->getMemUsage();
for (int i = 0; i < numCores; i++)
ret += storedKeyAlloc[i].getMemUsage();
return ret;
}
else if (inUM())
{
size_t ret = 0;
for (uint i = 0; i < bucketCount; i++)
ret += _pool[i]->getMemUsage();
return ret;
}
else
return (rows.size() * sizeof(Row::Pointer));
}
void TupleJoiner::setFcnExpFilter(boost::shared_ptr<funcexp::FuncExpWrapper> pt)
{
fe = pt;
if (fe)
joinType |= WITHFCNEXP;
else
joinType &= ~WITHFCNEXP;
}
void TupleJoiner::updateCPData(const Row& r)
{
uint32_t col;
if (antiJoin() || largeOuterJoin())
return;
for (col = 0; col < smallKeyColumns.size(); col++)
{
auto colIdx = smallKeyColumns[col];
if (r.isLongString(colIdx))
continue;
auto &min = cpValues[col][0], &max = cpValues[col][1];
if (r.isCharType(colIdx))
{
datatypes::Charset cs(r.getCharset(colIdx));
int64_t val = r.getIntField(colIdx);
if (datatypes::TCharShort::strnncollsp(cs, val, min, r.getColumnWidth(smallKeyColumns[col])) < 0 ||
((int64_t)min) == numeric_limits<int64_t>::max())
{
min = val;
}
if (datatypes::TCharShort::strnncollsp(cs, val, max, r.getColumnWidth(smallKeyColumns[col])) > 0 ||
((int64_t)max) == numeric_limits<int64_t>::min())
{
max = val;
}
}
else if (r.isUnsigned(colIdx))
{
uint128_t uval;
if (r.getColType(colIdx) == CalpontSystemCatalog::LONGDOUBLE)
{
double dval = (double)roundl(r.getLongDoubleField(smallKeyColumns[col]));
switch (largeRG.getColType(largeKeyColumns[col]))
{
case CalpontSystemCatalog::DOUBLE:
case CalpontSystemCatalog::UDOUBLE:
case CalpontSystemCatalog::FLOAT:
case CalpontSystemCatalog::UFLOAT:
{
uval = *(uint64_t*)&dval;
break;
}
default:
{
uval = (uint64_t)dval;
}
}
}
else if (datatypes::isWideDecimalType(r.getColType(colIdx), r.getColumnWidth(colIdx)))
{
uval = r.getTSInt128Field(colIdx).getValue();
}
else
{
uval = r.getUintField(colIdx);
}
if (uval > static_cast<uint128_t>(max))
max = static_cast<int128_t>(uval);
if (uval < static_cast<uint128_t>(min))
min = static_cast<int128_t>(uval);
}
else
{
int128_t val = 0;
if (r.getColType(colIdx) == CalpontSystemCatalog::LONGDOUBLE)
{
double dval = (double)roundl(r.getLongDoubleField(colIdx));
switch (largeRG.getColType(largeKeyColumns[col]))
{
case CalpontSystemCatalog::DOUBLE:
case CalpontSystemCatalog::UDOUBLE:
case CalpontSystemCatalog::FLOAT:
case CalpontSystemCatalog::UFLOAT:
{
val = *(int64_t*)&dval;
break;
}
default:
{
val = (int64_t)dval;
}
}
}
else if (datatypes::isWideDecimalType(r.getColType(colIdx), r.getColumnWidth(colIdx)))
{
val = r.getTSInt128Field(colIdx).getValue();
}
else
{
val = r.getIntField(colIdx);
}
if (val > max)
max = val;
if (val < min)
min = val;
}
}
}
size_t TupleJoiner::size() const
{
if (joinAlg == UM || joinAlg == INSERTING)
{
size_t ret = 0;
for (uint i = 0; i < bucketCount; i++)
if (UNLIKELY(typelessJoin))
ret += ht[i]->size();
else if (smallRG.getColType(smallKeyColumns[0]) == CalpontSystemCatalog::LONGDOUBLE)
ret += ld[i]->size();
else if (!smallRG.usesStringTable())
ret += h[i]->size();
else
ret += sth[i]->size();
return ret;
}
return rows.size();
}
class TypelessDataStringEncoder
{
const uint8_t* mStr;
uint32_t mLength;
public:
TypelessDataStringEncoder(const uint8_t* str, uint32_t length) : mStr(str), mLength(length)
{
}
TypelessDataStringEncoder(const utils::ConstString& str)
: mStr((const uint8_t*)str.str()), mLength(str.length())
{
}
bool store(uint8_t* to, uint32_t& off, uint32_t keylen) const
{
if (mLength > 0xFFFF) // We encode length into two bytes below
{
throw runtime_error("Cannot join strings greater than 64KB");
}
if (off + mLength + 2 > keylen)
return true;
to[off++] = mLength / 0xFF;
to[off++] = mLength % 0xFF;
/*
QQ: perhaps now when we put length,
we don't need to stop at '\0' bytes any more.
