1
0
mirror of https://github.com/mariadb-corporation/mariadb-columnstore-engine.git synced 2025-08-01 06:46:55 +03:00

Reformat all code to coding standard

This commit is contained in:
Andrew Hutchings
2017-10-26 17:18:17 +01:00
parent 4985f3456e
commit 01446d1e22
1296 changed files with 403852 additions and 353747 deletions

78
utils/udfsdk/allnull.cpp Executable file → Normal file
View File

@ -29,59 +29,63 @@ struct allnull_data
mcsv1_UDAF::ReturnCode allnull::init(mcsv1Context* context,
COL_TYPES& colTypes)
{
context->setUserDataSize(sizeof(allnull_data));
if (colTypes.size() < 1)
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("allnull() with 0 arguments");
return mcsv1_UDAF::ERROR;
}
context->setResultType(CalpontSystemCatalog::TINYINT);
context->setUserDataSize(sizeof(allnull_data));
return mcsv1_UDAF::SUCCESS;
if (colTypes.size() < 1)
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("allnull() with 0 arguments");
return mcsv1_UDAF::ERROR;
}
context->setResultType(CalpontSystemCatalog::TINYINT);
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode allnull::reset(mcsv1Context* context)
{
struct allnull_data* data = (struct allnull_data*)context->getUserData()->data;
data->totalQuantity = 0;
data->totalNulls = 0;
return mcsv1_UDAF::SUCCESS;
struct allnull_data* data = (struct allnull_data*)context->getUserData()->data;
data->totalQuantity = 0;
data->totalNulls = 0;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode allnull::nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn)
mcsv1_UDAF::ReturnCode allnull::nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn)
{
struct allnull_data* data = (struct allnull_data*)context->getUserData()->data;
for (size_t i = 0; i < context->getParameterCount(); i++)
{
data->totalQuantity++;
if (context->isParamNull(0))
{
data->totalNulls++;
}
}
return mcsv1_UDAF::SUCCESS;
struct allnull_data* data = (struct allnull_data*)context->getUserData()->data;
for (size_t i = 0; i < context->getParameterCount(); i++)
{
data->totalQuantity++;
if (context->isParamNull(0))
{
data->totalNulls++;
}
}
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode allnull::subEvaluate(mcsv1Context* context, const UserData* userDataIn)
{
struct allnull_data* outData = (struct allnull_data*)context->getUserData()->data;
struct allnull_data* inData = (struct allnull_data*)userDataIn->data;
outData->totalQuantity += inData->totalQuantity;
outData->totalNulls += inData->totalNulls;
return mcsv1_UDAF::SUCCESS;
struct allnull_data* outData = (struct allnull_data*)context->getUserData()->data;
struct allnull_data* inData = (struct allnull_data*)userDataIn->data;
outData->totalQuantity += inData->totalQuantity;
outData->totalNulls += inData->totalNulls;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode allnull::evaluate(mcsv1Context* context, static_any::any& valOut)
{
OUT_TYPE allNull;
struct allnull_data* data = (struct allnull_data*)context->getUserData()->data;
allNull = data->totalQuantity > 0 && data->totalNulls == data->totalQuantity;
valOut = allNull;
return mcsv1_UDAF::SUCCESS;
OUT_TYPE allNull;
struct allnull_data* data = (struct allnull_data*)context->getUserData()->data;
allNull = data->totalQuantity > 0 && data->totalNulls == data->totalQuantity;
valOut = allNull;
return mcsv1_UDAF::SUCCESS;
}

