1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-08-26 05:02:32 +03:00

MCOL-641 Implement int128_t versions of arithmetic operations and add unit test cases.

This commit is contained in:
Gagan Goel
2020-04-03 13:30:10 -04:00
committed by Roman Nozdrin
parent b5534eb847
commit 554c6da8e8
8 changed files with 1254 additions and 502 deletions

View File

@@ -48,7 +48,7 @@ namespace datatypes
template<typename BinaryOperation,
typename OpOverflowCheck,
typename MultiplicationOverflowCheck>
void execute(const execplan::IDB_Decimal& l,
void addSubtractExecute(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r,
execplan::IDB_Decimal& result,
BinaryOperation op,
@@ -57,7 +57,7 @@ namespace datatypes
{
int128_t lValue = Decimal::isWideDecimalType(l.precision)
? l.s128Value : l.value;
int128_t rValue = Decimal::isWideDecimalType(l.precision)
int128_t rValue = Decimal::isWideDecimalType(r.precision)
? r.s128Value : r.value;
if (result.scale == l.scale && result.scale == r.scale)
@@ -78,7 +78,9 @@ namespace datatypes
{
int128_t scaleMultiplier;
getScaleDivisor(scaleMultiplier, l.scale - result.scale);
lValue /= scaleMultiplier;
lValue = (int128_t) (lValue > 0 ?
(__float128)lValue / scaleMultiplier + 0.5 :
(__float128)lValue / scaleMultiplier - 0.5);
}
if (result.scale > r.scale)
@@ -92,7 +94,9 @@ namespace datatypes
{
int128_t scaleMultiplier;
getScaleDivisor(scaleMultiplier, r.scale - result.scale);
rValue /= scaleMultiplier;
rValue = (int128_t) (rValue > 0 ?
(__float128)rValue / scaleMultiplier + 0.5 :
(__float128)rValue / scaleMultiplier - 0.5);
}
// We assume there is no way that lValue or rValue calculations
@@ -102,6 +106,94 @@ namespace datatypes
result.s128Value = op(lValue, rValue);
}
template<typename OpOverflowCheck,
typename MultiplicationOverflowCheck>
void divisionExecute(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r,
execplan::IDB_Decimal& result,
OpOverflowCheck opOverflowCheck,
MultiplicationOverflowCheck mulOverflowCheck)
{
int128_t lValue = Decimal::isWideDecimalType(l.precision)
? l.s128Value : l.value;
int128_t rValue = Decimal::isWideDecimalType(r.precision)
? r.s128Value : r.value;
opOverflowCheck(lValue, rValue);
if (result.scale >= l.scale - r.scale)
{
int128_t scaleMultiplier;
getScaleDivisor(scaleMultiplier, result.scale - (l.scale - r.scale));
// TODO How do we check overflow of (int128_t)((__float128)lValue / rValue * scaleMultiplier) ?
result.s128Value = (int128_t)(( (lValue > 0 && rValue > 0) || (lValue < 0 && rValue < 0) ?
(__float128)lValue / rValue * scaleMultiplier + 0.5 :
(__float128)lValue / rValue * scaleMultiplier - 0.5));
}
else
{
int128_t scaleMultiplier;
getScaleDivisor(scaleMultiplier, (l.scale - r.scale) - result.scale);
result.s128Value = (int128_t)(( (lValue > 0 && rValue > 0) || (lValue < 0 && rValue < 0) ?