If so, the loop below can be replace to memcpy().
*/
for (uint32_t j = 0; j < mLength && mStr[j] != 0; j++)
{
if (off >= keylen)
return true;
to[off++] = mStr[j];
}
return false;
}
};
class WideDecimalKeyConverter
{
const Row* mR;
uint64_t convertedValue;
const uint32_t mKeyColId;
uint16_t width;
public:
WideDecimalKeyConverter(const Row& r, const uint32_t keyColId)
: mR(&r), mKeyColId(keyColId), width(datatypes::MAXDECIMALWIDTH)
{
}
bool isConvertedToSmallSideType() const
{
return width == datatypes::MAXLEGACYWIDTH;
}
int64_t getConvertedTInt64() const
{
return (int64_t)convertedValue;
}
// Returns true if the value doesn't fit into allowed range for a type.
template <typename T, typename AT>
bool numericRangeCheckAndConvert(const AT& value)
{
if (value > AT(std::numeric_limits<T>::max()) || value < AT(std::numeric_limits<T>::min()))
return true;
convertedValue = (uint64_t) static_cast<T>(value);
return false;
}
// As of MCS 6.x there is an asumption MCS can't join having
// INTEGER and non-INTEGER potentially fractional keys,
// e.g. BIGINT to DECIMAL(38,1). It can only join BIGINT to DECIMAL(38).
// convert() checks if wide-DECIMAL overflows INTEGER type range
// and sets internal width to 0 if it is. If not width is set to 8
// and convertedValue is casted to INTEGER type.
// This convert() is called in EM to cast smallSide TypelessData
// if the key columns has a skew, e.g. INT to DECIMAL(38).
inline WideDecimalKeyConverter& convert(const bool otherSideIsIntOrNarrow,
const execplan::CalpontSystemCatalog::ColDataType otherSideType)
{
if (otherSideIsIntOrNarrow)
{
datatypes::TSInt128 integralPart = mR->getTSInt128Field(mKeyColId);
bool isUnsigned = datatypes::isUnsigned(otherSideType);
if (isUnsigned)
{
width = (numericRangeCheckAndConvert<uint64_t>(integralPart)) ? 0 : datatypes::MAXLEGACYWIDTH;
return *this;
}
width = (numericRangeCheckAndConvert<int64_t>(integralPart)) ? 0 : datatypes::MAXLEGACYWIDTH;
}
return *this;
}
// Stores the value that might had been converted.
inline bool store(TypelessData& typelessData, uint32_t& off, const uint32_t keylen) const
{
// A note from convert() if there is otherSide column type range
// overflow so store() returns TD with len=0. This tells EM to skip this
// key b/c it won't match at PP. This happens it is possible to skip
// smallSide TD but can't to do the same with largeSide b/c of OUTER joins.