242
utils/udfsdk/allnull.h Executable file → Normal file
View File

@ -21,26 +21,26 @@
* mcsv1_UDAF.h
***********************************************************************/
/**
* Columnstore interface for writing a User Defined Aggregate
* Functions (UDAF) and User Defined Analytic Functions (UDAnF)
* or a function that can act as either - UDA(n)F
*
/**
* Columnstore interface for writing a User Defined Aggregate
* Functions (UDAF) and User Defined Analytic Functions (UDAnF)
* or a function that can act as either - UDA(n)F
*
* The basic steps are:
*
* 1. Create a the UDA(n)F function interface in some .h file.
* 2. Create the UDF function implementation in some .cpp file
* 3. Create the connector stub (MariaDB UDAF definition) for
* this UDF function.
* 4. build the dynamic library using all of the source.
* 5 Put the library in $COLUMNSTORE_INSTALL/lib of
* all modules
* 6. restart the Columnstore system.
* 1. Create a the UDA(n)F function interface in some .h file.
* 2. Create the UDF function implementation in some .cpp file
* 3. Create the connector stub (MariaDB UDAF definition) for
* this UDF function.
* 4. build the dynamic library using all of the source.
* 5 Put the library in $COLUMNSTORE_INSTALL/lib of
* all modules
* 6. restart the Columnstore system.
* 7. notify mysqld about the new functions with commands like:
*
*
* CREATE AGGREGATE FUNCTION allnull returns BOOL soname
* 'libudf_mysql.so';
*
*
*/
#ifndef HEADER_allnull
#define HEADER_allnull
@ -69,124 +69,124 @@ using namespace execplan;
namespace mcsv1sdk
{
// Override mcsv1_UDAF to build your User Defined Aggregate (UDAF) and/or
// Override mcsv1_UDAF to build your User Defined Aggregate (UDAF) and/or
// User Defined Analytic Function (UDAnF).
// These will be singleton classes, so don't put any instance
// specific data in here. All instance data is stored in mcsv1Context
// passed to each user function and retrieved by the getUserData() method.
//
// Each API function returns a ReturnCode. If ERROR is returned at any time,
// the query is aborted, getInterrupted() will begin to return true and the
// message set in config->setErrorMessage() is returned to MariaDB.
//
// Each API function returns a ReturnCode. If ERROR is returned at any time,
// the query is aborted, getInterrupted() will begin to return true and the
// message set in config->setErrorMessage() is returned to MariaDB.
class allnull : public mcsv1_UDAF
{
public:
// Defaults OK
allnull() : mcsv1_UDAF(){};
virtual ~allnull(){};
// Defaults OK
allnull() : mcsv1_UDAF() {};
virtual ~allnull() {};
/**
* init()
*
* Mandatory. Implement this to initialize flags and instance
* data. Called once per SQL statement. You can do any sanity
* checks here.
*
* colTypes (in) - A vector of ColDataType defining the
* parameters of the UDA(n)F call. These can be used to decide
* to override the default return type. If desired, the new
* return type can be set by context->setReturnType() and
* decimal precision can be set in context->
* setResultDecimalCharacteristics.
*
* Return mcsv1_UDAF::ERROR on any error, such as non-compatible
* colTypes or wrong number of arguments. Else return
* mcsv1_UDAF::SUCCESS.
*/
virtual ReturnCode init(mcsv1Context* context, COL_TYPES& colTypes);
/**
* init()
*
* Mandatory. Implement this to initialize flags and instance
* data. Called once per SQL statement. You can do any sanity
* checks here.
*
* colTypes (in) - A vector of ColDataType defining the
* parameters of the UDA(n)F call. These can be used to decide
* to override the default return type. If desired, the new
* return type can be set by context->setReturnType() and
* decimal precision can be set in context->
* setResultDecimalCharacteristics.
*
* Return mcsv1_UDAF::ERROR on any error, such as non-compatible
* colTypes or wrong number of arguments. Else return
* mcsv1_UDAF::SUCCESS.
*/
virtual ReturnCode init(mcsv1Context* context, COL_TYPES& colTypes);
/**
* reset()
*
* Mandatory. Reset the UDA(n)F for a new group, partition or,
* in some cases, new Window Frame. Do not free any memory
* allocated by context->setUserDataSize(). The SDK Framework owns
* that memory and will handle that. Use this opportunity to
* reset any variables in context->getUserData() needed for the
* next aggregation. May be called multiple times if running in
* a ditributed fashion.
*
* Use this opportunity to initialize the userData.
*/
virtual ReturnCode reset(mcsv1Context* context);
/**
* reset()
*
* Mandatory. Reset the UDA(n)F for a new group, partition or,
* in some cases, new Window Frame. Do not free any memory
* allocated by context->setUserDataSize(). The SDK Framework owns
* that memory and will handle that. Use this opportunity to
* reset any variables in context->getUserData() needed for the
* next aggregation. May be called multiple times if running in
* a ditributed fashion.
*
* Use this opportunity to initialize the userData.
*/
virtual ReturnCode reset(mcsv1Context* context);
/**
* nextValue()
*
* Mandatory. Handle a single row.
*
* colsIn - A vector of data structure describing the input
* data.
*
* This function is called once for every row in the filtered
* result set (before aggregation). It is very important that
* this function is efficient.
*
* If the UDAF is running in a distributed fashion, nextValue
* cannot depend on order, as it will only be called for each
* row found on the specific PM.
*
* valsIn (in) - a vector of the parameters from the row.
*/
virtual ReturnCode nextValue(mcsv1Context* context, std::vector<ColumnDatum>& valsIn);
/**
* nextValue()
*
* Mandatory. Handle a single row.
*
* colsIn - A vector of data structure describing the input
* data.
*
* This function is called once for every row in the filtered
* result set (before aggregation). It is very important that
* this function is efficient.
*
* If the UDAF is running in a distributed fashion, nextValue
* cannot depend on order, as it will only be called for each
* row found on the specific PM.
*
* valsIn (in) - a vector of the parameters from the row.
*/
virtual ReturnCode nextValue(mcsv1Context* context, std::vector<ColumnDatum>& valsIn);
/**
* subEvaluate()
*
* Mandatory -- Called if the UDAF is running in a distributed
* fashion. Columnstore tries to run all aggregate functions
* distributed, depending on context.
*
* Perform an aggregation on rows partially aggregated by
* nextValue. Columnstore calls nextValue for each row on a
* given PM for a group (GROUP BY). subEvaluate is called on the
* UM to consolodate those values into a single instance of
* userData. Keep your aggregated totals in context's userData.
* The first time this is called for a group, reset() would have
* been called with this version of userData.
*
* Called for every partial data set in each group in GROUP BY.
*
* When subEvaluate has been called for all subAggregated data
* sets, Evaluate will be called with the same context as here.
*
* valIn (In) - This is a pointer to a memory block of the size
* set in setUserDataSize. It will contain the value of userData
* as seen in the last call to NextValue for a given PM.
*
*/
virtual ReturnCode subEvaluate(mcsv1Context* context, const UserData* userDataIn);
/**
* subEvaluate()
*
* Mandatory -- Called if the UDAF is running in a distributed
* fashion. Columnstore tries to run all aggregate functions
* distributed, depending on context.
*
* Perform an aggregation on rows partially aggregated by
* nextValue. Columnstore calls nextValue for each row on a
* given PM for a group (GROUP BY). subEvaluate is called on the
* UM to consolodate those values into a single instance of
* userData. Keep your aggregated totals in context's userData.
* The first time this is called for a group, reset() would have
* been called with this version of userData.
*
* Called for every partial data set in each group in GROUP BY.
*
* When subEvaluate has been called for all subAggregated data
* sets, Evaluate will be called with the same context as here.
*
* valIn (In) - This is a pointer to a memory block of the size
* set in setUserDataSize. It will contain the value of userData
* as seen in the last call to NextValue for a given PM.
*
*/
virtual ReturnCode subEvaluate(mcsv1Context* context, const UserData* userDataIn);
/**
* evaluate()
*
* Mandatory. Get the aggregated value.
*
* Called for every new group if UDAF GROUP BY, UDAnF partition
* or, in some cases, new Window Frame.
*
* Set the aggregated value into valOut. The datatype is assumed
* to be the same as that set in the init() function;
*
* If the UDAF is running in a distributed fashion, evaluate is
* called after a series of subEvaluate calls.
*
* valOut (out) - Set the aggregated value here. The datatype is
* assumed to be the same as that set in the init() function;
*
* To return a NULL value, don't assign to valOut.
*/
virtual ReturnCode evaluate(mcsv1Context* context, static_any::any& valOut);
/**
* evaluate()
*
* Mandatory. Get the aggregated value.
*
* Called for every new group if UDAF GROUP BY, UDAnF partition
* or, in some cases, new Window Frame.
*
* Set the aggregated value into valOut. The datatype is assumed
* to be the same as that set in the init() function;
*
* If the UDAF is running in a distributed fashion, evaluate is
* called after a series of subEvaluate calls.
*
* valOut (out) - Set the aggregated value here. The datatype is
* assumed to be the same as that set in the init() function;
*
* To return a NULL value, don't assign to valOut.
*/
virtual ReturnCode evaluate(mcsv1Context* context, static_any::any& valOut);
protected:

455
utils/udfsdk/avg_mode.cpp Executable file → Normal file
View File

@ -25,269 +25,282 @@
using namespace mcsv1sdk;
mcsv1_UDAF::ReturnCode avg_mode::init(mcsv1Context* context,
COL_TYPES& colTypes)
COL_TYPES& colTypes)
{
if (colTypes.size() < 1)
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("avg_mode() with 0 arguments");
return mcsv1_UDAF::ERROR;
}
if (colTypes.size() > 1)
{
context->setErrorMessage("avg_mode() with more than 1 argument");
return mcsv1_UDAF::ERROR;
}
if (colTypes.size() < 1)
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("avg_mode() with 0 arguments");
return mcsv1_UDAF::ERROR;
}
if (!(isNumeric(colTypes[0].second)))
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("avg_mode() with non-numeric argument");
return mcsv1_UDAF::ERROR;
}
if (colTypes.size() > 1)
{
context->setErrorMessage("avg_mode() with more than 1 argument");
return mcsv1_UDAF::ERROR;
}
context->setResultType(CalpontSystemCatalog::DOUBLE);
context->setColWidth(8);
context->setScale(context->getScale()*2);
context->setPrecision(19);
context->setRunFlag(mcsv1sdk::UDAF_IGNORE_NULLS);
return mcsv1_UDAF::SUCCESS;
if (!(isNumeric(colTypes[0].second)))
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("avg_mode() with non-numeric argument");
return mcsv1_UDAF::ERROR;
}
context->setResultType(CalpontSystemCatalog::DOUBLE);
context->setColWidth(8);
context->setScale(context->getScale() * 2);
context->setPrecision(19);
context->setRunFlag(mcsv1sdk::UDAF_IGNORE_NULLS);
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode avg_mode::reset(mcsv1Context* context)
{
ModeData* data = static_cast<ModeData*>(context->getUserData());
data->mData.clear();
return mcsv1_UDAF::SUCCESS;
ModeData* data = static_cast<ModeData*>(context->getUserData());
data->mData.clear();
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode avg_mode::nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn)
mcsv1_UDAF::ReturnCode avg_mode::nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn)
{
static_any::any& valIn = valsIn[0].columnData;
MODE_DATA& data = static_cast<ModeData*>(context->getUserData())->mData;
DATATYPE val = 0.0;
static_any::any& valIn = valsIn[0].columnData;
MODE_DATA& data = static_cast<ModeData*>(context->getUserData())->mData;
DATATYPE val = 0.0;
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
// For decimal types, we need to move the decimal point.
uint32_t scale = valsIn[0].scale;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
data[val]++;
// For decimal types, we need to move the decimal point.
uint32_t scale = valsIn[0].scale;
return mcsv1_UDAF::SUCCESS;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
data[val]++;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode avg_mode::subEvaluate(mcsv1Context* context, const UserData* userDataIn)
{
if (!userDataIn)
{
return mcsv1_UDAF::SUCCESS;
}
MODE_DATA& outData = static_cast<ModeData*>(context->getUserData())->mData;
const MODE_DATA& inData = static_cast<const ModeData*>(userDataIn)->mData;
MODE_DATA::const_iterator iter = inData.begin();
for (; iter != inData.end(); ++iter)
{
outData[iter->first] += iter->second;
}
return mcsv1_UDAF::SUCCESS;
if (!userDataIn)
{
return mcsv1_UDAF::SUCCESS;
}
MODE_DATA& outData = static_cast<ModeData*>(context->getUserData())->mData;
const MODE_DATA& inData = static_cast<const ModeData*>(userDataIn)->mData;
MODE_DATA::const_iterator iter = inData.begin();
for (; iter != inData.end(); ++iter)
{
outData[iter->first] += iter->second;
}
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode avg_mode::evaluate(mcsv1Context* context, static_any::any& valOut)
{
uint64_t maxCnt=0;
MODE_DATA& data = static_cast<ModeData*>(context->getUserData())->mData;
if (data.size() == 0)
{
valOut = (DATATYPE)0;
return mcsv1_UDAF::SUCCESS;
}
MODE_DATA::iterator iter(data.begin());
for (; iter != data.end(); ++iter)
{
if (iter->second > maxCnt)
{
valOut = iter->first;
maxCnt = iter->second;
}
}
return mcsv1_UDAF::SUCCESS;
uint64_t maxCnt = 0;
MODE_DATA& data = static_cast<ModeData*>(context->getUserData())->mData;
if (data.size() == 0)
{
valOut = (DATATYPE)0;
return mcsv1_UDAF::SUCCESS;
}
MODE_DATA::iterator iter(data.begin());
for (; iter != data.end(); ++iter)
{
if (iter->second > maxCnt)
{
valOut = iter->first;
maxCnt = iter->second;
}
}
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode avg_mode::dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped)
mcsv1_UDAF::ReturnCode avg_mode::dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped)
{
static_any::any& valIn = valsDropped[0].columnData;
MODE_DATA& data = static_cast<ModeData*>(context->getUserData())->mData;
DATATYPE val = 0.0;
static_any::any& valIn = valsDropped[0].columnData;
MODE_DATA& data = static_cast<ModeData*>(context->getUserData())->mData;
DATATYPE val = 0.0;
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
// For decimal types, we need to move the decimal point.
uint32_t scale = valsDropped[0].scale;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
// For decimal types, we need to move the decimal point.
uint32_t scale = valsDropped[0].scale;
data[val]--;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
return mcsv1_UDAF::SUCCESS;
data[val]--;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode avg_mode::createUserData(UserData*& userData, int32_t& length)
{
userData = new ModeData;
length = sizeof(ModeData);
return mcsv1_UDAF::SUCCESS;
userData = new ModeData;
length = sizeof(ModeData);
return mcsv1_UDAF::SUCCESS;
}
void ModeData::serialize(messageqcpp::ByteStream& bs) const
{
MODE_DATA::const_iterator iter = mData.begin();
DATATYPE num;
uint32_t cnt;
bs << (int32_t)mData.size();
for (; iter != mData.end(); ++iter)
{
num = iter->first;
bs << num;
cnt = iter->second;
bs << cnt;
}
MODE_DATA::const_iterator iter = mData.begin();
DATATYPE num;
uint32_t cnt;
bs << (int32_t)mData.size();
for (; iter != mData.end(); ++iter)
{
num = iter->first;
bs << num;
cnt = iter->second;
bs << cnt;
}
}
void ModeData::unserialize(messageqcpp::ByteStream& bs)
{
mData.clear();
int32_t sz;
DATATYPE num;
uint32_t cnt;
bs >> sz;
for (int i = 0; i < sz; ++i)
{
bs >> num;
bs >> cnt;
mData[num] = cnt;
}
mData.clear();
int32_t sz;
DATATYPE num;
uint32_t cnt;
bs >> sz;
for (int i = 0; i < sz; ++i)
{
bs >> num;
bs >> cnt;
mData[num] = cnt;
}
}