(__float128)lValue / rValue / scaleMultiplier + 0.5 :
(__float128)lValue / rValue / scaleMultiplier - 0.5));
}
}
template<typename OpOverflowCheck,
typename MultiplicationOverflowCheck>
void multiplicationExecute(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r,
execplan::IDB_Decimal& result,
OpOverflowCheck opOverflowCheck,
MultiplicationOverflowCheck mulOverflowCheck)
{
int128_t lValue = Decimal::isWideDecimalType(l.precision)
? l.s128Value : l.value;
int128_t rValue = Decimal::isWideDecimalType(r.precision)
? r.s128Value : r.value;
if (lValue == 0 || rValue == 0)
{
result.s128Value = 0;
return;
}
if (result.scale >= l.scale + r.scale)
{
int128_t scaleMultiplier;
getScaleDivisor(scaleMultiplier, result.scale - (l.scale + r.scale));
opOverflowCheck(lValue, rValue, result.s128Value);
opOverflowCheck(result.s128Value, scaleMultiplier, result.s128Value);
}
else
{
unsigned int diff = l.scale + r.scale - result.scale;
int128_t scaleMultiplierL, scaleMultiplierR;
getScaleDivisor(scaleMultiplierL, diff / 2);
getScaleDivisor(scaleMultiplierR, diff - (diff / 2));
lValue = (int128_t)(( (lValue > 0) ?
(__float128)lValue / scaleMultiplierL + 0.5 :
(__float128)lValue / scaleMultiplierL - 0.5));
rValue = (int128_t)(( (rValue > 0) ?
(__float128)rValue / scaleMultiplierR + 0.5 :
(__float128)rValue / scaleMultiplierR - 0.5));
opOverflowCheck(lValue, rValue, result.s128Value);;
}
}
std::string Decimal::toString(execplan::IDB_Decimal& value)
{
char buf[utils::MAXLENGTH16BYTES];
@@ -163,13 +255,9 @@ namespace datatypes
{
std::plus<int128_t> add;
NoOverflowCheck noOverflowCheck;
execute(l, r, result, add, noOverflowCheck, noOverflowCheck);
addSubtractExecute(l, r, result, add, noOverflowCheck, noOverflowCheck);
}
template
void Decimal::addition<int128_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result);
// with overflow check
template<>
void Decimal::addition<int128_t, true>(const execplan::IDB_Decimal& l,
@@ -178,13 +266,10 @@ namespace datatypes
std::plus<int128_t> add;
AdditionOverflowCheck overflowCheck;
MultiplicationOverflowCheck mulOverflowCheck;
execute(l, r, result, add, overflowCheck, mulOverflowCheck);
addSubtractExecute(l, r, result, add, overflowCheck, mulOverflowCheck);
}
template
void Decimal::addition<int128_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result);
// no overflow check
template<>
void Decimal::addition<int64_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
@@ -195,86 +280,252 @@ namespace datatypes
return;
}
int64_t lValue = 0, rValue = 0;
int64_t lValue = l.value, rValue = r.value;
if (result.scale >= l.scale)
lValue = l.value * mcs_pow_10[result.scale - l.scale];
else
lValue = (int64_t)(l.value > 0 ?
(double)l.value / mcs_pow_10[l.scale - result.scale] + 0.5 :
(double)l.value / mcs_pow_10[l.scale - result.scale] - 0.5);
if (result.scale > l.scale)
lValue *= mcs_pow_10[result.scale - l.scale];
else if (result.scale < l.scale)
lValue = (int64_t)(lValue > 0 ?
(double)lValue / mcs_pow_10[l.scale - result.scale] + 0.5 :
(double)lValue / mcs_pow_10[l.scale - result.scale] - 0.5);
if (result.scale >= r.scale)
rValue = r.value * mcs_pow_10[result.scale - r.scale];
else
rValue = (int64_t)(r.value > 0 ?
(double)r.value / mcs_pow_10[r.scale - result.scale] + 0.5 :
(double)r.value / mcs_pow_10[r.scale - result.scale] - 0.5);
if (result.scale > r.scale)
rValue *= mcs_pow_10[result.scale - r.scale];
else if (result.scale < r.scale)
rValue = (int64_t)(rValue > 0 ?
