1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-07-29 08:21:15 +03:00

support_max_min

This commit is contained in:
NTH19
2022-07-14 21:57:20 +08:00
committed by Andrey Piskunov
parent 9f5a1b559d
commit 19ca844cd1
3 changed files with 509 additions and 353 deletions

View File

@ -41,6 +41,7 @@ using namespace boost;
#include "dataconvert.h"
#include "mcs_decimal.h"
#include "simd_sse.h"
#include "simd_arm.h"
#include "utils/common/columnwidth.h"
#include "exceptclasses.h"
@ -118,24 +119,6 @@ inline int compareBlock(const void* a, const void* b)
return ((*(T*)a) - (*(T*)b));
}
template <class To, class From>
std::enable_if_t<
sizeof(To) == sizeof(From) &&
std::is_trivially_copyable_v<From> &&
std::is_trivially_copyable_v<To>,
To>
// constexpr support needs compiler magic
bitCast(const From& src) noexcept
{
static_assert(std::is_trivially_constructible_v<To>,
"This implementation additionally requires "
"destination type to be trivially constructible");
To dst;
std::memcpy(&dst, &src, sizeof(To));
return dst;
}
// this function is out-of-band, we don't need to inline it
void logIt(int mid, int arg1, const string& arg2 = string())
{
@ -942,7 +925,7 @@ inline void writeColValue(uint8_t OutputType, ColResultHeader* out, uint16_t rid
}
}
#if defined(__x86_64__)
#if defined(__x86_64__) || defined(__aarch64__)
template <typename T, ENUM_KIND KIND, bool HAS_INPUT_RIDS,
typename std::enable_if<HAS_INPUT_RIDS == false, T>::type* = nullptr>
inline void vectUpdateMinMax(const bool validMinMax, const bool isNonNullOrEmpty, T& Min, T& Max, T curValue,
@ -1239,7 +1222,7 @@ void scalarFiltering(
}
}
#if defined(__x86_64__)
#if defined(__x86_64__) || defined(__aarch64__)
template <typename VT, typename SIMD_WRAPPER_TYPE, bool HAS_INPUT_RIDS, typename T,
typename std::enable_if<HAS_INPUT_RIDS == false, T>::type* = nullptr>
inline SIMD_WRAPPER_TYPE simdDataLoad(VT& processor, const T* srcArray, const T* origSrcArray,
@ -1295,19 +1278,13 @@ inline SIMD_WRAPPER_TYPE simdSwapedOrderDataLoad(const ColRequestHeaderDataType
}
template <typename VT, typename SimdType>
void vectorizedUpdateMinMax(const bool validMinMax, const MT nonNullOrEmptyMask, VT simdProcessor,
void vectorizedUpdateMinMax(const bool validMinMax, const MT nonNullOrEmptyMask, VT& simdProcessor,
SimdType& dataVec, SimdType& simdMin, SimdType& simdMax)
{
if (validMinMax)
if (validMinMax && nonNullOrEmptyMask)
{
simdMin = simdProcessor.blend(
simdMin, dataVec,
simdProcessor.bwAnd(simdProcessor.cmpGt2(simdMin, dataVec),
bitCast<SimdType>(simd::bitMaskToByteMask16(nonNullOrEmptyMask))));
simdMax = simdProcessor.blend(
simdMax, dataVec,
simdProcessor.bwAnd(simdProcessor.cmpGt2(dataVec, simdMax),
bitCast<SimdType>(simd::bitMaskToByteMask16(nonNullOrEmptyMask))));
simdMin = simdProcessor.min(simdMin, dataVec);
simdMax = simdProcessor.max(simdMax, dataVec);
}
}
@ -1328,7 +1305,7 @@ void scalarUpdateMinMax(const bool validMinMax, const MT nonNullOrEmptyMask, VT&
}
template<typename T, typename VT, typename SimdType>
void extractMinMax(VT& simdProcessor, SimdType simdMin, SimdType simdMax, T& min, T& max)
void extractMinMax(VT& simdProcessor, SimdType& simdMin, SimdType& simdMax, T& min, T& max)
{
constexpr const uint16_t size = VT::vecByteSize / sizeof(T);
T* simdMinVec = reinterpret_cast<T*>(&simdMin);
@ -1336,13 +1313,6 @@ void extractMinMax(VT& simdProcessor, SimdType simdMin, SimdType simdMax, T& min
max = *std::max_element(simdMaxVec, simdMaxVec + size);
min = *std::min_element(simdMinVec, simdMinVec + size);
}
template <typename T, typename VT, typename SimdType>
void getInitialSimdMinMax(VT& simdProcessor, SimdType& simdMin, SimdType& simdMax, T min, T max)
{
simdMin = simdProcessor.loadValue(min);
simdMax = simdProcessor.loadValue(max);
}
// This routine filters input block in a vectorized manner.
// It supports all output types, all input types.
// It doesn't support KIND==TEXT so upper layers filters this KIND out beforehand.
@ -1478,12 +1448,9 @@ void vectorizedFiltering(NewColRequestHeader* in, ColResultHeader* out, const T*
}
}
}
[[maybe_unused]] SimdType simdMin;
[[maybe_unused]] SimdType simdMax;
if constexpr (KIND != KIND_TEXT)
{
getInitialSimdMinMax(simdProcessor, simdMin, simdMax, min, max);
}
[[maybe_unused]] SimdType simdMin = simdDataLoad<VT, SimdWrapperType, HAS_INPUT_RIDS, T>(simdProcessor, srcArray,
origSrcArray, ridArray, 0).v;;
[[maybe_unused]] SimdType simdMax = simdMin;
// main loop
// writeMask tells which values must get into the result. Includes values that matches filters. Can have
// NULLs. nonEmptyMask tells which vector coords are not EMPTY magics. nonNullMask tells which vector coords
@ -1704,7 +1671,7 @@ void filterColumnData(NewColRequestHeader* in, ColResultHeader* out, uint16_t* r
// Syscat queries mustn't follow vectorized processing path b/c PP must return
// all values w/o any filter(even empty values filter) applied.
#if defined(__x86_64__)
#if defined(__x86_64__) || defined(__aarch64__)
// Don't use vectorized filtering for text based data types.
if (WIDTH < 16 &&
(KIND != KIND_TEXT || (KIND == KIND_TEXT && in->colType.strnxfrmIsValid()) ))