380
utils/udfsdk/avg_mode.h Executable file → Normal file
View File

@ -21,34 +21,34 @@
* mcsv1_UDAF.h
***********************************************************************/
/**
* Columnstore interface for writing a User Defined Aggregate
* Functions (UDAF) and User Defined Analytic Functions (UDAnF)
* or a function that can act as either - UDA(n)F
*
/**
* Columnstore interface for writing a User Defined Aggregate
* Functions (UDAF) and User Defined Analytic Functions (UDAnF)
* or a function that can act as either - UDA(n)F
*
* The basic steps are:
*
* 1. Create a the UDA(n)F function interface in some .h file.
* 2. Create the UDF function implementation in some .cpp file
* 3. Create the connector stub (MariaDB UDAF definition) for
* this UDF function.
* 4. build the dynamic library using all of the source.
* 5 Put the library in $COLUMNSTORE_INSTALL/lib of
* all modules
* 6. restart the Columnstore system.
* 1. Create a the UDA(n)F function interface in some .h file.
* 2. Create the UDF function implementation in some .cpp file
* 3. Create the connector stub (MariaDB UDAF definition) for
* this UDF function.
* 4. build the dynamic library using all of the source.
* 5 Put the library in $COLUMNSTORE_INSTALL/lib of
* all modules
* 6. restart the Columnstore system.
* 7. notify mysqld about the new function:
*
*
* CREATE AGGREGATE FUNCTION avg_mode returns REAL soname
* 'libudf_mysql.so';
*
* The UDAF functions may run distributed in the Columnstore
* engine. UDAnF do not run distributed.
*
* UDAF is User Defined Aggregate Function.
* UDAnF is User Defined Analytic Function.
* UDA(n)F is an acronym for a function that could be either. It
* is also used to describe the interface that is used for
* either.
*
* The UDAF functions may run distributed in the Columnstore
* engine. UDAnF do not run distributed.
*
* UDAF is User Defined Aggregate Function.
* UDAnF is User Defined Analytic Function.
* UDA(n)F is an acronym for a function that could be either. It
* is also used to describe the interface that is used for
* either.
*/
#ifndef HEADER_mode
#define HEADER_mode
@ -83,196 +83,196 @@ typedef std::tr1::unordered_map<DATATYPE, uint32_t> MODE_DATA;
// Override UserData for data storage
struct ModeData : public UserData
{
ModeData() {};
ModeData() {};
virtual ~ModeData(){}
virtual ~ModeData() {}
virtual void serialize(messageqcpp::ByteStream& bs) const;
virtual void unserialize(messageqcpp::ByteStream& bs);
virtual void serialize(messageqcpp::ByteStream& bs) const;
virtual void unserialize(messageqcpp::ByteStream& bs);
MODE_DATA mData;
MODE_DATA mData;
private:
// For now, copy construction is unwanted
ModeData(UserData&);
// For now, copy construction is unwanted
ModeData(UserData&);
};
// Override mcsv1_UDAF to build your User Defined Aggregate (UDAF) and/or
// Override mcsv1_UDAF to build your User Defined Aggregate (UDAF) and/or
// User Defined Analytic Function (UDAnF).
// These will be singleton classes, so don't put any instance
// specific data in here. All instance data is stored in mcsv1Context
// passed to each user function and retrieved by the getUserData() method.
//
// Each API function returns a ReturnCode. If ERROR is returned at any time,
// the query is aborted, getInterrupted() will begin to return true and the
// message set in config->setErrorMessage() is returned to MariaDB.
//
// Each API function returns a ReturnCode. If ERROR is returned at any time,
// the query is aborted, getInterrupted() will begin to return true and the
// message set in config->setErrorMessage() is returned to MariaDB.
// Return the avg_mode value of the dataset
class avg_mode : public mcsv1_UDAF
{
public:
// Defaults OK
avg_mode() : mcsv1_UDAF(){};
virtual ~avg_mode(){};
// Defaults OK
avg_mode() : mcsv1_UDAF() {};
virtual ~avg_mode() {};
/**
* init()
*
* Mandatory. Implement this to initialize flags and instance
* data. Called once per SQL statement. You can do any sanity
* checks here.
*
* colTypes (in) - A vector of ColDataType defining the
* parameters of the UDA(n)F call. These can be used to decide
* to override the default return type. If desired, the new
* return type can be set by context->setReturnType() and
* decimal scale and precision can be set by context->setScale
* and context->setPrecision respectively.
*
* Return mcsv1_UDAF::ERROR on any error, such as non-compatible
* colTypes or wrong number of arguments. Else return
* mcsv1_UDAF::SUCCESS.
*/
virtual ReturnCode init(mcsv1Context* context,
COL_TYPES& colTypes);
/**
* init()
*
* Mandatory. Implement this to initialize flags and instance
* data. Called once per SQL statement. You can do any sanity
* checks here.
*
* colTypes (in) - A vector of ColDataType defining the
* parameters of the UDA(n)F call. These can be used to decide
* to override the default return type. If desired, the new
* return type can be set by context->setReturnType() and
* decimal scale and precision can be set by context->setScale
* and context->setPrecision respectively.
*
* Return mcsv1_UDAF::ERROR on any error, such as non-compatible
* colTypes or wrong number of arguments. Else return
* mcsv1_UDAF::SUCCESS.
*/
virtual ReturnCode init(mcsv1Context* context,
COL_TYPES& colTypes);
/**
* reset()
*
* Mandatory. Reset the UDA(n)F for a new group, partition or,
* in some cases, new Window Frame. Do not free any memory
* allocated by context->setUserDataSize(). The SDK Framework owns
* that memory and will handle that. Use this opportunity to
* reset any variables in context->getUserData() needed for the
* next aggregation. May be called multiple times if running in
* a ditributed fashion.
*
* Use this opportunity to initialize the userData.
*/
virtual ReturnCode reset(mcsv1Context* context);
/**
* reset()
*
* Mandatory. Reset the UDA(n)F for a new group, partition or,
* in some cases, new Window Frame. Do not free any memory
* allocated by context->setUserDataSize(). The SDK Framework owns
* that memory and will handle that. Use this opportunity to
* reset any variables in context->getUserData() needed for the
* next aggregation. May be called multiple times if running in
* a ditributed fashion.
*
* Use this opportunity to initialize the userData.
*/
virtual ReturnCode reset(mcsv1Context* context);
/**
* nextValue()
*
* Mandatory. Handle a single row.
*
* colsIn - A vector of data structure describing the input
* data.
*
* This function is called once for every row in the filtered
* result set (before aggregation). It is very important that
* this function is efficient.
*
* If the UDAF is running in a distributed fashion, nextValue
* cannot depend on order, as it will only be called for each
* row found on the specific PM.
*
* valsIn (in) - a vector of the parameters from the row.
*/
virtual ReturnCode nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn);
/**
* nextValue()
*
* Mandatory. Handle a single row.
*
* colsIn - A vector of data structure describing the input
* data.
*
* This function is called once for every row in the filtered
* result set (before aggregation). It is very important that
* this function is efficient.
*
* If the UDAF is running in a distributed fashion, nextValue