(double)rValue / mcs_pow_10[r.scale - result.scale] + 0.5 :
(double)rValue / mcs_pow_10[r.scale - result.scale] - 0.5);
result.value = lValue + rValue;
}
template
void Decimal::addition<int64_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result);
// with overflow check
template<>
void Decimal::addition<int64_t, true>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
throw logging::NotImplementedExcept("Decimal::addition<int64>");
AdditionOverflowCheck additionOverflowCheck;
MultiplicationOverflowCheck mulOverflowCheck;
if (result.scale == l.scale && result.scale == r.scale)
{
additionOverflowCheck(l.value, r.value);
result.value = l.value + r.value;
return;
}
int64_t lValue = l.value, rValue = r.value;
if (result.scale > l.scale)
mulOverflowCheck(lValue, mcs_pow_10[result.scale - l.scale], lValue);
else if (result.scale < l.scale)
lValue = (int64_t)(lValue > 0 ?
(double)lValue / mcs_pow_10[l.scale - result.scale] + 0.5 :
(double)lValue / mcs_pow_10[l.scale - result.scale] - 0.5);
if (result.scale > r.scale)
mulOverflowCheck(rValue, mcs_pow_10[result.scale - r.scale], rValue);
else if (result.scale < r.scale)
rValue = (int64_t)(rValue > 0 ?
(double)rValue / mcs_pow_10[r.scale - result.scale] + 0.5 :
(double)rValue / mcs_pow_10[r.scale - result.scale] - 0.5);
additionOverflowCheck(lValue, rValue);
result.value = lValue + rValue;
}
// no overflow check
template<>
void Decimal::subtraction<int128_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
std::minus<int128_t> subtract;
NoOverflowCheck noOverflowCheck;
addSubtractExecute(l, r, result, subtract, noOverflowCheck, noOverflowCheck);
}
// with overflow check
template<>
void Decimal::subtraction<int128_t, true>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
std::minus<int128_t> subtract;
SubtractionOverflowCheck overflowCheck;
MultiplicationOverflowCheck mulOverflowCheck;
addSubtractExecute(l, r, result, subtract, overflowCheck, mulOverflowCheck);
}
// no overflow check
template<>
void Decimal::subtraction<int64_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
if (result.scale == l.scale && result.scale == r.scale)
{
result.value = l.value - r.value;
return;
}
int64_t lValue = l.value, rValue = r.value;
if (result.scale > l.scale)
lValue *= mcs_pow_10[result.scale - l.scale];
else if (result.scale < l.scale)
lValue = (int64_t)(lValue > 0 ?
(double)lValue / mcs_pow_10[l.scale - result.scale] + 0.5 :
(double)lValue / mcs_pow_10[l.scale - result.scale] - 0.5);
if (result.scale > r.scale)
rValue *= mcs_pow_10[result.scale - r.scale];
else if (result.scale < r.scale)
rValue = (int64_t)(rValue > 0 ?
(double)rValue / mcs_pow_10[r.scale - result.scale] + 0.5 :
(double)rValue / mcs_pow_10[r.scale - result.scale] - 0.5);
result.value = lValue - rValue;
}
// with overflow check
template<>
void Decimal::subtraction<int64_t, true>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
SubtractionOverflowCheck subtractionOverflowCheck;
MultiplicationOverflowCheck mulOverflowCheck;
if (result.scale == l.scale && result.scale == r.scale)
{
subtractionOverflowCheck(l.value, r.value);
result.value = l.value - r.value;
return;
}
int64_t lValue = l.value, rValue = r.value;
if (result.scale > l.scale)
mulOverflowCheck(lValue, mcs_pow_10[result.scale - l.scale], lValue);
else if (result.scale < l.scale)
lValue = (int64_t)(lValue > 0 ?
(double)lValue / mcs_pow_10[l.scale - result.scale] + 0.5 :
(double)lValue / mcs_pow_10[l.scale - result.scale] - 0.5);
if (result.scale > r.scale)
mulOverflowCheck(rValue, mcs_pow_10[result.scale - r.scale], rValue);
else if (result.scale < r.scale)
rValue = (int64_t)(rValue > 0 ?