if (!width)
{
typelessData.len = 0;
return true;
}
if (off + width > keylen)
return true;
switch (width)
{
case datatypes::MAXDECIMALWIDTH:
{
mR->storeInt128FieldIntoPtr(mKeyColId, &typelessData.data[off]);
break;
}
default:
{
datatypes::TUInt64(convertedValue).store(&typelessData.data[off]);
}
}
off += width;
return false;
}
};
// smallSideColWidths is non-nullptr valid pointer only
// if there is a skew b/w small and large side columns widths.
uint32 TypelessData::hash(const RowGroup& r, const std::vector<uint32_t>& keyCols,
const std::vector<uint32_t>* smallSideKeyColumnsIds,
const rowgroup::RowGroup* smallSideRG) const
{
// This part is for largeSide hashing using Row at PP.
if (!isSmallSide())
{
return mRowPtr->hashTypeless(keyCols, smallSideKeyColumnsIds,
(smallSideRG) ? &smallSideRG->getColWidths() : nullptr);
}
// This part is for smallSide hashing at PP.
TypelessDataDecoder decoder(*this);
datatypes::MariaDBHasher hasher;
for (auto keyColId : keyCols)
{
switch (r.getColTypes()[keyColId])
{
case CalpontSystemCatalog::VARCHAR:
case CalpontSystemCatalog::CHAR:
case CalpontSystemCatalog::TEXT:
{
CHARSET_INFO* cs = const_cast<RowGroup&>(r).getCharset(keyColId);
hasher.add(cs, decoder.scanString());
break;
}
case CalpontSystemCatalog::DECIMAL:
{
const uint32_t width = std::max(r.getColWidths()[keyColId], datatypes::MAXLEGACYWIDTH);
if (isSmallSideWithSkewedData() || width == datatypes::MAXLEGACYWIDTH)
{
int64_t val = decoder.scanTInt64();
hasher.add(&my_charset_bin, reinterpret_cast<const char*>(&val), datatypes::MAXLEGACYWIDTH);
}
else
hasher.add(&my_charset_bin, decoder.scanGeneric(width));
break;
}
default:
{
hasher.add(&my_charset_bin, decoder.scanGeneric(datatypes::MAXLEGACYWIDTH));
break;
}
}
}
return hasher.finalize();
}
// this is smallSide, Row represents largeSide record.
int TypelessData::cmpToRow(const RowGroup& r, const std::vector<uint32_t>& keyCols, const rowgroup::Row& row,
const std::vector<uint32_t>* smallSideKeyColumnsIds,
const rowgroup::RowGroup* smallSideRG) const
{
TypelessDataDecoder a(*this);
for (uint32_t i = 0; i < keyCols.size(); i++)
{
auto largeSideKeyColRowIdx = keyCols[i];
switch (r.getColType(largeSideKeyColRowIdx))
{
case CalpontSystemCatalog::VARCHAR:
case CalpontSystemCatalog::CHAR:
case CalpontSystemCatalog::TEXT:
{
datatypes::Charset cs(*const_cast<RowGroup&>(r).getCharset(largeSideKeyColRowIdx));
ConstString ta = a.scanString();
ConstString tb = row.getConstString(largeSideKeyColRowIdx);
if (int rc = cs.strnncollsp(ta, tb))
return rc;
break;
}
case CalpontSystemCatalog::DECIMAL:
{
auto largeSideWidth = row.getColumnWidth(largeSideKeyColRowIdx);
// First branch processes skewed JOIN, e.g. INT to DECIMAL(38)
// else branch processes decimal with common width at both small- and largeSide.
if (isSmallSideWithSkewedData() &&
largeSideWidth != smallSideRG->getColumnWidth(smallSideKeyColumnsIds->operator[](i)))
{
if (largeSideWidth == datatypes::MAXLEGACYWIDTH)
{
if (int rc = a.scanTInt64() != row.getIntField(largeSideKeyColRowIdx))
return rc;
}
else
{
WideDecimalKeyConverter cv(row, largeSideKeyColRowIdx);
if (!cv.convert(true, smallSideRG->getColType(smallSideKeyColumnsIds->operator[](i)))
.isConvertedToSmallSideType())
return 1;
if (int rc = a.scanTInt64() != cv.getConvertedTInt64())
return rc;
}
}
else
{
// There is an assumption that both sides here are equal and are either 8 or 16 bytes.