* cannot depend on order, as it will only be called for each
* row found on the specific PM.
*
* valsIn (in) - a vector of the parameters from the row.
*/
virtual ReturnCode nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn);
/**
* subEvaluate()
*
* Mandatory -- Called if the UDAF is running in a distributed
* fashion. Columnstore tries to run all aggregate functions
* distributed, depending on context.
*
* Perform an aggregation on rows partially aggregated by
* nextValue. Columnstore calls nextValue for each row on a
* given PM for a group (GROUP BY). subEvaluate is called on the
* UM to consolodate those values into a single instance of
* userData. Keep your aggregated totals in context's userData.
* The first time this is called for a group, reset() would have
* been called with this version of userData.
*
* Called for every partial data set in each group in GROUP BY.
*
* When subEvaluate has been called for all subAggregated data
* sets, Evaluate will be called with the same context as here.
*
* valIn (In) - This is a pointer to a memory block of the size
* set in setUserDataSize. It will contain the value of userData
* as seen in the last call to NextValue for a given PM.
*
*/
virtual ReturnCode subEvaluate(mcsv1Context* context, const UserData* valIn);
/**
* subEvaluate()
*
* Mandatory -- Called if the UDAF is running in a distributed
* fashion. Columnstore tries to run all aggregate functions
* distributed, depending on context.
*
* Perform an aggregation on rows partially aggregated by
* nextValue. Columnstore calls nextValue for each row on a
* given PM for a group (GROUP BY). subEvaluate is called on the
* UM to consolodate those values into a single instance of
* userData. Keep your aggregated totals in context's userData.
* The first time this is called for a group, reset() would have
* been called with this version of userData.
*
* Called for every partial data set in each group in GROUP BY.
*
* When subEvaluate has been called for all subAggregated data
* sets, Evaluate will be called with the same context as here.
*
* valIn (In) - This is a pointer to a memory block of the size
* set in setUserDataSize. It will contain the value of userData
* as seen in the last call to NextValue for a given PM.
*
*/
virtual ReturnCode subEvaluate(mcsv1Context* context, const UserData* valIn);
/**
* evaluate()
*
* Mandatory. Get the aggregated value.
*
* Called for every new group if UDAF GROUP BY, UDAnF partition
* or, in some cases, new Window Frame.
*
* Set the aggregated value into valOut. The datatype is assumed
* to be the same as that set in the init() function;
*
* If the UDAF is running in a distributed fashion, evaluate is
* called after a series of subEvaluate calls.
*
* valOut (out) - Set the aggregated value here. The datatype is
* assumed to be the same as that set in the init() function;
*
* To return a NULL value, don't assign to valOut.
*/
virtual ReturnCode evaluate(mcsv1Context* context, static_any::any& valOut);
/**
* evaluate()
*
* Mandatory. Get the aggregated value.
*
* Called for every new group if UDAF GROUP BY, UDAnF partition
* or, in some cases, new Window Frame.
*
* Set the aggregated value into valOut. The datatype is assumed
* to be the same as that set in the init() function;
*
* If the UDAF is running in a distributed fashion, evaluate is
* called after a series of subEvaluate calls.
*
* valOut (out) - Set the aggregated value here. The datatype is
* assumed to be the same as that set in the init() function;
*
* To return a NULL value, don't assign to valOut.
*/
virtual ReturnCode evaluate(mcsv1Context* context, static_any::any& valOut);
/**
* dropValue()
*
* Optional -- If defined, the server will call this instead of
* reset for UDAnF.
*
* Don't implement if a UDAnF has one or more of the following:
* The UDAnF can't be used with a Window Frame
* The UDAnF is not reversable in some way
* The UDAnF is not interested in optimal performance
*
* If not implemented, reset() followed by a series of
* nextValue() will be called for each movement of the Window
* Frame.
*
* If implemented, then each movement of the Window Frame will
* result in dropValue() being called for each row falling out
* of the Frame and nextValue() being called for each new row
* coming into the Frame.
*
* valsDropped (in) - a vector of the parameters from the row
* leaving the Frame
*
* dropValue() will not be called for unbounded/current row type
* frames, as those are already optimized.
*/
virtual ReturnCode dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped);
/**
* dropValue()
*
* Optional -- If defined, the server will call this instead of
* reset for UDAnF.
*
* Don't implement if a UDAnF has one or more of the following:
* The UDAnF can't be used with a Window Frame
* The UDAnF is not reversable in some way
* The UDAnF is not interested in optimal performance
*
* If not implemented, reset() followed by a series of
* nextValue() will be called for each movement of the Window
* Frame.
*
* If implemented, then each movement of the Window Frame will
* result in dropValue() being called for each row falling out
* of the Frame and nextValue() being called for each new row
* coming into the Frame.
*
* valsDropped (in) - a vector of the parameters from the row
* leaving the Frame
*
* dropValue() will not be called for unbounded/current row type
* frames, as those are already optimized.
*/
virtual ReturnCode dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped);
/**
* createUserData()
*
* Optional -- If defined, the server will call this instead of
* createUserData on context.
*
* Create your variable length data structure via
* data = new <datatype>
*
* The data structure may contain references to containers or
* pointers to other objects. Remember that for distributed
* processing, this may be called multiple times for variaous
* computing blocks. At the least, it will be called once per PM
* that processes the data, and once more for the UM. For UDAnF,
* it may only be called once.
*
* Set length to the length of the data structure you create.
*
* For each call to createUserData(), there will be a
* corresponding deleteUserData() where you must clean up. Any
* memory leaks are your fault.
*
*/
virtual ReturnCode createUserData(UserData*& data, int32_t& length);
/**
* createUserData()
*
* Optional -- If defined, the server will call this instead of
* createUserData on context.
*
* Create your variable length data structure via
* data = new <datatype>
*
* The data structure may contain references to containers or
* pointers to other objects. Remember that for distributed
* processing, this may be called multiple times for variaous
* computing blocks. At the least, it will be called once per PM
* that processes the data, and once more for the UM. For UDAnF,
* it may only be called once.
*
* Set length to the length of the data structure you create.
*
* For each call to createUserData(), there will be a
* corresponding deleteUserData() where you must clean up. Any
* memory leaks are your fault.
*
*/
virtual ReturnCode createUserData(UserData*& data, int32_t& length);
protected:
};