(double)rValue / mcs_pow_10[r.scale - result.scale] + 0.5 :
(double)rValue / mcs_pow_10[r.scale - result.scale] - 0.5);
subtractionOverflowCheck(lValue, rValue);
result.value = lValue - rValue;
}
// no overflow check
template<>
void Decimal::division<int128_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
std::divides<int128_t> division;
NoOverflowCheck noOverflowCheck;
execute(l, r, result, division, noOverflowCheck, noOverflowCheck);
divisionExecute(l, r, result, noOverflowCheck, noOverflowCheck);
}
template
void Decimal::division<int128_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result);
// With overflow check
template<>
void Decimal::division<int128_t, true>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
std::divides<int128_t> division;
DivisionOverflowCheck overflowCheck;
MultiplicationOverflowCheck mulOverflowCheck;
execute(l, r, result, division, overflowCheck, mulOverflowCheck);
divisionExecute(l, r, result, overflowCheck, mulOverflowCheck);
}
// no overflow check
// We rely on the zero check from ArithmeticOperator::execute
template<>
void Decimal::division<int64_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
if (result.scale >= l.scale - r.scale)
result.value = (int64_t)(( (l.value > 0 && r.value > 0)
|| (l.value < 0 && r.value < 0) ?
(long double)l.value / r.value * mcs_pow_10[result.scale - (l.scale - r.scale)] + 0.5 :
(long double)l.value / r.value * mcs_pow_10[result.scale - (l.scale - r.scale)] - 0.5));
else
result.value = (int64_t)(( (l.value > 0 && r.value > 0)
|| (l.value < 0 && r.value < 0) ?
(long double)l.value / r.value / mcs_pow_10[l.scale - r.scale - result.scale] + 0.5 :
(long double)l.value / r.value / mcs_pow_10[l.scale - r.scale - result.scale] - 0.5));
result.value = (int64_t)(( (l.value > 0 && r.value > 0) || (l.value < 0 && r.value < 0) ?
(long double)l.value / r.value * mcs_pow_10[result.scale - (l.scale - r.scale)] + 0.5 :
(long double)l.value / r.value * mcs_pow_10[result.scale - (l.scale - r.scale)] - 0.5));
else
result.value = (int64_t)(( (l.value > 0 && r.value > 0) || (l.value < 0 && r.value < 0) ?
(long double)l.value / r.value / mcs_pow_10[l.scale - r.scale - result.scale] + 0.5 :
(long double)l.value / r.value / mcs_pow_10[l.scale - r.scale - result.scale] - 0.5));
}
template
void Decimal::division<int64_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result);
// With overflow check
template<>
void Decimal::division<int64_t, true>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
throw logging::NotImplementedExcept("Decimal::division<int64>");
DivisionOverflowCheck divisionOverflowCheck;
divisionOverflowCheck(l.value, r.value);
if (result.scale >= l.scale - r.scale)
// TODO How do we check overflow of (int64_t)((long double)l.value / r.value * mcs_pow_10[result.scale - (l.scale - r.scale)]) ?
result.value = (int64_t)(( (l.value > 0 && r.value > 0) || (l.value < 0 && r.value < 0) ?
(long double)l.value / r.value * mcs_pow_10[result.scale - (l.scale - r.scale)] + 0.5 :
(long double)l.value / r.value * mcs_pow_10[result.scale - (l.scale - r.scale)] - 0.5));
else
result.value = (int64_t)(( (l.value > 0 && r.value > 0) || (l.value < 0 && r.value < 0) ?
(long double)l.value / r.value / mcs_pow_10[l.scale - r.scale - result.scale] + 0.5 :
(long double)l.value / r.value / mcs_pow_10[l.scale - r.scale - result.scale] - 0.5));
}
// no overflow check
template<>
void Decimal::multiplication<int128_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
MultiplicationNoOverflowCheck noOverflowCheck;
multiplicationExecute(l, r, result, noOverflowCheck, noOverflowCheck);
}
// With overflow check
template<>
void Decimal::multiplication<int128_t, true>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
MultiplicationOverflowCheck mulOverflowCheck;
multiplicationExecute(l, r, result, mulOverflowCheck, mulOverflowCheck);
}
// no overflow check
template<>
void Decimal::multiplication<int64_t, false>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
if (result.scale >= l.scale + r.scale)
result.value = l.value * r.value * mcs_pow_10[result.scale - (l.scale + r.scale)];
else
result.value = (int64_t)(( (l.value > 0 && r.value > 0) || (l.value < 0 && r.value < 0) ?