if (largeSideWidth == datatypes::MAXDECIMALWIDTH)
{
if (int rc = a.scanTInt128() != row.getTSInt128Field(largeSideKeyColRowIdx))
return rc;
}
else
{
if (int rc = a.scanTInt64() != row.getIntField(largeSideKeyColRowIdx))
return rc;
}
}
break;
}
default:
{
ConstString ta = a.scanGeneric(datatypes::MAXLEGACYWIDTH);
if (r.isUnsigned(largeSideKeyColRowIdx))
{
uint64_t tb = row.getUintField(largeSideKeyColRowIdx);
if (int rc = memcmp(ta.str(), &tb, datatypes::MAXLEGACYWIDTH))
return rc;
}
else
{
int64_t tb = row.getIntField(largeSideKeyColRowIdx);
if (int rc = memcmp(ta.str(), &tb, datatypes::MAXLEGACYWIDTH))
return rc;
}
break;
}
}
}
return 0; // Equal
}
int TypelessData::cmp(const RowGroup& r, const std::vector<uint32_t>& keyCols, const TypelessData& da,
const TypelessData& db, const std::vector<uint32_t>* smallSideKeyColumnsIds,
const rowgroup::RowGroup* smallSideRG)
{
idbassert(da.isSmallSide() || db.isSmallSide());
if (!da.isSmallSide() && db.isSmallSide())
return -db.cmpToRow(r, keyCols, da.mRowPtr[0], smallSideKeyColumnsIds, smallSideRG);
if (da.isSmallSide() && !db.isSmallSide())
return da.cmpToRow(r, keyCols, db.mRowPtr[0], smallSideKeyColumnsIds, smallSideRG);
// This case happens in BPP::addToJoiner when it populates the final
// hashmap with multiple smallSide TDs from temp hashmaps.
idbassert(da.isSmallSide() && db.isSmallSide());
TypelessDataDecoder a(da);
TypelessDataDecoder b(db);
for (uint32_t i = 0; i < keyCols.size(); ++i)
{
auto keyColIdx = keyCols[i];
switch (r.getColTypes()[keyColIdx])
{
case CalpontSystemCatalog::VARCHAR:
case CalpontSystemCatalog::CHAR:
case CalpontSystemCatalog::TEXT:
{
datatypes::Charset cs(*const_cast<RowGroup&>(r).getCharset(keyColIdx));
ConstString ta = a.scanString();
ConstString tb = b.scanString();
if (int rc = cs.strnncollsp(ta, tb))
return rc;
break;
}
case CalpontSystemCatalog::DECIMAL:
{
auto largeSideWidth = r.getColumnWidth(keyColIdx);
// First and second branches processes skewed JOIN, e.g. INT to DECIMAL(38)
// Third processes decimal with common width at both small- and largeSide.
auto width = (da.isSmallSideWithSkewedData() &&
largeSideWidth != smallSideRG->getColumnWidth(smallSideKeyColumnsIds->operator[](i)))
? datatypes::MAXLEGACYWIDTH
: std::max(r.getColWidths()[keyColIdx], datatypes::MAXLEGACYWIDTH);
ConstString ta = a.scanGeneric(width);
ConstString tb = b.scanGeneric(width);
if (int rc = memcmp(ta.str(), tb.str(), width))
return rc;
break;
}
default:
{
ConstString ta = a.scanGeneric(datatypes::MAXLEGACYWIDTH);
ConstString tb = b.scanGeneric(datatypes::MAXLEGACYWIDTH);
idbassert(ta.length() == tb.length());
// It is impossible to join signed to unsigned types now
// but there is a potential error, e.g. uint64 vs negative int64.
if (int rc = memcmp(ta.str(), tb.str(), ta.length()))
return rc;
break;
}
}
}
return 0; // Equal
}
// Called in joblist code to produce SmallSide TypelessData to be sent to PP.