332
utils/udfsdk/mcsv1_udaf.cpp Executable file → Normal file
View File

@ -25,11 +25,11 @@
using namespace mcsv1sdk;
/**
* All UDA(n)F functions must be registered in the function map.
* They will be picked up by the Columnstore modules during
* startup.
*
* This is a temporary kludge until we get the library loader
* task complete
* They will be picked up by the Columnstore modules during
* startup.
*
* This is a temporary kludge until we get the library loader
* task complete
*/
UDAF_MAP UDAFMap::fm;
#include "allnull.h"
@ -38,204 +38,218 @@ UDAF_MAP UDAFMap::fm;
#include "avg_mode.h"
UDAF_MAP& UDAFMap::getMap()
{
if (fm.size() > 0)
{
return fm;
}
// first: function name
// second: Function pointer
// please use lower case for the function name. Because the names might be
// case-insensitive in MySQL depending on the setting. In such case,
// the function names passed to the interface is always in lower case.
fm["allnull"] = new allnull();
fm["ssq"] = new ssq();
fm["median"] = new median();
fm["avg_mode"] = new avg_mode();
return fm;
if (fm.size() > 0)
{
return fm;
}
// first: function name
// second: Function pointer
// please use lower case for the function name. Because the names might be
// case-insensitive in MySQL depending on the setting. In such case,
// the function names passed to the interface is always in lower case.
fm["allnull"] = new allnull();
fm["ssq"] = new ssq();
fm["median"] = new median();
fm["avg_mode"] = new avg_mode();
return fm;
}
int32_t mcsv1Context::getColWidth()
{
if (fColWidth > 0)
{
return fColWidth;
}
// JIT initialization for types that have a defined size.
switch (fResultType)
{
case CalpontSystemCatalog::BIT:
case CalpontSystemCatalog::TINYINT:
case CalpontSystemCatalog::UTINYINT:
case CalpontSystemCatalog::CHAR:
fColWidth = 1;
break;
case CalpontSystemCatalog::SMALLINT:
case CalpontSystemCatalog::USMALLINT:
fColWidth = 2;
break;
case CalpontSystemCatalog::MEDINT:
case CalpontSystemCatalog::INT:
case CalpontSystemCatalog::UMEDINT:
case CalpontSystemCatalog::UINT:
case CalpontSystemCatalog::FLOAT:
case CalpontSystemCatalog::UFLOAT:
case CalpontSystemCatalog::DATE:
fColWidth = 4;
break;
case CalpontSystemCatalog::BIGINT:
case CalpontSystemCatalog::UBIGINT:
case CalpontSystemCatalog::DECIMAL:
case CalpontSystemCatalog::UDECIMAL:
case CalpontSystemCatalog::DOUBLE:
case CalpontSystemCatalog::UDOUBLE:
case CalpontSystemCatalog::DATETIME:
case CalpontSystemCatalog::STRINT:
fColWidth = 8;
break;
case CalpontSystemCatalog::LONGDOUBLE:
fColWidth = sizeof(long double);
break;
default:
break;
}
return fColWidth;
if (fColWidth > 0)
{
return fColWidth;
}
// JIT initialization for types that have a defined size.
switch (fResultType)
{
case CalpontSystemCatalog::BIT:
case CalpontSystemCatalog::TINYINT:
case CalpontSystemCatalog::UTINYINT:
case CalpontSystemCatalog::CHAR:
fColWidth = 1;
break;
case CalpontSystemCatalog::SMALLINT:
case CalpontSystemCatalog::USMALLINT:
fColWidth = 2;
break;
case CalpontSystemCatalog::MEDINT:
case CalpontSystemCatalog::INT:
case CalpontSystemCatalog::UMEDINT:
case CalpontSystemCatalog::UINT:
case CalpontSystemCatalog::FLOAT:
case CalpontSystemCatalog::UFLOAT:
case CalpontSystemCatalog::DATE:
fColWidth = 4;
break;
case CalpontSystemCatalog::BIGINT:
case CalpontSystemCatalog::UBIGINT:
case CalpontSystemCatalog::DECIMAL:
case CalpontSystemCatalog::UDECIMAL:
case CalpontSystemCatalog::DOUBLE:
case CalpontSystemCatalog::UDOUBLE:
case CalpontSystemCatalog::DATETIME:
case CalpontSystemCatalog::STRINT:
fColWidth = 8;
break;
case CalpontSystemCatalog::LONGDOUBLE:
fColWidth = sizeof(long double);
break;
default:
break;
}
return fColWidth;
}
bool mcsv1Context::operator==(const mcsv1Context& c) const
{
// We don't test the per row data fields. They don't determine
// if it's the same Context.
if (getName() != c.getName()
|| fRunFlags != c.fRunFlags
|| fContextFlags != c.fContextFlags
|| fUserDataSize != c.fUserDataSize
|| fResultType != c.fResultType
|| fResultscale != c.fResultscale
|| fResultPrecision != c.fResultPrecision
|| fStartFrame != c.fStartFrame
|| fEndFrame != c.fEndFrame
|| fStartConstant != c.fStartConstant
|| fEndConstant != c.fEndConstant)
return false;
return true;
// We don't test the per row data fields. They don't determine
// if it's the same Context.
if (getName() != c.getName()
|| fRunFlags != c.fRunFlags
|| fContextFlags != c.fContextFlags
|| fUserDataSize != c.fUserDataSize
|| fResultType != c.fResultType
|| fResultscale != c.fResultscale
|| fResultPrecision != c.fResultPrecision
|| fStartFrame != c.fStartFrame
|| fEndFrame != c.fEndFrame
|| fStartConstant != c.fStartConstant
|| fEndConstant != c.fEndConstant)
return false;
return true;
}
bool mcsv1Context::operator!=(const mcsv1Context& c) const
{
return (!(*this == c));
return (!(*this == c));
}
const std::string mcsv1Context::toString() const
{
std::ostringstream output;
output << "mcsv1Context: " << getName() << std::endl;
output << " RunFlags=" << fRunFlags << " ContextFlags=" << fContextFlags << std::endl;
output << " UserDataSize=" << fUserDataSize << " ResultType=" << colDataTypeToString(fResultType) << std::endl;
output << " Resultscale=" << fResultscale << " ResultPrecision=" << fResultPrecision << std::endl;
output << " ErrorMsg=" << errorMsg << std::endl;
output << " bInterrupted=" << bInterrupted << std::endl;
output << " StartFrame=" << fStartFrame << " EndFrame=" << fEndFrame << std::endl;
output << " StartConstant=" << fStartConstant << " EndConstant=" << fEndConstant << std::endl;
return output.str();
std::ostringstream output;
output << "mcsv1Context: " << getName() << std::endl;
output << " RunFlags=" << fRunFlags << " ContextFlags=" << fContextFlags << std::endl;
output << " UserDataSize=" << fUserDataSize << " ResultType=" << colDataTypeToString(fResultType) << std::endl;
output << " Resultscale=" << fResultscale << " ResultPrecision=" << fResultPrecision << std::endl;
output << " ErrorMsg=" << errorMsg << std::endl;
output << " bInterrupted=" << bInterrupted << std::endl;
output << " StartFrame=" << fStartFrame << " EndFrame=" << fEndFrame << std::endl;
output << " StartConstant=" << fStartConstant << " EndConstant=" << fEndConstant << std::endl;
return output.str();
}
mcsv1sdk::mcsv1_UDAF* mcsv1Context::getFunction()
{
if (func)
{
return func;
}
if (func)
{
return func;
}
// Just in time initialization
if (functionName.length() == 0)
{
std::ostringstream errmsg;
errmsg << "mcsv1Context::getFunction: " << functionName << " is empty";
throw std::logic_error(errmsg.str());
}
mcsv1sdk::UDAF_MAP::iterator funcIter = mcsv1sdk::UDAFMap::getMap().find(functionName);
if (funcIter == mcsv1sdk::UDAFMap::getMap().end())
{
std::ostringstream errmsg;
errmsg << "mcsv1Context::getFunction: " << functionName << " is undefined";
throw std::logic_error(errmsg.str());
}
func = funcIter->second;
return func;
// Just in time initialization
if (functionName.length() == 0)
{
std::ostringstream errmsg;
errmsg << "mcsv1Context::getFunction: " << functionName << " is empty";
throw std::logic_error(errmsg.str());
}
mcsv1sdk::UDAF_MAP::iterator funcIter = mcsv1sdk::UDAFMap::getMap().find(functionName);
if (funcIter == mcsv1sdk::UDAFMap::getMap().end())
{
std::ostringstream errmsg;
errmsg << "mcsv1Context::getFunction: " << functionName << " is undefined";
throw std::logic_error(errmsg.str());
}
func = funcIter->second;
return func;
}
mcsv1sdk::mcsv1_UDAF* mcsv1Context::getFunction() const
{
return const_cast<mcsv1Context*>(this)->getFunction();
return const_cast<mcsv1Context*>(this)->getFunction();
}
void mcsv1Context::createUserData()
void mcsv1Context::createUserData()
{
// Try the function. If not implemented, create a byte array.
UserData* userData = NULL;
mcsv1_UDAF::ReturnCode rc = getFunction()->createUserData(userData, fUserDataSize);
if (rc == mcsv1_UDAF::ERROR)
{
std::ostringstream errmsg;
errmsg << "mcsv1Context::createUserData: " << functionName << errorMsg.c_str();
throw std::logic_error(errmsg.str());
}
setUserData(userData);
// Try the function. If not implemented, create a byte array.
UserData* userData = NULL;
mcsv1_UDAF::ReturnCode rc = getFunction()->createUserData(userData, fUserDataSize);
if (rc == mcsv1_UDAF::ERROR)
{
std::ostringstream errmsg;
errmsg << "mcsv1Context::createUserData: " << functionName << errorMsg.c_str();
throw std::logic_error(errmsg.str());
}
setUserData(userData);
}
void mcsv1Context::serialize(messageqcpp::ByteStream& b) const
{
b.needAtLeast(sizeof(mcsv1Context));
b << (ObjectReader::id_t) ObjectReader::MCSV1_CONTEXT;
b << functionName;
b << fRunFlags;
// Dont send context flags, These are set for each call
b << fUserDataSize;
b << (uint32_t)fResultType;
b << fResultscale;
b << fResultPrecision;
b << errorMsg;
// Don't send dataflags. These are set for each call
// bInterrupted is set internally.
b << (uint32_t)fStartFrame;
b << (uint32_t)fEndFrame;
b << fStartConstant;
b << fEndConstant;
b.needAtLeast(sizeof(mcsv1Context));
b << (ObjectReader::id_t) ObjectReader::MCSV1_CONTEXT;
b << functionName;
b << fRunFlags;
// Dont send context flags, These are set for each call
b << fUserDataSize;
b << (uint32_t)fResultType;
b << fResultscale;
b << fResultPrecision;
b << errorMsg;
// Don't send dataflags. These are set for each call
// bInterrupted is set internally.
b << (uint32_t)fStartFrame;
b << (uint32_t)fEndFrame;
b << fStartConstant;
b << fEndConstant;
}
void mcsv1Context::unserialize(messageqcpp::ByteStream& b)
{
ObjectReader::checkType(b, ObjectReader::MCSV1_CONTEXT);
b >> functionName;
b >> fRunFlags;
b >> fUserDataSize;
uint32_t iResultType;
b >> iResultType;
fResultType = (CalpontSystemCatalog::ColDataType)iResultType;
b >> fResultscale;
b >> fResultPrecision;
b >> errorMsg;
uint32_t frame;
b >> frame;
fStartFrame = (WF_FRAME)frame;
b >> frame;
fEndFrame = (WF_FRAME)frame;
b >> fStartConstant;
b >> fEndConstant;
ObjectReader::checkType(b, ObjectReader::MCSV1_CONTEXT);
b >> functionName;
b >> fRunFlags;
b >> fUserDataSize;
uint32_t iResultType;
b >> iResultType;
fResultType = (CalpontSystemCatalog::ColDataType)iResultType;
b >> fResultscale;
b >> fResultPrecision;
b >> errorMsg;
uint32_t frame;
b >> frame;
fStartFrame = (WF_FRAME)frame;
b >> frame;
fEndFrame = (WF_FRAME)frame;
b >> fStartConstant;
b >> fEndConstant;
}
void UserData::serialize(messageqcpp::ByteStream& bs) const
{
bs << size;
bs.append(data, size);
bs << size;
bs.append(data, size);
}
void UserData::unserialize(messageqcpp::ByteStream& bs)
{
bs >> size;
memcpy(data, bs.buf(), size);
bs.advance(size);
bs >> size;
memcpy(data, bs.buf(), size);
bs.advance(size);
}
const std::string typeStr("");

