You've already forked mariadb-columnstore-engine
mirror of
https://github.com/mariadb-corporation/mariadb-columnstore-engine.git
synced 2025-07-29 08:21:15 +03:00
* Fixes of bugs from ASAN warnings, part one * MQC as static library, with nifty counter for global map and mutex * Switch clang to 16 * link messageqcpp to execplan
1590 lines
45 KiB
C++
1590 lines
45 KiB
C++
/* Copyright (C) 2014 InfiniDB, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; version 2 of
|
|
the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
/****************************************************************************
|
|
* $Id: dataconvert.h 3693 2013-04-05 16:11:30Z chao $
|
|
*
|
|
*
|
|
****************************************************************************/
|
|
/** @file */
|
|
|
|
#pragma once
|
|
|
|
#include <unistd.h>
|
|
#include <string>
|
|
#include <boost/any.hpp>
|
|
#include <vector>
|
|
|
|
#include <netinet/in.h>
|
|
|
|
#define POSIX_REGEX
|
|
|
|
#ifdef POSIX_REGEX
|
|
#include <regex.h>
|
|
#else
|
|
#include <regex>
|
|
#endif
|
|
|
|
#include "mcs_datatype.h"
|
|
#include "columnresult.h"
|
|
#include "exceptclasses.h"
|
|
#include "common/branchpred.h"
|
|
|
|
#include "bytestream.h"
|
|
#include "errorids.h"
|
|
|
|
#include "nullstring.h"
|
|
|
|
// remove this block if the htonll is defined in library
|
|
#include <endian.h>
|
|
#if __BYTE_ORDER == __BIG_ENDIAN // 4312
|
|
inline uint64_t htonll(uint64_t n)
|
|
{
|
|
return n;
|
|
}
|
|
#elif __BYTE_ORDER == __LITTLE_ENDIAN // 1234
|
|
inline uint64_t htonll(uint64_t n)
|
|
{
|
|
return ((((uint64_t)htonl(n & 0xFFFFFFFFLLU)) << 32) | (htonl((n & 0xFFFFFFFF00000000LLU) >> 32)));
|
|
}
|
|
#else // __BYTE_ORDER == __PDP_ENDIAN 3412
|
|
inline uint64_t htonll(uint64_t n);
|
|
// don't know 34127856 or 78563412, hope never be required to support this byte order.
|
|
#endif
|
|
|
|
#define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
|
|
#define isleap(y) (((y) % 4) == 0 && (((y) % 100) != 0 || ((y) % 400) == 0))
|
|
|
|
// this method evalutes the uint64 that stores a char[] to expected value
|
|
inline uint64_t uint64ToStr(uint64_t n)
|
|
{
|
|
return htonll(n);
|
|
}
|
|
|
|
using cscDataType = datatypes::SystemCatalog::ColDataType;
|
|
|
|
#define EXPORT
|
|
|
|
namespace rowgroup
|
|
{
|
|
const uint32_t MagicPrecisionForCountAgg = 9999;
|
|
}
|
|
|
|
const int64_t IDB_pow[19] = {1,
|
|
10,
|
|
100,
|
|
1000,
|
|
10000,
|
|
100000,
|
|
1000000,
|
|
10000000,
|
|
100000000,
|
|
1000000000,
|
|
10000000000LL,
|
|
100000000000LL,
|
|
1000000000000LL,
|
|
10000000000000LL,
|
|
100000000000000LL,
|
|
1000000000000000LL,
|
|
10000000000000000LL,
|
|
100000000000000000LL,
|
|
1000000000000000000LL};
|
|
|
|
|
|
const int32_t SECS_PER_MIN = 60;
|
|
const int32_t MINS_PER_HOUR = 60;
|
|
const int32_t HOURS_PER_DAY = 24;
|
|
const int32_t DAYS_PER_WEEK = 7;
|
|
const int32_t DAYS_PER_NYEAR = 365;
|
|
const int32_t DAYS_PER_LYEAR = 366;
|
|
const int32_t SECS_PER_HOUR = SECS_PER_MIN * MINS_PER_HOUR;
|
|
const int32_t SECS_PER_DAY = SECS_PER_HOUR * HOURS_PER_DAY;
|
|
const int32_t EPOCH_YEAR = 1970;
|
|
const int32_t MONS_PER_YEAR = 12;
|
|
const int32_t MAX_TIMESTAMP_YEAR = 2038;
|
|
const int32_t MIN_TIMESTAMP_YEAR = 1969;
|
|
const int32_t MAX_TIMESTAMP_VALUE = (1ULL << 31) - 1;
|
|
const int32_t MIN_TIMESTAMP_VALUE = 0;
|
|
|
|
namespace dataconvert
|
|
{
|
|
enum CalpontDateTimeFormat
|
|
{
|
|
CALPONTDATE_ENUM = 1, // date format is: "YYYY-MM-DD"
|
|
CALPONTDATETIME_ENUM = 2, // date format is: "YYYY-MM-DD HH:MI:SS"
|
|
CALPONTTIME_ENUM = 3
|
|
};
|
|
|
|
/** @brief a structure that represents a timestamp in broken down
|
|
* representation
|
|
*/
|
|
struct MySQLTime
|
|
{
|
|
unsigned int year, month, day, hour, minute, second;
|
|
unsigned long second_part;
|
|
CalpontDateTimeFormat time_type;
|
|
void reset()
|
|
{
|
|
year = month = day = 0;
|
|
hour = minute = second = second_part = 0;
|
|
time_type = CALPONTDATETIME_ENUM;
|
|
}
|
|
};
|
|
|
|
/* Structure describing local time type (e.g. Moscow summer time (MSD)) */
|
|
typedef struct ttinfo
|
|
{
|
|
long tt_gmtoff; // Offset from UTC in seconds
|
|
uint tt_isdst; // Is daylight saving time or not. Used to set tm_isdst
|
|
#ifdef ABBR_ARE_USED
|
|
uint tt_abbrind; // Index of start of abbreviation for this time type.
|
|
#endif
|
|
/*
|
|
We don't use tt_ttisstd and tt_ttisgmt members of original elsie-code
|
|
struct since we don't support POSIX-style TZ descriptions in variables.
|
|
*/
|
|
} TRAN_TYPE_INFO;
|
|
|
|
/* Structure describing leap-second corrections. */
|
|
typedef struct lsinfo
|
|
{
|
|
int64_t ls_trans; // Transition time
|
|
long ls_corr; // Correction to apply
|
|
} LS_INFO;
|
|
|
|
/*
|
|
Structure with information describing ranges of my_time_t shifted to local
|
|
time (my_time_t + offset). Used for local MYSQL_TIME -> my_time_t conversion.
|
|
See comments for TIME_to_gmt_sec() for more info.
|
|
*/
|
|
typedef struct revtinfo
|
|
{
|
|
long rt_offset; // Offset of local time from UTC in seconds
|
|
uint rt_type; // Type of period 0 - Normal period. 1 - Spring time-gap
|
|
} REVT_INFO;
|
|
|
|
/*
|
|
Structure which fully describes time zone which is
|
|
described in our db or in zoneinfo files.
|
|
*/
|
|
typedef struct st_time_zone_info
|
|
{
|
|
uint leapcnt; // Number of leap-second corrections
|
|
uint timecnt; // Number of transitions between time types
|
|
uint typecnt; // Number of local time types
|
|
uint charcnt; // Number of characters used for abbreviations
|
|
uint revcnt; // Number of transition descr. for TIME->my_time_t conversion
|
|
/* The following are dynamical arrays are allocated in MEM_ROOT */
|
|
int64_t* ats; // Times of transitions between time types
|
|
unsigned char* types; // Local time types for transitions
|
|
TRAN_TYPE_INFO* ttis; // Local time types descriptions
|
|
#ifdef ABBR_ARE_USED
|
|
/* Storage for local time types abbreviations. They are stored as ASCIIZ */
|
|
char* chars;
|
|
#endif
|
|
/*
|
|
Leap seconds corrections descriptions, this array is shared by
|
|
all time zones who use leap seconds.
