#include #include #include #include using namespace std; #include "idb_mysql.h" namespace { inline double cvtArgToDouble(int t, const char* v) { double d = 0.0; switch (t) { case INT_RESULT: d = (double)(*((long long*)v)); break; case REAL_RESULT: d = *((double*)v); break; case DECIMAL_RESULT: case STRING_RESULT: d = strtod(v, 0); break; case ROW_RESULT: break; } return d; } } // namespace /**************************************************************************** * UDF function interface for MariaDB connector to recognize is defined in * this section. MariaDB's UDF function creation guideline needs to be followed. * * Three interface need to be defined on the connector for each UDF function. * * XXX_init: To allocate the necessary memory for the UDF function and validate * the input. * XXX_deinit: To clean up the memory. * XXX: The function implementation. * Detailed instruction can be found at MariaDB source directory: * ~/sql/udf_example.cc. * * Please note that the implementation of the function defined on the connector * will only be called when all the input arguments are constant. e.g., * mcs_add(2,3). That way, the function does not run in a distributed fashion * and could be slow. If there is a need for the UDF function to run with * pure constant input, then one needs to put a implementation in the XXX * body, which is very similar to the ones in getXXXval API. If there's no * such need for a given UDF, then the XXX interface can just return a dummy * result because this function will never be called. */ extern "C" { /** * MCS_ADD connector stub */ my_bool mcs_add_init(UDF_INIT* initid, UDF_ARGS* args, char* message) { if (args->arg_count != 2) { strcpy(message, "mcs_add() requires two argument"); return 1; } return 0; } void mcs_add_deinit(UDF_INIT* initid) { } double mcs_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* error) { double op1, op2; op1 = cvtArgToDouble(args->arg_type[0], args->args[0]); op2 = cvtArgToDouble(args->arg_type[1], args->args[1]); return op1 + op2; } /** * MCS_ISNULL connector stub */ my_bool mcs_isnull_init(UDF_INIT* initid, UDF_ARGS* args, char* message) { if (args->arg_count != 1) { strcpy(message, "mcs_isnull() requires one argument"); return 1; } return 0; } void mcs_isnull_deinit(UDF_INIT* initid) { } long long mcs_isnull(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* error) { return 0; } /** * ALLNULL connector stub */ struct allnull_data { ulonglong totalQuantity; ulonglong totalNulls; }; my_bool allnull_init(UDF_INIT* initid, UDF_ARGS* args, char* message) { struct allnull_data* data; // if (args->arg_count != 1) // { // strcpy(message,"allnull() requires one argument"); // return 1; // } if (!(data = (struct allnull_data*)malloc(sizeof(struct allnull_data)))) { strmov(message, "Couldn't allocate memory"); return 1; } data->totalQuantity = 0; data->totalNulls = 0; initid->ptr = (char*)data; return 0; } void allnull_deinit(UDF_INIT* initid) { free(initid->ptr); } long long allnull(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null, char* error __attribute__((unused))) { struct allnull_data* data = (struct allnull_data*)initid->ptr; return data->totalQuantity > 0 && data->totalNulls == data->totalQuantity; } void allnull_clear(UDF_INIT* initid, char* is_null __attribute__((unused)), char* message __attribute__((unused))) { struct allnull_data* data = (struct allnull_data*)initid->ptr; data->totalQuantity = 0; data->totalNulls = 0; } void allnull_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused))) { struct allnull_data* data = (struct allnull_data*)initid->ptr; const char* word = args->args[0]; data->totalQuantity++; if (!word) { data->totalNulls++; } } /** * SSQ connector stub */ struct ssq_data { double sumsq; }; my_bool ssq_init(UDF_INIT* initid, UDF_ARGS* args, char* message) { struct ssq_data* data; if (args->arg_count != 1) { strcpy(message, "ssq() requires one argument"); return 1; } if (!