1155
utils/udfsdk/mcsv1_udaf.h Executable file → Normal file

File diff suppressed because it is too large Load Diff

501
utils/udfsdk/median.cpp Executable file → Normal file
View File

@ -25,290 +25,307 @@
using namespace mcsv1sdk;
mcsv1_UDAF::ReturnCode median::init(mcsv1Context* context,
COL_TYPES& colTypes)
COL_TYPES& colTypes)
{
if (colTypes.size() < 1)
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("median() with 0 arguments");
return mcsv1_UDAF::ERROR;
}
if (colTypes.size() > 1)
{
context->setErrorMessage("median() with more than 1 argument");
return mcsv1_UDAF::ERROR;
}
if (colTypes.size() < 1)
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("median() with 0 arguments");
return mcsv1_UDAF::ERROR;
}
if (!(isNumeric(colTypes[0].second)))
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("median() with non-numeric argument");
return mcsv1_UDAF::ERROR;
}
if (colTypes.size() > 1)
{
context->setErrorMessage("median() with more than 1 argument");
return mcsv1_UDAF::ERROR;
}
context->setResultType(CalpontSystemCatalog::DOUBLE);
context->setColWidth(8);
context->setScale(context->getScale()*2);
context->setPrecision(19);
context->setRunFlag(mcsv1sdk::UDAF_IGNORE_NULLS);
return mcsv1_UDAF::SUCCESS;
if (!(isNumeric(colTypes[0].second)))
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("median() with non-numeric argument");
return mcsv1_UDAF::ERROR;
}
context->setResultType(CalpontSystemCatalog::DOUBLE);
context->setColWidth(8);
context->setScale(context->getScale() * 2);
context->setPrecision(19);
context->setRunFlag(mcsv1sdk::UDAF_IGNORE_NULLS);
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode median::reset(mcsv1Context* context)
{
MedianData* data = static_cast<MedianData*>(context->getUserData());
data->mData.clear();
return mcsv1_UDAF::SUCCESS;
MedianData* data = static_cast<MedianData*>(context->getUserData());
data->mData.clear();
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode median::nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn)
mcsv1_UDAF::ReturnCode median::nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn)
{
static_any::any& valIn = valsIn[0].columnData;
MEDIAN_DATA& data = static_cast<MedianData*>(context->getUserData())->mData;
DATATYPE val = 0.0;
static_any::any& valIn = valsIn[0].columnData;
MEDIAN_DATA& data = static_cast<MedianData*>(context->getUserData())->mData;
DATATYPE val = 0.0;
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
// For decimal types, we need to move the decimal point.
uint32_t scale = valsIn[0].scale;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
data[val]++;
// For decimal types, we need to move the decimal point.
uint32_t scale = valsIn[0].scale;
return mcsv1_UDAF::SUCCESS;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
data[val]++;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode median::subEvaluate(mcsv1Context* context, const UserData* userDataIn)
{
if (!userDataIn)
{
return mcsv1_UDAF::SUCCESS;
}
MEDIAN_DATA& outData = static_cast<MedianData*>(context->getUserData())->mData;
const MEDIAN_DATA& inData = static_cast<const MedianData*>(userDataIn)->mData;
MEDIAN_DATA::const_iterator iter = inData.begin();
for (; iter != inData.end(); ++iter)
{
outData[iter->first] += iter->second;
}
return mcsv1_UDAF::SUCCESS;
if (!userDataIn)
{
return mcsv1_UDAF::SUCCESS;
}
MEDIAN_DATA& outData = static_cast<MedianData*>(context->getUserData())->mData;
const MEDIAN_DATA& inData = static_cast<const MedianData*>(userDataIn)->mData;
MEDIAN_DATA::const_iterator iter = inData.begin();
for (; iter != inData.end(); ++iter)
{
outData[iter->first] += iter->second;
}
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode median::evaluate(mcsv1Context* context, static_any::any& valOut)
{
uint64_t cnt1=0, cnt2=0;
MEDIAN_DATA& data = static_cast<MedianData*>(context->getUserData())->mData;
if (data.size() == 0)
{
valOut = (DATATYPE)0;
return mcsv1_UDAF::SUCCESS;
}
MEDIAN_DATA::iterator iter(data.begin());
MEDIAN_DATA::iterator revfrom(data.end());
MEDIAN_DATA::reverse_iterator riter(revfrom);
cnt1 += iter->second;
cnt2 += riter->second;
while (iter->first < riter->first)
{
while (cnt1 < cnt2 && iter->first < riter->first)
{
++iter;
cnt1 += iter->second;
}
while (cnt2 < cnt1 &&iter->first < riter->first)
{
++riter;
cnt2 += riter->second;
}
while (cnt1 == cnt2 && iter->first < riter->first)
{
++iter;
cnt1 += iter->second;
if (iter->first > riter->first)
{
break;
}
++riter;
cnt2 += riter->second;
}
}
valOut = (iter->first + riter->first) / 2;
return mcsv1_UDAF::SUCCESS;
uint64_t cnt1 = 0, cnt2 = 0;
MEDIAN_DATA& data = static_cast<MedianData*>(context->getUserData())->mData;
if (data.size() == 0)
{
valOut = (DATATYPE)0;
return mcsv1_UDAF::SUCCESS;
}
MEDIAN_DATA::iterator iter(data.begin());
MEDIAN_DATA::iterator revfrom(data.end());
MEDIAN_DATA::reverse_iterator riter(revfrom);
cnt1 += iter->second;
cnt2 += riter->second;
while (iter->first < riter->first)
{
while (cnt1 < cnt2 && iter->first < riter->first)
{
++iter;
cnt1 += iter->second;
}
while (cnt2 < cnt1 && iter->first < riter->first)
{
++riter;
cnt2 += riter->second;
}
while (cnt1 == cnt2 && iter->first < riter->first)
{
++iter;
cnt1 += iter->second;
if (iter->first > riter->first)
{
break;
}
++riter;
cnt2 += riter->second;
}
}
valOut = (iter->first + riter->first) / 2;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode median::dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped)
mcsv1_UDAF::ReturnCode median::dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped)
{
static_any::any& valIn = valsDropped[0].columnData;
MEDIAN_DATA& data = static_cast<MedianData*>(context->getUserData())->mData;
DATATYPE val = 0.0;
static_any::any& valIn = valsDropped[0].columnData;
MEDIAN_DATA& data = static_cast<MedianData*>(context->getUserData())->mData;
DATATYPE val = 0.0;
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
// For decimal types, we need to move the decimal point.
uint32_t scale = valsDropped[0].scale;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
// For decimal types, we need to move the decimal point.
uint32_t scale = valsDropped[0].scale;
data[val]--;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
return mcsv1_UDAF::SUCCESS;
data[val]--;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode median::createUserData(UserData*& userData, int32_t& length)
{
userData = new MedianData;
length = sizeof(MedianData);
return mcsv1_UDAF::SUCCESS;
userData = new MedianData;
length = sizeof(MedianData);
return mcsv1_UDAF::SUCCESS;
}
void MedianData::serialize(messageqcpp::ByteStream& bs) const
{
MEDIAN_DATA::const_iterator iter = mData.begin();
DATATYPE num;
uint32_t cnt;
bs << (int32_t)mData.size();
for (; iter != mData.end(); ++iter)
{
num = iter->first;
bs << num;
cnt = iter->second;
bs << cnt;
}
MEDIAN_DATA::const_iterator iter = mData.begin();
DATATYPE num;
uint32_t cnt;
bs << (int32_t)mData.size();
for (; iter != mData.end(); ++iter)
{
num = iter->first;
bs << num;
cnt = iter->second;
bs << cnt;
}
}
void MedianData::unserialize(messageqcpp::ByteStream& bs)
{
mData.clear();
int32_t sz;
DATATYPE num;
uint32_t cnt;
bs >> sz;
for (int i = 0; i < sz; ++i)
{
bs >> num;
bs >> cnt;
mData[num] = cnt;
}
mData.clear();
int32_t sz;
DATATYPE num;
uint32_t cnt;
bs >> sz;
for (int i = 0; i < sz; ++i)
{
bs >> num;
bs >> cnt;
mData[num] = cnt;
}
}