(double)l.value * r.value / mcs_pow_10[l.scale + r.scale - result.scale] + 0.5 :
(double)l.value * r.value / mcs_pow_10[l.scale + r.scale - result.scale] - 0.5));
}
// With overflow check
template<>
void Decimal::multiplication<int64_t, true>(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r, execplan::IDB_Decimal& result)
{
MultiplicationOverflowCheck mulOverflowCheck;
if (result.scale >= l.scale + r.scale)
{
mulOverflowCheck(l.value, r.value, result.value);
mulOverflowCheck(result.value, mcs_pow_10[result.scale - (l.scale + r.scale)], result.value);
}
else
{
mulOverflowCheck(l.value, r.value, result.value);
result.value = (int64_t)(( (result.value > 0) ?
(double)result.value / mcs_pow_10[l.scale + r.scale - result.scale] + 0.5 :
(double)result.value / mcs_pow_10[l.scale + r.scale - result.scale] - 0.5));
}
}
} // end of namespace

View File

@@ -35,6 +35,7 @@ namespace datatypes
constexpr uint32_t MAXDECIMALWIDTH = 16U;
constexpr uint8_t INT64MAXPRECISION = 18U;
constexpr uint8_t INT128MAXPRECISION = 38U;
constexpr uint8_t MAXLEGACYWIDTH = 8U;
const uint64_t mcs_pow_10[20] =
{
@@ -126,6 +127,15 @@ class Decimal
const execplan::IDB_Decimal& r,
execplan::IDB_Decimal& result);
/**
@brief Subtraction template that supports overflow check and
two internal representations of decimal.
*/
template<typename T, bool overflow>
static void subtraction(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r,
execplan::IDB_Decimal& result);
/**
@brief Division template that supports overflow check and
two internal representations of decimal.
@@ -136,7 +146,16 @@ class Decimal
execplan::IDB_Decimal& result);
/**
@brief Convinience method to put decimal into a std:;string.
@brief Multiplication template that supports overflow check and
two internal representations of decimal.
*/
template<typename T, bool overflow>
static void multiplication(const execplan::IDB_Decimal& l,
const execplan::IDB_Decimal& r,
execplan::IDB_Decimal& result);
/**
@brief Convenience method to put decimal into a std::string.
*/
static std::string toString(execplan::IDB_Decimal& value);
@@ -161,6 +180,66 @@ class Decimal
&& precision <= INT128MAXPRECISION;
}
/**
@brief The method sets the legacy scale and precision of a wide decimal
column which is the result of an arithmetic operation.
*/
static inline void setDecimalScalePrecisionLegacy(execplan::CalpontSystemCatalog::ColType& ct,
unsigned int precision, unsigned int scale)
{
ct.scale = scale;
if (ct.scale == 0)
ct.precision = precision - 1;
else
ct.precision = precision - scale;
}
/**
@brief The method sets the scale and precision of a wide decimal
column which is the result of an arithmetic operation.
*/
static inline void setDecimalScalePrecision(execplan::CalpontSystemCatalog::ColType& ct,
unsigned int precision, unsigned int scale)
{
ct.colWidth = (precision > INT64MAXPRECISION)
? MAXDECIMALWIDTH : MAXLEGACYWIDTH;
ct.precision = (precision > INT128MAXPRECISION)
? INT128MAXPRECISION : precision;
ct.scale = scale;
}
/**
@brief The method sets the scale and precision of a wide decimal
column which is the result of an arithmetic operation, based on a heuristic.