|
|
*/
|
|
LS_INFO* lsis;
|
|
/*
|
|
Starting points and descriptions of shifted my_time_t (my_time_t + offset)
|
|
ranges on which shifted my_time_t -> my_time_t mapping is linear or undefined.
|
|
Used for tm -> my_time_t conversion.
|
|
*/
|
|
int64_t* revts;
|
|
REVT_INFO* revtis;
|
|
/*
|
|
Time type which is used for times smaller than first transition or if
|
|
there are no transitions at all.
|
|
*/
|
|
TRAN_TYPE_INFO* fallback_tti;
|
|
|
|
} TIME_ZONE_INFO;
|
|
|
|
inline void serializeTimezoneInfo(messageqcpp::ByteStream& bs, TIME_ZONE_INFO* tz)
|
|
{
|
|
bs << (uint)tz->leapcnt;
|
|
bs << (uint)tz->timecnt;
|
|
bs << (uint)tz->typecnt;
|
|
bs << (uint)tz->charcnt;
|
|
bs << (uint)tz->revcnt;
|
|
|
|
// going to put size in front of these dynamically sized arrays
|
|
// and use deserializeInlineVector on the other side
|
|
bs << (uint64_t)tz->timecnt;
|
|
bs.append((uint8_t*)tz->ats, (tz->timecnt * sizeof(int64_t)));
|
|
bs << (uint64_t)tz->timecnt;
|
|
bs.append((uint8_t*)tz->types, tz->timecnt);
|
|
bs << (uint64_t)tz->typecnt;
|
|
bs.append((uint8_t*)tz->ttis, (tz->typecnt * sizeof(TRAN_TYPE_INFO)));
|
|
#ifdef ABBR_ARE_USED
|
|
bs << (uint)tz->charcnt;
|
|
bs.append((uint8_t*)tz->chars, tz->charcnt);
|
|
#endif
|
|
bs << (uint64_t)tz->leapcnt;
|
|
bs.append((uint8_t*)tz->lsis, (tz->leapcnt * sizeof(LS_INFO)));
|
|
bs << (uint64_t)(tz->revcnt + 1);
|
|
bs.append((uint8_t*)tz->revts, ((tz->revcnt + 1) * sizeof(int64_t)));
|
|
bs << (uint64_t)tz->revcnt;
|
|
bs.append((uint8_t*)tz->revtis, (tz->revcnt * sizeof(REVT_INFO)));
|
|
bs << (uint64_t)tz->typecnt;
|
|
bs.append((uint8_t*)tz->fallback_tti, (tz->typecnt * sizeof(TRAN_TYPE_INFO)));
|
|
};
|
|
|
|
inline void unserializeTimezoneInfo(messageqcpp::ByteStream& bs, TIME_ZONE_INFO* tz)
|
|
{
|
|
bs >> (uint&)tz->leapcnt;
|
|
bs >> (uint&)tz->timecnt;
|
|
bs >> (uint&)tz->typecnt;
|
|
bs >> (uint&)tz->charcnt;
|
|
bs >> (uint&)tz->revcnt;
|
|
};
|
|
|
|
inline long systemTimeZoneOffset()
|
|
{
|
|
time_t t = time(NULL);
|
|
struct tm lt;
|
|
localtime_r(&t, <);
|
|
return lt.tm_gmtoff;
|
|
}
|
|
|
|
/**
|
|
* This function converts the timezone represented as a string
|
|
* in the format "+HH:MM" or "-HH:MM" to a signed offset in seconds
|
|
* Most of this code is taken from tztime.cc:str_to_offset
|
|
*/
|
|
inline bool timeZoneToOffset(const char* str, std::string::size_type length, long* offset)
|
|
{
|
|
if (strcmp(str, "SYSTEM") == 0)
|
|
{
|
|
*offset = systemTimeZoneOffset();
|
|
return 0;
|
|
}
|
|
|
|
const char* end = str + length;
|
|
bool negative;
|
|
unsigned long number_tmp;
|
|
long offset_tmp;
|
|
|
|
if (length < 4)
|
|
{
|
|
*offset = 0;
|
|
return 1;
|
|
}
|
|
|
|
if (*str == '+')
|
|
negative = 0;
|
|
else if (*str == '-')
|
|
negative = 1;
|
|
else
|
|
{
|
|
*offset = 0;
|
|
return 1;
|
|
}
|
|
str++;
|
|
|
|
number_tmp = 0;
|
|
|
|
while (str < end && isdigit(*str))
|
|
{
|
|
number_tmp = number_tmp * 10 + *str - '0';
|
|
str++;
|
|
}
|
|
|
|
if (str + 1 >= end || *str != ':')
|
|
{
|
|
*offset = 0;
|
|
return 1;
|
|
}
|
|
str++;
|
|
|
|
offset_tmp = number_tmp * 60L;
|
|
number_tmp = 0;
|
|
|
|
while (str < end && isdigit(*str))
|
|
{
|
|
number_tmp = number_tmp * 10 + *str - '0';
|
|
str++;
|
|
}
|
|
|
|
if (str != end)
|
|
{
|
|
*offset = 0;
|
|
return 1;
|
|
}
|
|
|
|
offset_tmp = (offset_tmp + number_tmp) * 60L;
|
|
|
|
if (negative)
|
|
offset_tmp = -offset_tmp;
|
|
|
|
/*
|
|
Check if offset is in range prescribed by standard
|
|
(from -12:59 to 13:00).
|
|
*/
|
|
|
|
if (number_tmp > 59 || offset_tmp < -13 * 3600L + 1 || offset_tmp > 13 * 3600L)
|
|
{
|
|
*offset = 0;
|
|
return 1;
|
|
}
|
|
|
|
*offset = offset_tmp;
|
|
return 0;
|
|
}
|
|
|
|
const int32_t year_lengths[2] = {DAYS_PER_NYEAR, DAYS_PER_LYEAR};
|
|
|
|
const unsigned int mon_lengths[2][MONS_PER_YEAR] = {{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}};
|
|
|
|
const unsigned int mon_starts[2][MONS_PER_YEAR] = {{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
|
|
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}};
|
|
|
|
inline int32_t leapsThruEndOf(int32_t year)
|
|
{
|
|
return (year / 4 - year / 100 + year / 400);
|
|
}
|
|
|
|
inline bool isLeapYear(int year)
|
|
{
|
|
if (year % 400 == 0)
|
|
return true;
|
|
|
|
if ((year % 4 == 0) && (year % 100 != 0))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static uint32_t daysInMonth[13] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0};
|
|
|
|
inline uint32_t getDaysInMonth(uint32_t month, int year)
|
|
{
|
|
if (month < 1 || month > 12)
|
|
return 0;
|
|
|
|
uint32_t days = daysInMonth[month - 1];
|
|
|
|
if ((month == 2) && isLeapYear(year))
|
|
days++;
|
|
|
|
return days;
|
|
}
|
|
|
|
inline bool isDateValid(int day, int month, int year)
|
|
{
|
|
bool valid = true;
|
|
|
|
if (day == 0 && month == 0 && year == 0)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
int daycheck = getDaysInMonth(month, year);
|
|
|
|
if ((year < 1000) || (year > 9999))
|
|
valid = false;
|
|
else if (month < 1 || month > 12)
|
|
valid = false;
|
|
else if (day < 1 || day > daycheck)
|
|
valid = false;
|
|
|
|
return (valid);
|
|
}
|
|
|
|
inline bool isDateTimeValid(int hour, int minute, int second, int microSecond)
|
|
{
|
|
bool valid = false;
|
|
|
|
if (hour >= 0 && hour <= 24)
|
|
{
|
|
if (minute >= 0 && minute < 60)
|
|
{
|
|
if (second >= 0 && second < 60)
|
|
{
|
|
if (microSecond >= 0 && microSecond <= 999999)
|
|
{
|
|
valid = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
inline bool isTimeValid(int hour, int minute, int second, int microSecond)
|
|
{
|
|
bool valid = false;
|
|
|
|
if (hour >= -838 && hour <= 838)
|
|
{
|
|
if (minute >= 0 && minute < 60)
|
|
{
|
|
if (second >= 0 && second < 60)
|
|
{
|
|
if (microSecond >= 0 && microSecond <= 999999)
|
|
{
|
|
valid = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
inline bool isTimestampValid(uint64_t second, uint64_t microsecond)
|
|
{
|
|
bool valid = false;
|
|
|
|
// MariaDB server currently sets the upper limit on timestamp to
|
|
// 0x7FFFFFFF. So enforce the same restriction here.
