1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-04-18 21:44:02 +03:00
2023-03-02 15:59:42 +00:00

254 lines
5.8 KiB
C++

/* Copyright (C) 2014 InfiniDB, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; version 2 of
the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
/******************************************************************************
* $Id: simpleallocator.h 3495 2013-01-21 14:09:51Z rdempsey $
*
******************************************************************************/
/** @file
* class SimpleAllocator interface
*/
#pragma once
#include <unistd.h>
#include <list>
#include <stdint.h>
#include <limits>
#include <memory>
#undef min
#undef max
namespace utils
{
// A specialized allocator for std::tr1::unordered_multimap<uint64_t, uint64_t> based joiner
// or std::tr1::unordered_map<uint8_t*, uint8_t*> based aggregation.
// User shall initialize a pool and pass it to allocator, release the pool when map is done.
template <typename T>
class SimpleAllocator;
// this pool is best for node size of 3*sizeof(int64).
// map nodes are taken from fixed size blocks, and control hash tables are from ::new.
// assumption is the nodes are not reallocated, but the controls will reallocated when rehash.
// efficient only if the map does not remove nodes, otherwise will take more memory.
#define OPT_NODE_UNITS 10
class SimplePool
{
public:
SimplePool() : fNext(NULL), fEnd(NULL), fTableMemSize(0)
{
}
~SimplePool()
{
reset();
}
inline void* allocate(size_t n, const void* = 0);
inline void deallocate(void* p, size_t n);
inline size_t max_size() const throw();
inline uint64_t getMemUsage() const;
private:
static const size_t fUnitPerChunk = OPT_NODE_UNITS * 10240;
inline void reset();
inline void allocateNewChunk();
// MemUnit stores a pointer to next unit before allocated, and T after allocated.
union MemUnit
{
MemUnit* fNext;
uint64_t fData;
} * fNext, *fEnd; // fNext: next available unit, fEnd: one off the last unit
std::list<MemUnit*> fBlockList;
uint64_t fTableMemSize;
static const size_t fUnitSize = sizeof(MemUnit);
static const size_t fMaxNodeSize = fUnitSize * OPT_NODE_UNITS;
static const size_t fChunkSize = fUnitSize * fUnitPerChunk;
};
template <typename T>
class SimpleAllocator
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template <typename U>
struct rebind
{
typedef SimpleAllocator<U> other;
};
SimpleAllocator() throw()
{
}
SimpleAllocator(std::shared_ptr<SimplePool> pool) throw()
{
fPool = pool;
}
SimpleAllocator(const SimpleAllocator& alloc)
{
fPool = alloc.fPool;
}
template <class U>
SimpleAllocator(const SimpleAllocator<U>& alloc)
{
fPool = alloc.fPool;
}
~SimpleAllocator() throw()
{
}
inline pointer address(reference x) const
{
return &x;
}
inline const_pointer address(const_reference x) const
{
return &x;
}
inline pointer allocate(size_type n, const void* = 0)
{
return static_cast<pointer>(fPool->allocate(n * sizeof(T)));
}
inline void deallocate(pointer p, size_type n)
{
fPool->deallocate(p, n * sizeof(T));
}
inline size_type max_size() const throw()
{
return fPool->max_size() / sizeof(T);
}
inline void construct(pointer ptr, const T& val)
{
new ((void*)ptr) T(val);
}
inline void destroy(pointer ptr)
{
ptr->T::~T();
}
inline void setPool(SimplePool* pool)
{
fPool.reset(pool);
}
std::shared_ptr<SimplePool> fPool;
};
// inlines
inline void* SimplePool::allocate(size_t n, const void* dur)
{
// make sure the block allocated is on unit boundary
size_t unitCount = n / fUnitSize;
if ((n % fUnitSize) != 0)
unitCount += 1;
// if for control table, let new allocator handle it.
if (unitCount > OPT_NODE_UNITS)
{
fTableMemSize += n;
return new uint8_t[n];
}
// allocate node
MemUnit* curr = fNext;
do
{
if (curr == NULL)
{
allocateNewChunk();
curr = fNext;
}
fNext = curr + unitCount;
if (fNext > fEnd)
curr = NULL;
} while (!curr);
return curr;
}
inline void SimplePool::deallocate(void* p, size_t n)
{
// only delete the old control table, which is allocated by new allocator.
if (n > fMaxNodeSize)
{
fTableMemSize -= n;
delete[](static_cast<uint8_t*>(p));
}
}
inline size_t SimplePool::max_size() const throw()
{
return fUnitSize * fUnitPerChunk;
}
inline uint64_t SimplePool::getMemUsage() const
{
return fTableMemSize + fBlockList.size() * fChunkSize +
// add list overhead, element type is a pointer, and
// lists store a next pointer.
fBlockList.size() * 2 * sizeof(void*);
}
inline void SimplePool::reset()
{
for (std::list<MemUnit*>::iterator i = fBlockList.begin(); i != fBlockList.end(); i++)
delete[](*i);
fNext = NULL;
fEnd = NULL;
}
inline void SimplePool::allocateNewChunk()
{
MemUnit* chunk = new MemUnit[fUnitPerChunk];
fBlockList.push_back(chunk);
fNext = chunk;
fEnd = chunk + fUnitPerChunk;
}
template <typename T1, typename T2>
inline bool operator==(const SimpleAllocator<T1>&, const SimpleAllocator<T2>&)
{
return true;
}
template <typename T1, typename T2>
inline bool operator!=(const SimpleAllocator<T1>&, const SimpleAllocator<T2>&)
{
return false;
}
} // namespace utils