TypelessData makeTypelessKey(const Row& r, const vector<uint32_t>& keyCols, uint32_t keylen,
FixedAllocator* fa, const rowgroup::RowGroup& otherSideRG,
const std::vector<uint32_t>& otherKeyCols)
{
TypelessData ret;
uint32_t off = 0, i;
execplan::CalpontSystemCatalog::ColDataType type;
ret.data = (uint8_t*)fa->allocate();
idbassert(keyCols.size() == otherKeyCols.size());
for (i = 0; i < keyCols.size(); i++)
{
type = r.getColTypes()[keyCols[i]];
if (datatypes::isCharType(type))
{
// this is a string, copy a normalized version
const utils::ConstString str = r.getConstString(keyCols[i]);
if (TypelessDataStringEncoder(str).store(ret.data, off, keylen))
goto toolong;
}
else if (datatypes::isWideDecimalType(type, r.getColumnWidth(keyCols[i])))
{
bool otherSideIsIntOrNarrow = otherSideRG.getColumnWidth(otherKeyCols[i]) <= datatypes::MAXLEGACYWIDTH;
// useless if otherSideIsInt is false
auto otherSideType = (otherSideIsIntOrNarrow) ? otherSideRG.getColType(otherKeyCols[i])
: datatypes::SystemCatalog::UNDEFINED;
if (WideDecimalKeyConverter(r, keyCols[i])
.convert(otherSideIsIntOrNarrow, otherSideType)
.store(ret, off, keylen))
{
goto toolong;
}
}
else if (datatypes::isLongDouble(type))
{
if (off + sizeof(long double) > keylen)
goto toolong;
// Small side is a long double. Since CS can't store larger than DOUBLE,
// we need to convert to whatever type large side is -- double or int64
long double keyld = r.getLongDoubleField(keyCols[i]);
switch (otherSideRG.getColType(otherKeyCols[i]))
{
case CalpontSystemCatalog::DOUBLE:
case CalpontSystemCatalog::UDOUBLE:
case CalpontSystemCatalog::FLOAT:
case CalpontSystemCatalog::UFLOAT:
{
if (off + 8 > keylen)
goto toolong;
if (keyld > MAX_DOUBLE || keyld < MIN_DOUBLE)
{
ret.len = 0;
return ret;
}
else
{
double d = (double)keyld;
*((int64_t*)&ret.data[off]) = *(int64_t*)&d;
}
break;
}
case CalpontSystemCatalog::LONGDOUBLE:
{
if (off + sizeof(long double) > keylen)
goto toolong;
*((long double*)&ret.data[off]) = keyld;
off += sizeof(long double);
break;
}
default:
{
if (off + 8 > keylen)
goto toolong;
if (r.isUnsigned(keyCols[i]) && keyld > MAX_UBIGINT)
{
ret.len = 0;
return ret;
}
else if (keyld > MAX_BIGINT || keyld < MIN_BIGINT)
{
ret.len = 0;
return ret;
}
else
{
*((int64_t*)&ret.data[off]) = (int64_t)keyld;
off += 8;
}
break;
}
}
}
else if (r.isUnsigned(keyCols[i]))
{
if (off + 8 > keylen)
goto toolong;
*((uint64_t*)&ret.data[off]) = r.getUintField(keyCols[i]);
off += 8;
}
else
{
if (off + 8 > keylen)
goto toolong;
*((int64_t*)&ret.data[off]) = r.getIntField(keyCols[i]);
off += 8;
}
}
ret.len = off;
fa->truncateBy(keylen - off);
return ret;
toolong:
fa->truncateBy(keylen);
ret.len = 0;
return ret;
}
// The method is used by disk-based JOIN and it is not collation or wide DECIMAL aware.