|
|
// TODO: We however store the seconds portion of the timestamp in
|
|
// 44 bits, so change this limit when the server supports higher values.
|
|
if (second <= MAX_TIMESTAMP_VALUE)
|
|
{
|
|
if (microsecond <= 999999)
|
|
{
|
|
valid = true;
|
|
}
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
/**
|
|
* @brief converts a timestamp (seconds in UTC since Epoch)
|
|
* to broken-down representation. Most of this code is taken
|
|
* from sec_to_TIME and Time_zone_system::gmt_sec_to_TIME
|
|
* functions in tztime.cc in the server
|
|
*
|
|
* @param seconds the value to be converted
|
|
* @param time the broken-down representation of the timestamp
|
|
@param offset a timeZone offset (in seconds) relative to UTC.
|
|
For example, for EST which is UTC-5:00, offset will be -18000s.
|
|
*/
|
|
inline void gmtSecToMySQLTime(int64_t seconds, MySQLTime& time, long offset)
|
|
{
|
|
if (seconds == 0)
|
|
{
|
|
time.reset();
|
|
return;
|
|
}
|
|
|
|
int64_t days;
|
|
int32_t rem;
|
|
int32_t y;
|
|
int32_t yleap;
|
|
const unsigned int* ip;
|
|
|
|
days = (int64_t)(seconds / SECS_PER_DAY);
|
|
rem = (int32_t)(seconds % SECS_PER_DAY);
|
|
|
|
rem += offset;
|
|
while (rem < 0)
|
|
{
|
|
rem += SECS_PER_DAY;
|
|
days--;
|
|
}
|
|
while (rem >= SECS_PER_DAY)
|
|
{
|
|
rem -= SECS_PER_DAY;
|
|
days++;
|
|
}
|
|
time.hour = (unsigned int)(rem / SECS_PER_HOUR);
|
|
rem = rem % SECS_PER_HOUR;
|
|
time.minute = (unsigned int)(rem / SECS_PER_MIN);
|
|
time.second = (unsigned int)(rem % SECS_PER_MIN);
|
|
|
|
y = EPOCH_YEAR;
|
|
while (days < 0 || days >= (int64_t)(year_lengths[yleap = isLeapYear(y)]))
|
|
{
|
|
int32_t newy;
|
|
|
|
newy = y + days / DAYS_PER_NYEAR;
|
|
if (days < 0)
|
|
newy--;
|
|
days -= (newy - y) * DAYS_PER_NYEAR + leapsThruEndOf(newy - 1) - leapsThruEndOf(y - 1);
|
|
y = newy;
|
|
}
|
|
time.year = y;
|
|
|
|
ip = mon_lengths[yleap];
|
|
for (time.month = 0; days >= (int64_t)ip[time.month]; time.month++)
|
|
days -= (int64_t)ip[time.month];
|
|
time.month++;
|
|
time.day = (unsigned int)(days + 1);
|
|
|
|
time.second_part = 0;
|
|
time.time_type = CALPONTDATETIME_ENUM;
|
|
}
|
|
|
|
/**
|
|
* @brief function that provides a rough estimate if a broken-down
|
|
* representation of timestamp is in range
|
|
*
|
|
* @param t the broken-down representation of timestamp
|
|
*/
|
|
inline bool validateTimestampRange(const MySQLTime& t)
|
|
{
|
|
if ((t.year > MAX_TIMESTAMP_YEAR || t.year < MIN_TIMESTAMP_YEAR) ||
|
|
(t.year == MAX_TIMESTAMP_YEAR && (t.month > 1 || t.day > 19)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
inline int64_t secSinceEpoch(int year, int month, int day, int hour, int min, int sec)
|
|
{
|
|
int64_t days =
|
|
(year - EPOCH_YEAR) * DAYS_PER_NYEAR + leapsThruEndOf(year - 1) - leapsThruEndOf(EPOCH_YEAR - 1);
|
|
days += mon_starts[isLeapYear(year)][month - 1];
|
|
days += day - 1;
|
|
|
|
return ((days * HOURS_PER_DAY + hour) * MINS_PER_HOUR + min) * SECS_PER_MIN + sec;
|
|
}
|
|
|
|
/**
|
|
* @brief converts a timestamp from broken-down representation
|
|
* to seconds since UTC epoch
|
|
*
|
|
* @param time the broken-down representation of the timestamp
|
|
@param offset a timeZone offset (in seconds) relative to UTC.
|
|
For example, for EST which is UTC-5:00, offset will be -18000s.
|
|
*/
|
|
inline int64_t mySQLTimeToGmtSec(const MySQLTime& time, long offset, bool& isValid)
|
|
{
|
|
int64_t seconds;
|
|
|
|
if (!validateTimestampRange(time))
|
|
{
|
|
isValid = false;
|
|
return 0;
|
|
}
|
|
|
|
seconds = secSinceEpoch(time.year, time.month, time.day, time.hour, time.minute, time.second) - offset;
|
|
/* make sure we have legit timestamps (i.e. we didn't over/underflow anywhere above) */
|
|
if (seconds >= MIN_TIMESTAMP_VALUE && seconds <= MAX_TIMESTAMP_VALUE)
|
|
return seconds;
|
|
|
|
isValid = false;
|
|
return 0;
|
|
}
|
|
|
|
inline uint find_time_range(int64_t t, const int64_t* range_boundaries, uint higher_bound)
|
|
{
|
|
uint i, lower_bound = 0;
|
|
|
|
/*
|
|
Function will work without this assertion but result would be meaningless.
|
|
*/
|
|
idbassert(higher_bound > 0 && t >= range_boundaries[0]);
|
|
|
|
/*
|
|
Do binary search for minimal interval which contain t. We preserve:
|
|
range_boundaries[lower_bound] <= t < range_boundaries[higher_bound]
|
|
invariant and decrease this higher_bound - lower_bound gap twice
|
|
times on each step.
|
|
*/
|
|
|
|
while (higher_bound - lower_bound > 1)
|
|
{
|
|
i = (lower_bound + higher_bound) >> 1;
|
|
if (range_boundaries[i] <= t)
|
|
lower_bound = i;
|
|
else
|
|
higher_bound = i;
|
|
}
|
|
return lower_bound;
|
|
}
|
|
|
|
inline int64_t TIME_to_gmt_sec(const MySQLTime& time, const TIME_ZONE_INFO* sp, uint32_t* error_code)
|
|
{
|
|
int64_t local_t;
|
|
uint saved_seconds;
|
|
uint i;
|
|
int shift = 0;
|
|
// DBUG_ENTER("TIME_to_gmt_sec");
|
|
|
|
if (!validateTimestampRange(time))
|
|
{
|
|
//*error_code= ER_WARN_DATA_OUT_OF_RANGE;
|
|
// DBUG_RETURN(0);
|
|
*error_code = logging::ERR_FUNC_OUT_OF_RANGE_RESULT;
|
|
return 0;
|
|
}
|
|
|
|
/* We need this for correct leap seconds handling */
|
|
if (time.second < SECS_PER_MIN)
|
|
saved_seconds = 0;
|
|
else
|
|
saved_seconds = time.second;
|
|
|
|
/*
|
|
NOTE: to convert full my_time_t range we do a shift of the
|
|
boundary dates here to avoid overflow of my_time_t.