(data = (struct ssq_data*)malloc(sizeof(struct ssq_data)))) { strmov(message, "Couldn't allocate memory"); return 1; } data->sumsq = 0; initid->ptr = (char*)data; return 0; } void ssq_deinit(UDF_INIT* initid) { free(initid->ptr); } void ssq_clear(UDF_INIT* initid, char* is_null __attribute__((unused)), char* message __attribute__((unused))) { struct ssq_data* data = (struct ssq_data*)initid->ptr; data->sumsq = 0; } void ssq_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused))) { struct ssq_data* data = (struct ssq_data*)initid->ptr; double val = cvtArgToDouble(args->arg_type[0], args->args[0]); data->sumsq = val * val; } long long ssq(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null, char* error __attribute__((unused))) { struct ssq_data* data = (struct ssq_data*)initid->ptr; return data->sumsq; } //======================================================================= /** * MEDIAN connector stub */ my_bool median_init(UDF_INIT* initid, UDF_ARGS* args, char* message) { if (args->arg_count != 1) { strcpy(message, "median() requires one argument"); return 1; } /* if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data)))) { strmov(message,"Couldn't allocate memory"); return 1; } data->sumsq = 0; initid->ptr = (char*)data; */ return 0; } void median_deinit(UDF_INIT* initid) { // free(initid->ptr); } void median_clear(UDF_INIT* initid, char* is_null __attribute__((unused)), char* message __attribute__((unused))) { // struct ssq_data* data = (struct ssq_data*)initid->ptr; // data->sumsq = 0; } void median_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused))) { // struct ssq_data* data = (struct ssq_data*)initid->ptr; // double val = cvtArgToDouble(args->arg_type[0], args->args[0]); // data->sumsq = val*val; } long long median(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null, char* error __attribute__((unused))) { // struct ssq_data* data = (struct ssq_data*)initid->ptr; // return data->sumsq; return 0; } /** * avg_mode connector stub */ my_bool avg_mode_init(UDF_INIT* initid, UDF_ARGS* args, char* message) { if (args->arg_count != 1) { strcpy(message, "avg_mode() requires one argument"); return 1; } /* if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data)))) { strmov(message,"Couldn't allocate memory"); return 1; } data->sumsq = 0; initid->ptr = (char*)data; */ return 0; } void avg_mode_deinit(UDF_INIT* initid) { // free(initid->ptr); } void avg_mode_clear(UDF_INIT* initid, char* is_null __attribute__((unused)), char* message __attribute__((unused))) { // struct ssq_data* data = (struct ssq_data*)initid->ptr; // data->sumsq = 0; } void avg_mode_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused))) { // struct ssq_data* data = (struct ssq_data*)initid->ptr; // double val = cvtArgToDouble(args->arg_type[0], args->args[0]); // data->sumsq = val*val; } long long avg_mode(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null, char* error __attribute__((unused))) { // struct ssq_data* data = (struct ssq_data*)initid->ptr; // return data->sumsq; return 0; } //======================================================================= /** * avgx connector stub. Exactly the same functionality as the * built in avg() function. Use to test the performance of the * API */ struct avgx_data { double sumx; int64_t cnt; }; my_bool avgx_init(UDF_INIT* initid, UDF_ARGS* args, char* message) { struct avgx_data* data; if (args->arg_count != 1) { strcpy(message, "avgx() requires one argument"); return 1; } if (!(data = (struct avgx_data*)malloc(sizeof(struct avgx_data)))) { strmov(message, "Couldn't allocate memory"); return 1; } data->sumx = 0; data->cnt = 0; initid->ptr = (char*)data; return 0; } void avgx_deinit(UDF_INIT* initid) { free(initid->ptr); } void avgx_clear(UDF_INIT* initid, char* is_null __attribute__((unused)), char* message __attribute__((unused))) { struct avgx_data* data = (struct avgx_data*)initid->ptr; data->sumx = 0; data->cnt = 0; } void avgx_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused))) { // TODO test for NULL in x and y struct avgx_data* data = (struct avgx_data*)initid->ptr; double xval = cvtArgToDouble(args->arg_type[1], args->args[0]); ++data->cnt; data->sumx += xval; } long long avgx(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null, char* error __attribute__((unused))) { struct avgx_data* data = (struct avgx_data*)initid->ptr; return data->sumx / data->cnt; } /** * distinct_count connector stub */ my_bool distinct_count_init(UDF_INIT* initid, UDF_ARGS* args, char* message) { if (args->arg_count != 1) { strcpy(message, "distinct_count() requires one argument"); return 1; } return 0; } void distinct_count_deinit(UDF_INIT* initid) { // free(initid->ptr); } void distinct_count_clear(UDF_INIT* initid, char* is_null __attribute__((unused)), char* message __attribute__((unused))) { } void distinct_count_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* message __attribute__((unused))) { } long long distinct_count(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)), char* is_null, char* error __attribute__((unused))) { return 0; } }