*/
static inline void setDecimalScalePrecisionHeuristic(execplan::CalpontSystemCatalog::ColType& ct,
unsigned int precision, unsigned int scale)
{
unsigned int diff = 0;
if (precision > INT128MAXPRECISION)
{
ct.precision = INT128MAXPRECISION;
diff = precision - INT128MAXPRECISION;
}
else
{
ct.precision = precision;
}
ct.scale = scale;
if (diff != 0)
{
ct.scale = scale - (int)(diff * (38.0/65.0));
if (ct.scale < 0)
ct.scale = 0;
}
}
};
/**
@@ -170,17 +249,25 @@ class Decimal
struct DivisionOverflowCheck {
void operator()(const int128_t& x, const int128_t& y)
{
if (x == Decimal::maxInt128 && y == -1)
if (x == Decimal::minInt128 && y == -1)
{
throw logging::OperationOverflowExcept(
"Decimal::division<int128_t> produces an overflow.");
}
}
void operator()(const int64_t x, const int64_t y)
{
if (x == std::numeric_limits<int64_t>::min() && y == -1)
{
throw logging::OperationOverflowExcept(
"Decimal::division<int64_t> produces an overflow.");
}
}
};
/**
@brief The structure contains an overflow check for int128
addition.
and int64_t multiplication.
*/
struct MultiplicationOverflowCheck {
void operator()(const int128_t& x, const int128_t& y)
@@ -189,7 +276,7 @@ struct MultiplicationOverflowCheck {
{
throw logging::OperationOverflowExcept(
"Decimal::multiplication<int128_t> or scale multiplication \
produces an overflow.");
produces an overflow.");
}
}
bool operator()(const int128_t& x, const int128_t& y, int128_t& r)
@@ -198,16 +285,45 @@ struct MultiplicationOverflowCheck {
{
throw logging::OperationOverflowExcept(
"Decimal::multiplication<int128_t> or scale multiplication \
produces an overflow.");
produces an overflow.");
}
return true;
}
void operator()(const int64_t x, const int64_t y)
{
if (x * y / y != x)
{
throw logging::OperationOverflowExcept(
"Decimal::multiplication<int64_t> or scale multiplication \
produces an overflow.");
}
}
bool operator()(const int64_t x, const int64_t y, int64_t& r)
{
if ((r = x * y) / y != x)
{
throw logging::OperationOverflowExcept(
"Decimal::multiplication<int64_t> or scale multiplication \
produces an overflow.");
}
return true;
}
};
/**
@brief The strucuture runs an empty overflow check for int128
multiplication operation.
*/
struct MultiplicationNoOverflowCheck {
void operator()(const int128_t& x, const int128_t& y, int128_t& r)
{
r = x * y;
}
};
/**
@brief The structure contains an overflow check for int128
addition.
and int64 addition.
*/
struct AdditionOverflowCheck {
void operator()(const int128_t& x, const int128_t& y)
@@ -219,6 +335,40 @@ struct AdditionOverflowCheck {
"Decimal::addition<int128_t> produces an overflow.");
}
}
void operator()(const int64_t x, const int64_t y)
{
if ((y > 0 && x > std::numeric_limits<int64_t>::max() - y)
|| (y < 0 && x < std::numeric_limits<int64_t>::min() - y))
{
throw logging::OperationOverflowExcept(
"Decimal::addition<int64_t> produces an overflow.");
}
}
};
/**
@brief The structure contains an overflow check for int128
subtraction.
*/
struct SubtractionOverflowCheck {
void operator()(const int128_t& x, const int128_t& y)
{
if ((y > 0 && x < Decimal::minInt128 + y)
|| (y < 0 && x > Decimal::maxInt128 + y))
{
throw logging::OperationOverflowExcept(
"Decimal::subtraction<int128_t> produces an overflow.");
}
}
void operator()(const int64_t x, const int64_t y)
{
if ((y > 0 && x < std::numeric_limits<int64_t>::min() + y)
|| (y < 0 && x > std::numeric_limits<int64_t>::max() + y))
{
throw logging::OperationOverflowExcept(
"Decimal::subtraction<int64_t> produces an overflow.");
}
}
};
/**