|
|
We use alike approach in my_system_gmt_sec().
|
|
|
|
However in that function we also have to take into account
|
|
overflow near 0 on some platforms. That's because my_system_gmt_sec
|
|
uses localtime_r(), which doesn't work with negative values correctly
|
|
on platforms with unsigned time_t (QNX). Here we don't use localtime()
|
|
=> we negative values of local_t are ok.
|
|
*/
|
|
|
|
if ((time.year == MAX_TIMESTAMP_YEAR) && (time.month == 1) && time.day > 4)
|
|
{
|
|
/*
|
|
We will pass (time.day - shift) to sec_since_epoch(), and
|
|
want this value to be a positive number, so we shift
|
|
only dates > 4.01.2038 (to avoid owerflow).
|
|
*/
|
|
shift = 2;
|
|
}
|
|
|
|
local_t = secSinceEpoch(time.year, time.month, (time.day - shift), time.hour, time.minute,
|
|
saved_seconds ? 0 : time.second);
|
|
|
|
/* We have at least one range */
|
|
idbassert(sp->revcnt >= 1);
|
|
|
|
if (local_t < sp->revts[0] || local_t > sp->revts[sp->revcnt])
|
|
{
|
|
/*
|
|
This means that source time can't be represented as my_time_t due to
|
|
limited my_time_t range.
|
|
*/
|
|
*error_code = logging::ERR_FUNC_OUT_OF_RANGE_RESULT;
|
|
return 0;
|
|
}
|
|
|
|
/* binary search for our range */
|
|
i = find_time_range(local_t, sp->revts, sp->revcnt);
|
|
|
|
/*
|
|
As there are no offset switches at the end of TIMESTAMP range,
|
|
we could simply check for overflow here (and don't need to bother
|
|
about DST gaps etc)
|
|
*/
|
|
if (shift)
|
|
{
|
|
if (local_t >
|
|
(int64_t)(MAX_TIMESTAMP_VALUE - shift * SECS_PER_DAY + sp->revtis[i].rt_offset - saved_seconds))
|
|
{
|
|
*error_code = logging::ERR_FUNC_OUT_OF_RANGE_RESULT;
|
|
return 0; /* my_time_t overflow */
|
|
}
|
|
local_t += shift * SECS_PER_DAY;
|
|
}
|
|
|
|
if (sp->revtis[i].rt_type)
|
|
{
|
|
/*
|
|
Oops! We are in spring time gap.
|
|
May be we should return error here?
|
|
Now we are returning my_time_t value corresponding to the
|
|
beginning of the gap.
|
|
*/
|
|
//*error_code= ER_WARN_INVALID_TIMESTAMP;
|
|
local_t = sp->revts[i] - sp->revtis[i].rt_offset + saved_seconds;
|
|
}
|
|
else
|
|
local_t = local_t - sp->revtis[i].rt_offset + saved_seconds;
|
|
|
|
/* check for TIMESTAMP_MAX_VALUE was already done above */
|
|
if (local_t < MIN_TIMESTAMP_VALUE)
|
|
{
|
|
*error_code = logging::ERR_FUNC_OUT_OF_RANGE_RESULT;
|
|
return 0;
|
|
}
|
|
|
|
return local_t;
|
|
}
|
|
|
|
static const TRAN_TYPE_INFO* find_transition_type(int64_t t, const TIME_ZONE_INFO* sp)
|
|
{
|
|
if ((sp->timecnt == 0 || t < sp->ats[0]))
|
|
{
|
|
/*
|
|
If we have not any transitions or t is before first transition let
|
|
us use fallback time type.
|
|
*/
|
|
return sp->fallback_tti;
|
|
}
|
|
|
|
/*
|
|
Do binary search for minimal interval between transitions which
|
|
contain t. With this localtime_r on real data may takes less
|
|
time than with linear search (I've seen 30% speed up).
|
|
*/
|
|
return &(sp->ttis[sp->types[find_time_range(t, sp->ats, sp->timecnt)]]);
|
|
}
|
|
|
|
static void sec_to_TIME(MySQLTime* tmp, int64_t t, long offset)
|
|
{
|
|
long days;
|
|
long rem;
|
|
int y;
|
|
int yleap;
|
|
const uint* ip;
|
|
|
|
days = (long)(t / SECS_PER_DAY);
|
|
rem = (long)(t % SECS_PER_DAY);
|
|
|
|
/*
|
|
We do this as separate step after dividing t, because this
|
|
allows us handle times near my_time_t bounds without overflows.
|
|
*/
|
|
rem += offset;
|
|
while (rem < 0)
|
|
{
|
|
rem += SECS_PER_DAY;
|
|
days--;
|
|
}
|
|
while (rem >= SECS_PER_DAY)
|
|
{
|
|
rem -= SECS_PER_DAY;
|
|
days++;
|
|
}
|
|
tmp->hour = (uint)(rem / SECS_PER_HOUR);
|
|
rem = rem % SECS_PER_HOUR;
|
|
tmp->minute = (uint)(rem / SECS_PER_MIN);
|
|
/*
|
|
A positive leap second requires a special
|
|
representation. This uses "... ??:59:60" et seq.
|
|
*/
|
|
tmp->second = (uint)(rem % SECS_PER_MIN);
|
|
|
|
y = EPOCH_YEAR;
|
|
while (days < 0 || days >= (long)year_lengths[yleap = isleap(y)])
|
|
{
|
|
int newy;
|
|
|
|
newy = y + days / DAYS_PER_NYEAR;
|
|
if (days < 0)
|
|
newy--;
|
|
days -= (newy - y) * DAYS_PER_NYEAR + LEAPS_THRU_END_OF(newy - 1) - LEAPS_THRU_END_OF(y - 1);
|
|
y = newy;
|
|
}
|
|
tmp->year = y;
|
|
|
|
ip = mon_lengths[yleap];
|
|
for (tmp->month = 0; days >= (long)ip[tmp->month]; tmp->month++)
|
|
days = days - (long)ip[tmp->month];
|
|
tmp->month++;
|
|
tmp->day = (uint)(days + 1);
|
|
|
|
/* filling MySQL specific MYSQL_TIME members */
|
|
tmp->second_part = 0;
|
|
tmp->time_type = CALPONTDATETIME_ENUM;
|
|
}
|
|
|
|
inline void gmt_sec_to_TIME(MySQLTime* tmp, int64_t sec_in_utc, const TIME_ZONE_INFO* sp)
|
|
{
|
|
const TRAN_TYPE_INFO* ttisp;
|
|
const LS_INFO* lp;
|
|
long corr = 0;
|
|
int hit = 0;
|
|
int i;
|
|
|
|
/*
|
|
Find proper transition (and its local time type) for our sec_in_utc value.
|
|
Funny but again by separating this step in function we receive code
|
|
which very close to glibc's code. No wonder since they obviously use
|
|
the same base and all steps are sensible.
|
|
*/
|
|
ttisp = find_transition_type(sec_in_utc, sp);
|
|
|
|
/*
|
|
Let us find leap correction for our sec_in_utc value and number of extra
|
|
secs to add to this minute.
|
|
This loop is rarely used because most users will use time zones without
|
|
leap seconds, and even in case when we have such time zone there won't
|
|
be many iterations (we have about 22 corrections at this moment (2004)).
