1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-07-29 08:21:15 +03:00

Put Welford's online algorithm everywhere

This commit is contained in:
mariadb-AndreyPiskunov
2022-09-06 18:45:56 +03:00
committed by Leonid Fedorov
parent 14b976991b
commit 14810d87ba
8 changed files with 531 additions and 227 deletions

View File

@ -39,11 +39,11 @@ static Add_regr_r2_ToUDAFMap addToMap;
struct regr_r2_data
{
uint64_t cnt;
long double sumx;
long double sumx2; // sum of (x squared)
long double sumy;
long double sumy2; // sum of (y squared)
long double sumxy; // sum of x * y
long double avgx;
long double varx;
long double avgy;
long double vary;
long double cxy;
};
mcsv1_UDAF::ReturnCode regr_r2::init(mcsv1Context* context, ColumnDatum* colTypes)
@ -76,11 +76,11 @@ mcsv1_UDAF::ReturnCode regr_r2::reset(mcsv1Context* context)
{
struct regr_r2_data* data = (struct regr_r2_data*)context->getUserData()->data;
data->cnt = 0;
data->sumx = 0.0;
data->sumx2 = 0.0;
data->sumy = 0.0;
data->sumy2 = 0.0;
data->sumxy = 0.0;
data->avgx = 0.0;
data->varx = 0.0;
data->avgy = 0.0;
data->vary = 0.0;
data->cxy = 0.0;
return mcsv1_UDAF::SUCCESS;
}
@ -89,16 +89,30 @@ mcsv1_UDAF::ReturnCode regr_r2::nextValue(mcsv1Context* context, ColumnDatum* va
double valy = toDouble(valsIn[0]);
double valx = toDouble(valsIn[1]);
struct regr_r2_data* data = (struct regr_r2_data*)context->getUserData()->data;
data->sumy += valy;
data->sumy2 += valy * valy;
data->sumx += valx;
data->sumx2 += valx * valx;
data->sumxy += valx * valy;
long double avgyPrev = data->avgy;
long double varyPrev = data->vary;
long double avgxPrev = data->avgx;
long double varxPrev = data->varx;
long double cxyPrev = data->cxy;
++data->cnt;
uint64_t cnt = data->cnt;
long double dx = valx - avgxPrev;
long double dy = valy - avgyPrev;
avgyPrev += dy / cnt;
avgxPrev += dx / cnt;
varxPrev += dx * (valx - avgxPrev);
varyPrev += dy * (valy - avgyPrev);
cxyPrev += dx * (valy - avgyPrev);
data->avgx = avgxPrev;
data->avgy = avgyPrev;
data->varx = varxPrev;
data->vary = varyPrev;
data->cxy = cxyPrev;
return mcsv1_UDAF::SUCCESS;
}
@ -113,12 +127,38 @@ mcsv1_UDAF::ReturnCode regr_r2::subEvaluate(mcsv1Context* context, const UserDat
struct regr_r2_data* outData = (struct regr_r2_data*)context->getUserData()->data;
struct regr_r2_data* inData = (struct regr_r2_data*)userDataIn->data;
outData->sumx += inData->sumx;
outData->sumx2 += inData->sumx2;
outData->sumy += inData->sumy;
outData->sumy2 += inData->sumy2;
outData->sumxy += inData->sumxy;
outData->cnt += inData->cnt;
uint64_t outCnt = outData->cnt;
long double outAvgx = outData->avgx;
long double outAvgy = outData->avgy;
long double outVarx = outData->varx;
long double outVary = outData->vary;
long double outCxy = outData->cxy;
uint64_t inCnt = inData->cnt;
long double inAvgx = inData->avgx;
long double inAvgy = inData->avgy;
long double inVarx = inData->varx;
long double inVary = inData->vary;
long double inCxy = inData->cxy;
uint64_t resCnt = inCnt + outCnt;
long double deltax = outAvgx - inAvgx;
long double deltay = outAvgy - inAvgy;
long double resAvgx = inAvgx + deltax * outCnt / resCnt;
long double resAvgy = inAvgy + deltay * outCnt / resCnt;
long double resVarx = outVarx + inVarx + deltax * deltax * inCnt * outCnt / resCnt;
long double resVary = outVary + inVary + deltay * deltay * inCnt * outCnt / resCnt;
long double resCxy = outCxy + inCxy + deltax * deltay * inCnt * outCnt / resCnt;
outData->avgx = resAvgx;
outData->avgy = resAvgy;
outData->varx = resVarx;
outData->vary = resVary;
outData->cxy = resCxy;
outData->cnt = resCnt;
return mcsv1_UDAF::SUCCESS;
}
@ -129,19 +169,17 @@ mcsv1_UDAF::ReturnCode regr_r2::evaluate(mcsv1Context* context, static_any::any&
double N = data->cnt;
if (N > 1)
{
long double sumx = data->sumx;
long double sumy = data->sumy;
long double sumx2 = data->sumx2;
long double sumy2 = data->sumy2;
long double sumxy = data->sumxy;
long double varx = data->varx;
long double vary = data->vary;
long double cxy = data->cxy;
long double var_popx = (sumx2 - (sumx * sumx / N)) / N;
long double var_popx = varx / N;
if (var_popx <= 0) // Catch -0
{
// When var_popx is 0, NULL is the result.
return mcsv1_UDAF::SUCCESS;
}
double var_popy = (sumy2 - (sumy * sumy / N)) / N;
long double var_popy = vary / N;
if (var_popy <= 0) // Catch -0
{
// When var_popy is 0, 1 is the result
@ -150,8 +188,7 @@ mcsv1_UDAF::ReturnCode regr_r2::evaluate(mcsv1Context* context, static_any::any&
}
long double std_popx = sqrt(var_popx);
long double std_popy = sqrt(var_popy);
long double covar_pop = (sumxy - ((sumx * sumy) / N)) / N;
long double corr = covar_pop / (std_popy * std_popx);
long double corr = cxy / (std_popy * std_popx * N);
valOut = static_cast<double>(corr * corr);
}
return mcsv1_UDAF::SUCCESS;
@ -163,14 +200,30 @@ mcsv1_UDAF::ReturnCode regr_r2::dropValue(mcsv1Context* context, ColumnDatum* va
double valx = toDouble(valsDropped[1]);
struct regr_r2_data* data = (struct regr_r2_data*)context->getUserData()->data;
data->sumy -= valy;
data->sumy2 -= valy * valy;
data->sumx -= valx;
data->sumx2 -= valx * valx;
data->sumxy -= valx * valy;
long double avgyPrev = data->avgy;
long double varyPrev = data->vary;
long double avgxPrev = data->avgx;
long double varxPrev = data->varx;
long double cxyPrev = data->cxy;
--data->cnt;
uint64_t cnt = data->cnt;
long double dx = valx - avgxPrev;
long double dy = valy - avgyPrev;
avgyPrev -= dy / cnt;
avgxPrev -= dx / cnt;
varxPrev -= dx * (valx - avgxPrev);
varyPrev -= dy * (valy - avgyPrev);
cxyPrev -= dx * (valy - avgyPrev);
data->avgx = avgxPrev;
data->avgy = avgyPrev;
data->varx = varxPrev;
data->vary = varyPrev;
data->cxy = cxyPrev;
return mcsv1_UDAF::SUCCESS;
}