uint64_t getHashOfTypelessKey(const Row& r, const vector<uint32_t>& keyCols, uint32_t seed)
{
Hasher_r hasher;
uint64_t ret = seed, tmp;
uint32_t i;
uint32_t width = 0;
char nullChar = '\0';
execplan::CalpontSystemCatalog::ColDataType type;
for (i = 0; i < keyCols.size(); i++)
{
type = r.getColTypes()[keyCols[i]];
if (type == CalpontSystemCatalog::VARCHAR || type == CalpontSystemCatalog::CHAR ||
type == CalpontSystemCatalog::TEXT)
{
// this is a string, copy a normalized version
const utils::ConstString str = r.getConstString(keyCols[i]);
ret = hasher(str.str(), str.length(), ret);
ret = hasher(&nullChar, 1, ret);
width += str.length() + 1;
}
else if (r.getColType(keyCols[i]) == CalpontSystemCatalog::LONGDOUBLE)
{
long double tmp = r.getLongDoubleField(keyCols[i]);
ret = hasher((char*)&tmp, sizeof(long double), ret);
width += sizeof(long double);
}
else if (r.isUnsigned(keyCols[i]))
{
tmp = r.getUintField(keyCols[i]);
ret = hasher((char*)&tmp, 8, ret);
width += 8;
}
else
{
tmp = r.getIntField(keyCols[i]);
ret = hasher((char*)&tmp, 8, ret);
width += 8;
}
}
ret = hasher.finalize(ret, width);
return ret;
}
string TypelessData::toString() const
{
uint32_t i;
ostringstream os;
os << hex;
for (i = 0; i < len; i++)
{
os << (uint32_t)data[i] << " ";
}
os << dec;
return os.str();
}
void TypelessData::serialize(messageqcpp::ByteStream& b) const
{
b << len;
b.append(data, len);
// Flags are not send b/c they are locally significant now.
}
void TypelessData::deserialize(messageqcpp::ByteStream& b, utils::PoolAllocator& fa)
{
b >> len;
data = (uint8_t*)fa.allocate(len);
memcpy(data, b.buf(), len);
b.advance(len);
}
bool TupleJoiner::hasNullJoinColumn(const Row& r) const
{
uint64_t key;
for (uint32_t i = 0; i < largeKeyColumns.size(); i++)
{
if (r.isNullValue(largeKeyColumns[i]))
return true;
if (UNLIKELY(bSignedUnsignedJoin))
{
// BUG 5628 If this is a signed/unsigned join column and the sign bit is set on either
// side, then this row should not compare. Treat as NULL to prevent compare, even if
// the bit patterns match.