|
|
*/
|
|
for (i = sp->leapcnt; i-- > 0;)
|
|
{
|
|
lp = &sp->lsis[i];
|
|
if (sec_in_utc >= lp->ls_trans)
|
|
{
|
|
if (sec_in_utc == lp->ls_trans)
|
|
{
|
|
hit = ((i == 0 && lp->ls_corr > 0) || lp->ls_corr > sp->lsis[i - 1].ls_corr);
|
|
if (hit)
|
|
{
|
|
while (i > 0 && sp->lsis[i].ls_trans == sp->lsis[i - 1].ls_trans + 1 &&
|
|
sp->lsis[i].ls_corr == sp->lsis[i - 1].ls_corr + 1)
|
|
{
|
|
hit++;
|
|
i--;
|
|
}
|
|
}
|
|
}
|
|
corr = lp->ls_corr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sec_to_TIME(tmp, sec_in_utc, ttisp->tt_gmtoff - corr);
|
|
|
|
tmp->second += hit;
|
|
}
|
|
|
|
/** @brief a structure to hold a date
|
|
*/
|
|
struct Date
|
|
{
|
|
unsigned spare : 6;
|
|
unsigned day : 6;
|
|
unsigned month : 4;
|
|
unsigned year : 16;
|
|
// NULL column value = 0xFFFFFFFE
|
|
Date() : spare(0x3E), day(0x3F), month(0xF), year(0xFFFF)
|
|
{
|
|
}
|
|
// Construct a Date from a 64 bit integer Calpont date.
|
|
Date(uint64_t val) : spare(0x3E), day((val >> 6) & 077), month((val >> 12) & 0xF), year((val >> 16))
|
|
{
|
|
}
|
|
// Construct using passed in parameters, no value checking
|
|
Date(unsigned y, unsigned m, unsigned d) : spare(0x3E), day(d), month(m), year(y)
|
|
{
|
|
}
|
|
|
|
int32_t convertToMySQLint() const;
|
|
};
|
|
|
|
inline int32_t Date::convertToMySQLint() const
|
|
{
|
|
return (int32_t)(year * 10000) + (month * 100) + day;
|
|
}
|
|
|
|
/** @brief a structure to hold a datetime
|
|
*/
|
|
struct DateTime
|
|
{
|
|
unsigned msecond : 20;
|
|
unsigned second : 6;
|
|
unsigned minute : 6;
|
|
unsigned hour : 6;
|
|
unsigned day : 6;
|
|
unsigned month : 4;
|
|
unsigned year : 16;
|
|
// NULL column value = 0xFFFFFFFFFFFFFFFE
|
|
DateTime() : msecond(0xFFFFE), second(0x3F), minute(0x3F), hour(0x3F), day(0x3F), month(0xF), year(0xFFFF)
|
|
{
|
|
}
|
|
// Construct a DateTime from a 64 bit integer Calpont datetime.
|
|
DateTime(uint64_t val)
|
|
: msecond(val & 0xFFFFF)
|
|
, second((val >> 20) & 077)
|
|
, minute((val >> 26) & 077)
|
|
, hour((val >> 32) & 077)
|
|
, day((val >> 38) & 077)
|
|
, month((val >> 44) & 0xF)
|
|
, year(val >> 48)
|
|
{
|
|
}
|
|
// Construct using passed in parameters, no value checking
|
|
DateTime(unsigned y, unsigned m, unsigned d, unsigned h, unsigned min, unsigned sec, unsigned msec)
|
|
: msecond(msec), second(sec), minute(min), hour(h), day(d), month(m), year(y)
|
|
{
|
|
}
|
|
|
|
int64_t convertToMySQLint() const;
|
|
void reset();
|
|
};
|
|
|
|
inline int64_t DateTime::convertToMySQLint() const
|
|
{
|
|
return (int64_t)(year * 10000000000LL) + (month * 100000000) + (day * 1000000) + (hour * 10000) +
|
|
(minute * 100) + second;
|
|
}
|
|
|
|
inline void DateTime::reset()
|
|
{
|
|
msecond = 0xFFFFE;
|
|
second = 0x3F;
|
|
minute = 0x3F;
|
|
hour = 0x3F;
|
|
day = 0x3F;
|
|
month = 0xF;
|
|
year = 0xFFFF;
|
|
}
|
|
|
|
/** @brief a structure to hold a time
|
|
* range: -838:59:59 ~ 838:59:59
|
|
*/
|
|
struct Time
|
|
{
|
|
signed msecond : 24;
|
|
signed second : 8;
|
|
signed minute : 8;
|
|
signed hour : 12;
|
|
signed day : 11;
|
|
signed is_neg : 1;
|
|
|
|
// NULL column value = 0xFFFFFFFFFFFFFFFE
|
|
Time() : msecond(-2), second(-1), minute(-1), hour(-1), day(-1), is_neg(-1)
|
|
{
|
|
}
|
|
|
|
// Construct a Time from a 64 bit integer InfiniDB time.
|
|
Time(int64_t val)
|
|
: msecond(val & 0xffffff)
|
|
, second((val >> 24) & 0xff)
|
|
, minute((val >> 32) & 0xff)
|
|
, hour((val >> 40) & 0xfff)
|
|
, day((val >> 52) & 0x7ff)
|
|
, is_neg(val >> 63)
|
|
{
|
|
}
|
|
|
|
Time(signed d, signed h, signed min, signed sec, signed msec, bool neg)
|
|
: msecond(msec), second(sec), minute(min), hour(h), day(d), is_neg(neg)
|
|
{
|
|
if (h < 0)
|
|
is_neg = -1;
|
|
}
|
|
|
|
int64_t convertToMySQLint() const;
|
|
void reset();
|
|
};
|
|
|
|
inline void Time::reset()
|
|
{
|
|
msecond = -2;
|
|
second = -1;
|
|
minute = -1;
|
|
hour = -1;
|
|
is_neg = -1;
|
|
day = -1;
|
|
}
|
|
|
|
inline int64_t Time::convertToMySQLint() const
|
|
{
|
|
if ((hour >= 0) && is_neg)
|
|
{
|
|
return (int64_t)((hour * 10000) + (minute * 100) + second) * -1;
|
|
}
|
|
else if (hour >= 0)
|
|
{
|
|
return (int64_t)(hour * 10000) + (minute * 100) + second;
|
|
}
|
|
else
|
|
{
|
|
return (int64_t)(hour * 10000) - (minute * 100) - second;
|
|
}
|
|
}
|
|
|
|
/** @brief a structure to hold a timestamp
|
|
*/
|
|
struct TimeStamp
|
|
{
|
|
unsigned msecond : 20;
|
|
unsigned long long second : 44;
|
|
// NULL column value = 0xFFFFFFFFFFFFFFFE
|
|
TimeStamp() : msecond(0xFFFFE), second(0xFFFFFFFFFFF)
|
|
{
|
|
}
|
|
// Construct a TimeStamp from a 64 bit integer Calpont timestamp.
|
|
TimeStamp(uint64_t val) : msecond(val & 0xFFFFF), second(val >> 20)
|
|
{
|
|
}
|
|
TimeStamp(unsigned msec, unsigned long long sec) : msecond(msec), second(sec)
|
|
{
|
|
}
|
|
|
|
int64_t convertToMySQLint(long timeZone) const;
|
|
void reset();
|
|
};
|
|
|
|
inline int64_t TimeStamp::convertToMySQLint(long timeZone) const
|
|
{
|
|
const int TIMESTAMPTOSTRING1_LEN = 22; // YYYYMMDDHHMMSSmmmmmm\0
|
|
char buf[TIMESTAMPTOSTRING1_LEN];
|
|
|
|
MySQLTime time;
|
|
gmtSecToMySQLTime(second, time, timeZone);
|
|
|
|
sprintf(buf, "%04d%02d%02d%02d%02d%02d", time.year, time.month, time.day, time.hour, time.minute,
|
|
time.second);
|
|
|
|
return (int64_t)atoll(buf);
|
|
}
|
|
|
|
inline void TimeStamp::reset()
|
|
{
|
|
msecond = 0xFFFFE;
|
|
second = 0xFFFFFFFFFFF;
|
|
}
|
|
|
|
template <typename T = int64_t>
|
|
inline T string_to_ll(const std::string& data, bool& bSaturate)
|
|
{
|
|
// This function doesn't take into consideration our special values
|
|
// for NULL and EMPTY when setting the saturation point. Should it?