View File

@ -22,37 +22,33 @@
#include <gtest/gtest.h>
#include "datatypes/mcs_datatype.h"
#include "datatypes/mcs_int128.h"
#include "simd_sse.h"
#include "simd_arm.h"
#if defined(__x86_64__)
#include "simd_sse.h"
#define TESTS_USING_SSE 1
using float64_t = double;
using float32_t = float;
#endif
#ifdef __aarch64__
#include "simd_arm.h"
#define TESTS_USING_ARM 1
#endif
using namespace std;
template <typename T>
class SimdProcessorTypedTest : public testing::Test
{
public:
class SimdProcessorTypedTest : public testing::Test {
public:
using IntegralType = T;
#if TESTS_USING_SSE
using SimdType =
std::conditional_t<std::is_same<T, float>::value, simd::vi128f_wr,
std::conditional_t<std::is_same<T, double>::value, simd::vi128d_wr, simd::vi128_wr>>;
using Proc = typename simd::SimdFilterProcessor<SimdType, T>;
#else
using SimdType =
std::conditional_t<std::is_same<T, float>::value, simd::vi128f_wr,
std::conditional_t<std::is_same<T, double>::value, simd::vi128d_wr,
typename simd::TypeToVecWrapperType<T>::WrapperType>>;
using Proc = typename simd::SimdFilterProcessor<SimdType, T>;
#endif
#if TESTS_USING_SSE
using SimdType = std::conditional_t<std::is_same<T, float>::value,
simd::vi128f_wr,
std::conditional_t<std::is_same<T, double>::value,
simd::vi128d_wr,
simd::vi128_wr>>;
using Proc = typename simd::SimdFilterProcessor<SimdType, T>;
#else
using Proc = typename simd::SimdFilterProcessor<typename simd::TypeToVecWrapperType<T>::WrapperType, T>;
#endif
void SetUp() override
{
}

File diff suppressed because it is too large Load Diff