if (smallRG.isUnsigned(smallKeyColumns[i]) != largeRG.isUnsigned(largeKeyColumns[i]))
{
if (r.isUnsigned(largeKeyColumns[i]))
key = r.getUintField(largeKeyColumns[i]); // Does not propogate sign bit
else
key = r.getIntField(largeKeyColumns[i]); // Propogates sign bit
if (key & 0x8000000000000000ULL)
{
return true;
}
}
}
}
return false;
}
string TupleJoiner::getTableName() const
{
return tableName;
}
void TupleJoiner::setTableName(const string& tname)
{
tableName = tname;
}
/* Disk based join support */
void TupleJoiner::clearData()
{
_pool.reset(new boost::shared_ptr<utils::PoolAllocator>[bucketCount]);
if (typelessJoin)
ht.reset(new boost::scoped_ptr<typelesshash_t>[bucketCount]);
else if (smallRG.getColTypes()[smallKeyColumns[0]] == CalpontSystemCatalog::LONGDOUBLE)
ld.reset(new boost::scoped_ptr<ldhash_t>[bucketCount]);
else if (smallRG.usesStringTable())
sth.reset(new boost::scoped_ptr<sthash_t>[bucketCount]);
else
h.reset(new boost::scoped_ptr<hash_t>[bucketCount]);
for (uint i = 0; i < bucketCount; i++)
{
STLPoolAllocator<pair<const TypelessData, Row::Pointer>> alloc;
_pool[i] = alloc.getPoolAllocator();
if (typelessJoin)
ht[i].reset(new typelesshash_t(10, hasher(), typelesshash_t::key_equal(), alloc));
else if (smallRG.getColTypes()[smallKeyColumns[0]] == CalpontSystemCatalog::LONGDOUBLE)
ld[i].reset(new ldhash_t(10, hasher(), ldhash_t::key_equal(), alloc));
else if (smallRG.usesStringTable())
sth[i].reset(new sthash_t(10, hasher(), sthash_t::key_equal(), alloc));
else
h[i].reset(new hash_t(10, hasher(), hash_t::key_equal(), alloc));
}
std::vector<rowgroup::Row::Pointer> empty;
rows.swap(empty);
finished = false;
}
std::shared_ptr<TupleJoiner> TupleJoiner::copyForDiskJoin()
{
std::shared_ptr<TupleJoiner> ret(new TupleJoiner());
ret->smallRG = smallRG;
ret->largeRG = largeRG;
ret->smallNullMemory = smallNullMemory;
ret->smallNullRow = smallNullRow;
ret->joinType = joinType;
ret->tableName = tableName;
ret->typelessJoin = typelessJoin;
ret->smallKeyColumns = smallKeyColumns;
ret->largeKeyColumns = largeKeyColumns;
ret->keyLength = keyLength;
ret->bSignedUnsignedJoin = bSignedUnsignedJoin;
ret->fe = fe;
ret->nullValueForJoinColumn = nullValueForJoinColumn;
ret->uniqueLimit = uniqueLimit;
ret->discreteValues.reset(new bool[smallKeyColumns.size()]);
ret->cpValues.reset(new vector<int128_t>[smallKeyColumns.size()]);
for (uint32_t i = 0; i < smallKeyColumns.size(); i++)
{
ret->discreteValues[i] = false;
if (isUnsigned(smallRG.getColTypes()[smallKeyColumns[i]]))
{
if (datatypes::isWideDecimalType(smallRG.getColType(smallKeyColumns[i]),
smallRG.getColumnWidth(smallKeyColumns[i])))
{
ret->cpValues[i].push_back((int128_t)-1);
ret->cpValues[i].push_back(0);
}
else
{
ret->cpValues[i].push_back((int128_t)numeric_limits<uint64_t>::max());
ret->cpValues[i].push_back(0);
}
}
else
{
if (datatypes::isWideDecimalType(smallRG.getColType(smallKeyColumns[i]),
smallRG.getColumnWidth(smallKeyColumns[i])))
{
ret->cpValues[i].push_back(utils::maxInt128);
ret->cpValues[i].push_back(utils::minInt128);
}
else
{
ret->cpValues[i].push_back(numeric_limits<int64_t>::max());
ret->cpValues[i].push_back(numeric_limits<int64_t>::min());
}
}
}
if (typelessJoin)
{
ret->storedKeyAlloc.reset(new FixedAllocator[numCores]);
for (int i = 0; i < numCores; i++)
ret->storedKeyAlloc[i].setAllocSize(keyLength);
}
ret->numCores = numCores;
ret->bucketCount = bucketCount;
ret->bucketMask = bucketMask;
ret->jobstepThreadPool = jobstepThreadPool;
ret->setThreadCount(1);
ret->clearData();
ret->setInUM();
return ret;
}
// Used for Typeless JOIN to detect if there is a JOIN when largeSide is wide-DECIMAL and
// smallSide is a smaller data type, e.g. INT or narrow-DECIMAL.