|
|
char* ep = NULL;
|
|
const char* str = data.c_str();
|
|
errno = 0;
|
|
int64_t value = strtoll(str, &ep, 10);
|
|
|
|
// (no digits) || (more chars) || (other errors & value = 0)
|
|
if ((ep == str) || (*ep != '\0') || (errno != 0 && value == 0))
|
|
throw logging::QueryDataExcept("value is not numerical.", logging::formatErr);
|
|
|
|
if (errno == ERANGE &&
|
|
(value == std::numeric_limits<int64_t>::max() || value == std::numeric_limits<int64_t>::min()))
|
|
bSaturate = true;
|
|
|
|
return value;
|
|
}
|
|
|
|
inline uint64_t string_to_ull(const std::string& data, bool& bSaturate)
|
|
{
|
|
// This function doesn't take into consideration our special values
|
|
// for NULL and EMPTY when setting the saturation point. Should it?
|
|
char* ep = NULL;
|
|
const char* str = data.c_str();
|
|
errno = 0;
|
|
|
|
// check for negative number. saturate to 0;
|
|
if (data.find('-') != data.npos)
|
|
{
|
|
bSaturate = true;
|
|
return 0;
|
|
}
|
|
|
|
uint64_t value = strtoull(str, &ep, 10);
|
|
|
|
// (no digits) || (more chars) || (other errors & value = 0)
|
|
if ((ep == str) || (*ep != '\0') || (errno != 0 && value == 0))
|
|
throw logging::QueryDataExcept("value is not numerical.", logging::formatErr);
|
|
|
|
if (errno == ERANGE && (value == std::numeric_limits<uint64_t>::max()))
|
|
bSaturate = true;
|
|
|
|
return value;
|
|
}
|
|
|
|
template <typename T>
|
|
void number_int_value(const std::string& data, cscDataType typeCode,
|
|
const datatypes::SystemCatalog::TypeAttributesStd& ct, bool& pushwarning,
|
|
bool noRoundup, T& intVal, bool* saturate = 0);
|
|
|
|
uint64_t number_uint_value(const string& data, cscDataType typeCode,
|
|
const datatypes::SystemCatalog::TypeAttributesStd& ct, bool& pushwarning,
|
|
bool noRoundup);
|
|
|
|
/** @brief DataConvert is a component for converting string data to Calpont format
|
|
*/
|
|
class DataConvert
|
|
{
|
|
public:
|
|
/**
|
|
* @brief convert a columns data from native format to a string
|
|
*
|
|
* @param type the columns database type
|
|
* @param data the columns string representation of it's data
|
|
*/
|
|
EXPORT static std::string dateToString(int datevalue);
|
|
static inline void dateToString(int datevalue, char* buf, unsigned int buflen);
|
|
|
|
/**
|
|
* @brief convert a columns data from native format to a string
|
|
*
|
|
* @param type the columns database type
|
|
* @param data the columns string representation of it's data
|
|
*/
|
|
EXPORT static std::string datetimeToString(long long datetimevalue, long decimals = 0);
|
|
static inline void datetimeToString(long long datetimevalue, char* buf, unsigned int buflen,
|
|
long decimals = 0);
|
|
|
|
/**
|
|
* @brief convert a columns data from native format to a string
|
|
*
|
|
* @param type the columns database type
|
|
* @param data the columns string representation of it's data
|
|
*/
|
|
EXPORT static std::string timestampToString(long long timestampvalue, long timezone, long decimals = 0);
|
|
static inline void timestampToString(long long timestampvalue, char* buf, unsigned int buflen,
|
|
long timezone, long decimals = 0);
|
|
|
|
/**
|
|
* @brief convert a columns data from native format to a string
|
|
*
|
|
* @param type the columns database type
|
|
* @param data the columns string representation of it's data
|
|
*/
|
|
EXPORT static std::string timeToString(long long timevalue, long decimals = 0);
|
|
static inline void timeToString(long long timevalue, char* buf, unsigned int buflen, long decimals = 0);
|
|
|
|
/**
|
|
* @brief convert a columns data from native format to a string
|
|
*
|
|
* @param type the columns database type
|
|
* @param data the columns string representation of it's data
|
|
*/
|
|
EXPORT static std::string dateToString1(int datevalue);
|
|
static inline void dateToString1(int datevalue, char* buf, unsigned int buflen);
|
|
|
|
/**
|
|
* @brief convert a columns data from native format to a string
|
|
*
|
|
* @param type the columns database type
|
|
* @param data the columns string representation of it's data
|
|
*/
|
|
EXPORT static std::string datetimeToString1(long long datetimevalue);
|
|
static inline void datetimeToString1(long long datetimevalue, char* buf, unsigned int buflen);
|
|
|
|
/**
|
|
* @brief convert a columns data from native format to a string
|
|
*
|
|
* @param type the columns database type
|
|
* @param data the columns string representation of it's data
|
|
*/
|
|
EXPORT static std::string timestampToString1(long long timestampvalue, long timezone);
|
|
static inline void timestampToString1(long long timestampvalue, char* buf, unsigned int buflen,
|
|
long timezone);
|
|
|
|
/**
|
|
* @brief convert a columns data from native format to a string
|
|
*
|
|
* @param type the columns database type
|
|
* @param data the columns string representation of it's data
|
|
*/
|
|
EXPORT static std::string timeToString1(long long timevalue);
|
|
static inline void timeToString1(long long timevalue, char* buf, unsigned int buflen);
|
|
|
|
/**
|
|
* @brief convert a date column data, represnted as a string, to it's native
|
|
* format. This function is for bulkload to use.
|
|
*
|
|
* @param type the columns data type
|
|
* @param dataOrig the columns string representation of it's data
|
|
* @param dateFormat the format the date value in
|
|
* @param status 0 - success, -1 - fail
|
|
* @param dataOrgLen length specification of dataOrg
|
|
*/
|
|
EXPORT static int32_t convertColumnDate(const char* dataOrg, CalpontDateTimeFormat dateFormat, int& status,
|
|
unsigned int dataOrgLen);
|
|
|
|
/**
|
|
* @brief Is specified date valid; used by binary bulk load
|
|
*/
|
|
EXPORT static bool isColumnDateValid(int32_t date);
|
|
|
|
/**
|
|
* @brief convert a datetime column data, represented as a string,
|
|
* to it's native format. This function is for bulkload to use.
|
|
*
|
|
* @param type the columns data type
|
|
* @param dataOrig the columns string representation of it's data
|
|
* @param datetimeFormat the format the date value in
|
|
* @param status 0 - success, -1 - fail
|
|
* @param dataOrgLen length specification of dataOrg
|
|
*/
|
|
EXPORT static int64_t convertColumnDatetime(const char* dataOrg, CalpontDateTimeFormat datetimeFormat,
|
|
int& status, unsigned int dataOrgLen);
|
|
|
|
/**
|
|
* @brief convert a timestamp column data, represented as a string,
|
|
* to it's native format. This function is for bulkload to use.
|
|
*
|
|
* @param dataOrg the columns string representation of it's data
|
|
* @param datetimeFormat the format the date value in
|
|
* @param status 0 - success, -1 - fail
|
|
* @param dataOrgLen length specification of dataOrg
|
|
* @param timeZone an offset (in seconds) relative to UTC.
|
|
For example, for EST which is UTC-5:00, offset will be -18000s.
|
|
*/
|
|
EXPORT static int64_t convertColumnTimestamp(const char* dataOrg, CalpontDateTimeFormat datetimeFormat,
|
|
int& status, unsigned int dataOrgLen, long timeZone);
|
|
|
|
/**
|
|
* @brief convert a time column data, represented as a string,
|
|
* to it's native format. This function is for bulkload to use.
|
|
*
|
|
* @param type the columns data type
|
|
* @param dataOrig the columns string representation of it's data
|
|
* @param timeFormat the format the time value in
|
|
* @param status 0 - success, -1 - fail
|
|
* @param dataOrgLen length specification of dataOrg
|
|
*/
|
|
EXPORT static int64_t convertColumnTime(const char* dataOrg, CalpontDateTimeFormat datetimeFormat,
|
|
int& status, unsigned int dataOrgLen);
|
|
|
|
/**
|
|
* @brief Is specified datetime valid; used by binary bulk load
|
|
*/
|
|
EXPORT static bool isColumnDateTimeValid(int64_t dateTime);
|
|
EXPORT static bool isColumnTimeValid(int64_t time);
|
|
EXPORT static bool isColumnTimeStampValid(int64_t timeStamp);
|
|
|
|
static inline void trimWhitespace(int64_t& charData);
|
|
|
|
// convert string to date
|
|
EXPORT static int64_t stringToDate(const std::string& data);
|
|
EXPORT static int64_t stringToDate(const utils::NullString& data);
|
|
// convert string to datetime
|
|
EXPORT static int64_t stringToDatetime(const std::string& data, bool* isDate = NULL);
|
|
EXPORT static int64_t stringToDatetime(const utils::NullString& data, bool* isDate = NULL);
|
|
// convert string to timestamp
|
|
EXPORT static int64_t stringToTimestamp(const std::string& data, long timeZone);
|
|
EXPORT static int64_t stringToTimestamp(const utils::NullString& data, long timeZone);
|
|
// convert integer to date
|
|
EXPORT static int64_t intToDate(int64_t data);
|
|
// convert integer to datetime
|
|
EXPORT static int64_t intToDatetime(int64_t data, bool* isDate = NULL);
|
|
// convert integer to date
|
|
EXPORT static int64_t intToTime(int64_t data, bool fromString = false);
|
|
// convert string to date. alias to stringToDate
|
|
EXPORT static int64_t dateToInt(const std::string& date);
|
|
EXPORT static int64_t dateToInt(const utils::NullString& date);
|
|
// convert string to datetime. alias to datetimeToInt
|
|
EXPORT static int64_t datetimeToInt(const std::string& datetime);
|
|
EXPORT static int64_t datetimeToInt(const utils::NullString& datetime);
|
|
EXPORT static int64_t timestampToInt(const std::string& timestamp, long timeZone);
|
|
EXPORT static int64_t timeToInt(const std::string& time);
|
|
EXPORT static int64_t stringToTime(const std::string& data);
|
|
EXPORT static int64_t stringToTime(const utils::NullString& data);
|
|
// bug4388, union type conversion
|
|
EXPORT static void joinColTypeForUnion(datatypes::SystemCatalog::TypeHolderStd& unionedType,
|
|
const datatypes::SystemCatalog::TypeHolderStd& type,
|
|
unsigned int& rc);
|
|
|
|
static boost::any StringToBit(const datatypes::SystemCatalog::TypeAttributesStd& colType,
|
|
const datatypes::ConvertFromStringParam& prm, const std::string& dataOrig,
|
|
bool& pushWarning);
|
|
|
|
static boost::any StringToSDecimal(const datatypes::SystemCatalog::TypeAttributesStd& colType,
|
|
const datatypes::ConvertFromStringParam& prm, const std::string& data,
|
|
bool& pushWarning);
|
|
|
|
static boost::any StringToUDecimal(const datatypes::SystemCatalog::TypeAttributesStd& colType,
|
|
const datatypes::ConvertFromStringParam& prm, const std::string& data,
|
|
bool& pushWarning);
|
|
|
|
static boost::any StringToFloat(cscDataType typeCode, const std::string& dataOrig, bool& pushWarning);
|
|
|
|
static boost::any StringToDouble(cscDataType typeCode, const std::string& dataOrig, bool& pushWarning);
|
|
|
|
static boost::any StringToString(const datatypes::SystemCatalog::TypeAttributesStd& colType,
|
|
const std::string& dataOrig, bool& pushWarning);
|
|
|
|
static boost::any StringToDate(const std::string& data, bool& pushWarning);
|
|
|
|
static boost::any StringToDatetime(const std::string& data, bool& pushWarning);
|
|
|
|
static boost::any StringToTime(const datatypes::SystemCatalog::TypeAttributesStd& colType,
|
|
const std::string& data, bool& pushWarning);
|
|
|
|
static boost::any StringToTimestamp(const datatypes::ConvertFromStringParam& prm, const std::string& data,
|
|
bool& pushWarning);
|
|
};
|
|
|
|
inline void DataConvert::dateToString(int datevalue, char* buf, unsigned int buflen)
|
|
{
|
|
snprintf(buf, buflen, "%04d-%02d-%02d", (unsigned)((datevalue >> 16) & 0xffff),
|
|
(unsigned)((datevalue >> 12) & 0xf), (unsigned)((datevalue >> 6) & 0x3f));
|
|
}
|
|
|
|
inline void DataConvert::datetimeToString(long long datetimevalue, char* buf, unsigned int buflen,
|
|
long decimals)
|
|
{
|
|
// 10 is default which means we don't need microseconds
|
|
if (decimals > 6 || decimals < 0)
|
|
{
|
|
decimals = 0;
|
|
}
|
|
|
|
int msec = 0;
|
|
|
|
if ((datetimevalue & 0xfffff) > 0)
|
|
{
|
|
msec = (unsigned)((datetimevalue)&0xfffff);
|
|
}
|
|
|
|
snprintf(buf, buflen, "%04d-%02d-%02d %02d:%02d:%02d", (unsigned)((datetimevalue >> 48) & 0xffff),
|
|
(unsigned)((datetimevalue >> 44) & 0xf), (unsigned)((datetimevalue >> 38) & 0x3f),
|
|
(unsigned)((datetimevalue >> 32) & 0x3f), (unsigned)((datetimevalue >> 26) & 0x3f),
|
|
(unsigned)((datetimevalue >> 20) & 0x3f));
|
|
|
|
if (msec || decimals)
|
|
{
|
|
snprintf(buf + strlen(buf), buflen - strlen(buf), ".%0*d", (int)decimals, msec);
|
|
}
|
|
}
|
|
|
|
inline void DataConvert::timestampToString(long long timestampvalue, char* buf, unsigned int buflen,
|
|
long timezone, long decimals)
|
|
{
|
|
// 10 is default which means we don't need microseconds
|
|
if (decimals > 6 || decimals < 0)
|
|
{
|
|
decimals = 0;
|
|
}
|
|
|
|
TimeStamp timestamp(timestampvalue);
|
|
int64_t seconds = timestamp.second;
|
|
|
|
MySQLTime time;
|
|
gmtSecToMySQLTime(seconds, time, timezone);
|
|
|
|