bool TupleJoiner::joinHasSkewedKeyColumn()
{
std::vector<uint32_t>::const_iterator largeSideKeyColumnsIter = getLargeKeyColumns().begin();
std::vector<uint32_t>::const_iterator smallSideKeyColumnsIter = getSmallKeyColumns().begin();
idbassert(getLargeKeyColumns().size() == getSmallKeyColumns().size());
while (largeSideKeyColumnsIter != getLargeKeyColumns().end())
{
auto smallSideColumnWidth = smallRG.getColumnWidth(*smallSideKeyColumnsIter);
auto largeSideColumnWidth = largeRG.getColumnWidth(*largeSideKeyColumnsIter);
bool widthIsDifferent = smallSideColumnWidth != largeSideColumnWidth;
if (widthIsDifferent &&
(datatypes::isWideDecimalType(smallRG.getColTypes()[*smallSideKeyColumnsIter],
smallSideColumnWidth) ||
datatypes::isWideDecimalType(largeRG.getColTypes()[*largeSideKeyColumnsIter], largeSideColumnWidth)))
{
return true;
}
++largeSideKeyColumnsIter;
++smallSideKeyColumnsIter;
}
return false;
}
void TupleJoiner::setConvertToDiskJoin()
{
_convertToDiskJoin = true;
}
// The method is made to reuse the code from Typeless TupleJoiner ctor.
// It is used in the mentioned ctor and in initBPP() to calculate
// Typeless key length in case of a JOIN when large side column is INT
// and small side column is wide-DECIMAL.
// An important assumption is that if the type is DECIMAL than it must
// be wide-DECIMAL b/c MCS calls the function running Typeless TupleJoiner
// ctor.
uint32_t calculateKeyLength(const std::vector<uint32_t>& aKeyColumnsIds,
const rowgroup::RowGroup& aSmallRowGroup,
const std::vector<uint32_t>* aLargeKeyColumnsIds,
const rowgroup::RowGroup* aLargeRowGroup)
{
uint32_t keyLength = 0;
for (size_t keyColumnIdx = 0; keyColumnIdx < aKeyColumnsIds.size(); ++keyColumnIdx)
{
auto smallSideKeyColumnId = aKeyColumnsIds[keyColumnIdx];
auto largeSideKeyColumnId = (aLargeRowGroup) ? aLargeKeyColumnsIds->operator[](keyColumnIdx)
: std::numeric_limits<uint64_t>::max();
const auto& smallKeyColumnType = aSmallRowGroup.getColTypes()[smallSideKeyColumnId];
// Not used if aLargeRowGroup is 0 that happens in PrimProc.
const auto& largeKeyColumntype = (aLargeRowGroup) ? aLargeRowGroup->getColTypes()[largeSideKeyColumnId]
: datatypes::SystemCatalog::UNDEFINED;
if (datatypes::isCharType(smallKeyColumnType))
{
keyLength += aSmallRowGroup.getColumnWidth(smallSideKeyColumnId) + 2; // +2 for encoded length
// MCOL-698: if we don't do this LONGTEXT allocates 32TB RAM
if (keyLength > 65536)
return 65536;
}
else if (datatypes::isLongDouble(smallKeyColumnType))
{
keyLength += sizeof(long double);
}
else if (datatypes::isWideDecimalType(smallKeyColumnType,
aSmallRowGroup.getColumnWidth(smallSideKeyColumnId)))
{
keyLength += (aLargeRowGroup &&
!datatypes::isWideDecimalType(largeKeyColumntype,
aLargeRowGroup->getColumnWidth(smallSideKeyColumnId)))
? datatypes::MAXLEGACYWIDTH // Small=Wide, Large=Narrow/xINT
: datatypes::MAXDECIMALWIDTH; // Small=Wide, Large=Wide
}
else
// The branch covers all datatypes left including skewed DECIMAL JOIN case
// Small=Wide, Large=Narrow
{
keyLength += datatypes::MAXLEGACYWIDTH;
}
}
return keyLength;
}
}; // namespace joiner