snprintf(buf, buflen, "%04d-%02d-%02d %02d:%02d:%02d", time.year, time.month, time.day, time.hour,
|
|
time.minute, time.second);
|
|
|
|
if (timestamp.msecond || decimals)
|
|
{
|
|
snprintf(buf + strlen(buf), buflen - strlen(buf), ".%0*d", (int)decimals, timestamp.msecond);
|
|
}
|
|
}
|
|
|
|
inline void DataConvert::timeToString(long long timevalue, char* buf, unsigned int buflen, long decimals)
|
|
{
|
|
// 10 is default which means we don't need microseconds
|
|
if (decimals > 6 || decimals < 0)
|
|
{
|
|
decimals = 0;
|
|
}
|
|
|
|
// Handle negative correctly
|
|
int hour = 0, msec = 0;
|
|
|
|
if ((timevalue >> 40) & 0x800)
|
|
{
|
|
hour = 0xfffff000;
|
|
}
|
|
|
|
hour |= ((timevalue >> 40) & 0xfff);
|
|
|
|
if ((timevalue & 0xffffff) > 0)
|
|
{
|
|
msec = (unsigned)((timevalue)&0xffffff);
|
|
}
|
|
|
|
if ((hour >= 0) && (timevalue >> 63))
|
|
{
|
|
buf[0] = '-';
|
|
buf++;
|
|
buflen--;
|
|
}
|
|
|
|
snprintf(buf, buflen, "%02d:%02d:%02d", hour, (unsigned)((timevalue >> 32) & 0xff),
|
|
(unsigned)((timevalue >> 24) & 0xff));
|
|
|
|
if (msec || decimals)
|
|
{
|
|
// Pad start with zeros
|
|
snprintf(buf + strlen(buf), buflen - strlen(buf), ".%0*d", (int)decimals, msec);
|
|
}
|
|
}
|
|
|
|
inline void DataConvert::dateToString1(int datevalue, char* buf, unsigned int buflen)
|
|
{
|
|
snprintf(buf, buflen, "%04d%02d%02d", (unsigned)((datevalue >> 16) & 0xffff),
|
|
(unsigned)((datevalue >> 12) & 0xf), (unsigned)((datevalue >> 6) & 0x3f));
|
|
}
|
|
|
|
inline void DataConvert::datetimeToString1(long long datetimevalue, char* buf, unsigned int buflen)
|
|
{
|
|
snprintf(buf, buflen, "%04d%02d%02d%02d%02d%02d", (unsigned)((datetimevalue >> 48) & 0xffff),
|
|
(unsigned)((datetimevalue >> 44) & 0xf), (unsigned)((datetimevalue >> 38) & 0x3f),
|
|
(unsigned)((datetimevalue >> 32) & 0x3f), (unsigned)((datetimevalue >> 26) & 0x3f),
|
|
(unsigned)((datetimevalue >> 20) & 0x3f));
|
|
}
|
|
|
|
inline void DataConvert::timestampToString1(long long timestampvalue, char* buf, unsigned int buflen,
|
|
long timezone)
|
|
{
|
|
TimeStamp timestamp(timestampvalue);
|
|
int64_t seconds = timestamp.second;
|
|
|
|
MySQLTime time;
|
|
gmtSecToMySQLTime(seconds, time, timezone);
|
|
|
|
snprintf(buf, buflen, "%04d%02d%02d%02d%02d%02d", time.year, time.month, time.day, time.hour, time.minute,
|
|
time.second);
|
|
}
|
|
|
|
inline void DataConvert::timeToString1(long long timevalue, char* buf, unsigned int buflen)
|
|
{
|
|
// Handle negative correctly
|
|
int hour = 0;
|
|
|
|
if ((timevalue >> 40) & 0x800)
|
|
{
|
|
hour = 0xfffff000;
|
|
}
|
|
|
|
hour |= ((timevalue >> 40) & 0xfff);
|
|
|
|
if ((hour >= 0) && (timevalue >> 63))
|
|
{
|
|
buf[0] = '-';
|
|
buf++;
|
|
buflen--;
|
|
}
|
|
// this snprintf call causes a compiler warning b/c buffer size is less
|
|
// then maximum string size.
|
|
#if defined(__GNUC__) && __GNUC__ >= 7
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wformat-truncation="
|
|
snprintf(buf, buflen, "%02d%02d%02d", hour, (unsigned)((timevalue >> 32) & 0xff),
|
|
(unsigned)((timevalue >> 14) & 0xff));
|
|
#pragma GCC diagnostic pop
|
|
#else
|
|
snprintf(buf, buflen, "%02d%02d%02d", hour, (unsigned)((timevalue >> 32) & 0xff),
|
|
(unsigned)((timevalue >> 14) & 0xff));
|
|
#endif
|
|
}
|
|
|
|
inline void DataConvert::trimWhitespace(int64_t& charData)
|
|
{
|
|
// Trims whitespace characters off non-dict character data
|
|
char* ch_data = (char*)&charData;
|
|
|
|
for (int8_t i = 7; i > 0; i--)
|
|
{
|
|
if (ch_data[i] == ' ' || ch_data[i] == '\0')
|
|
ch_data[i] = '\0';
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
inline int128_t add128(int128_t a, int128_t b)
|
|
{
|
|
return a + b;
|
|
}
|
|
|
|
inline int128_t subtract128(int128_t a, int128_t b)
|
|
{
|
|
return a - b;
|
|
}
|
|
|
|
inline bool lessThan128(int128_t a, int128_t b)
|
|
{
|
|
return a < b;
|
|
}
|
|
|
|
inline bool greaterThan128(int128_t a, int128_t b)
|
|
{
|
|
return a > b;
|
|
}
|
|
|
|
// Naive int128_t version of strtoll
|
|
inline int128_t strtoll128(const char* data, bool& saturate, char** ep)
|
|
{
|
|
int128_t res = 0;
|
|
|
|
if (*data == '\0')
|
|
{
|
|
if (ep)
|
|
*ep = (char*)data;
|
|
return res;
|
|
}
|
|
|
|
// skip leading whitespace characters
|
|
while (*data != '\0' && (*data == ' ' || *data == '\t' || *data == '\n'))
|
|
data++;
|
|
|
|
int128_t (*op)(int128_t, int128_t);
|
|
op = add128;
|
|
bool (*compare)(int128_t, int128_t);
|
|
compare = lessThan128;
|
|
|
|
// check the -ve sign
|
|
bool is_neg = false;
|
|
if (*data == '-')
|
|
{
|
|
is_neg = true;
|
|
op = subtract128;
|
|
compare = greaterThan128;
|
|
data++;
|
|
}
|
|
|
|
int128_t tmp;
|
|
|
|
for (; *data != '\0' && isdigit(*data); data++)
|
|
{
|
|
tmp = op(res * 10, *data - '0');
|
|
|
|
if (UNLIKELY(compare(tmp, res)))
|
|
{
|
|
saturate = true;
|
|
|
|
if (is_neg)
|
|
utils::int128Min(res);
|
|
else
|
|
utils::int128Max(res);
|
|
|
|
while (*data != '\0' && isdigit(*data))
|
|
data++;
|
|
|
|
if (ep)
|
|
*ep = (char*)data;
|
|
|
|
return res;
|
|
}
|
|
|
|
res = tmp;
|
|
}
|
|
|
|
if (ep)
|
|
*ep = (char*)data;
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
T decimalRangeUp(int32_t precision)
|
|
{
|
|
if (precision < 19)
|
|
{
|
|
return (T)datatypes::columnstore_precision[precision];
|
|
}
|
|
else
|
|
{
|
|
return datatypes::ConversionRangeMaxValue[precision - 19];
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline int128_t string_to_ll<int128_t>(const std::string& data, bool& bSaturate)
|
|
{
|
|
// This function doesn't take into consideration our special values
|
|
// for NULL and EMPTY when setting the saturation point. Should it?
|
|
char* ep = NULL;
|
|
const char* str = data.c_str();
|
|
int128_t value = strtoll128(str, bSaturate, &ep);
|
|
|
|
// (no digits) || (more chars)
|
|
if ((ep == str) || (*ep != '\0'))
|
|
throw logging::QueryDataExcept("value is not numerical.", logging::formatErr);
|
|
|
|
return value;
|
|
}
|
|
|
|
} // namespace dataconvert
|
|
|
|
#undef EXPORT
|