380
utils/udfsdk/median.h Executable file → Normal file
View File

@ -21,34 +21,34 @@
* mcsv1_UDAF.h
***********************************************************************/
/**
* Columnstore interface for writing a User Defined Aggregate
* Functions (UDAF) and User Defined Analytic Functions (UDAnF)
* or a function that can act as either - UDA(n)F
*
/**
* Columnstore interface for writing a User Defined Aggregate
* Functions (UDAF) and User Defined Analytic Functions (UDAnF)
* or a function that can act as either - UDA(n)F
*
* The basic steps are:
*
* 1. Create a the UDA(n)F function interface in some .h file.
* 2. Create the UDF function implementation in some .cpp file
* 3. Create the connector stub (MariaDB UDAF definition) for
* this UDF function.
* 4. build the dynamic library using all of the source.
* 5 Put the library in $COLUMNSTORE_INSTALL/lib of
* all modules
* 6. restart the Columnstore system.
* 1. Create a the UDA(n)F function interface in some .h file.
* 2. Create the UDF function implementation in some .cpp file
* 3. Create the connector stub (MariaDB UDAF definition) for
* this UDF function.
* 4. build the dynamic library using all of the source.
* 5 Put the library in $COLUMNSTORE_INSTALL/lib of
* all modules
* 6. restart the Columnstore system.
* 7. notify mysqld about the new function:
*
*
* CREATE AGGREGATE FUNCTION median returns REAL soname
* 'libudf_mysql.so';
*
* The UDAF functions may run distributed in the Columnstore
* engine. UDAnF do not run distributed.
*
* UDAF is User Defined Aggregate Function.
* UDAnF is User Defined Analytic Function.
* UDA(n)F is an acronym for a function that could be either. It
* is also used to describe the interface that is used for
* either.
*
* The UDAF functions may run distributed in the Columnstore
* engine. UDAnF do not run distributed.
*
* UDAF is User Defined Aggregate Function.
* UDAnF is User Defined Analytic Function.
* UDA(n)F is an acronym for a function that could be either. It
* is also used to describe the interface that is used for
* either.
*/
#ifndef HEADER_median
#define HEADER_median
@ -83,196 +83,196 @@ typedef std::map<DATATYPE, uint32_t> MEDIAN_DATA;
// Override UserData for data storage
struct MedianData : public UserData
{
MedianData() {};
MedianData() {};
virtual ~MedianData(){}
virtual ~MedianData() {}
virtual void serialize(messageqcpp::ByteStream& bs) const;
virtual void unserialize(messageqcpp::ByteStream& bs);
virtual void serialize(messageqcpp::ByteStream& bs) const;
virtual void unserialize(messageqcpp::ByteStream& bs);
MEDIAN_DATA mData;
MEDIAN_DATA mData;
private:
// For now, copy construction is unwanted
MedianData(UserData&);
// For now, copy construction is unwanted
MedianData(UserData&);
};
// Override mcsv1_UDAF to build your User Defined Aggregate (UDAF) and/or
// Override mcsv1_UDAF to build your User Defined Aggregate (UDAF) and/or
// User Defined Analytic Function (UDAnF).
// These will be singleton classes, so don't put any instance
// specific data in here. All instance data is stored in mcsv1Context
// passed to each user function and retrieved by the getUserData() method.
//
// Each API function returns a ReturnCode. If ERROR is returned at any time,
// the query is aborted, getInterrupted() will begin to return true and the
// message set in config->setErrorMessage() is returned to MariaDB.
//
// Each API function returns a ReturnCode. If ERROR is returned at any time,
// the query is aborted, getInterrupted() will begin to return true and the
// message set in config->setErrorMessage() is returned to MariaDB.
// Return the median value of the dataset
class median : public mcsv1_UDAF
{
public:
// Defaults OK
median() : mcsv1_UDAF(){};
virtual ~median(){};
// Defaults OK
median() : mcsv1_UDAF() {};
virtual ~median() {};
/**
* init()
*
* Mandatory. Implement this to initialize flags and instance
* data. Called once per SQL statement. You can do any sanity
* checks here.
*
* colTypes (in) - A vector of ColDataType defining the
* parameters of the UDA(n)F call. These can be used to decide
* to override the default return type. If desired, the new
* return type can be set by context->setReturnType() and
* decimal scale and precision can be set by context->setScale
* and context->setPrecision respectively.
*
* Return mcsv1_UDAF::ERROR on any error, such as non-compatible
* colTypes or wrong number of arguments. Else return
* mcsv1_UDAF::SUCCESS.
*/
virtual ReturnCode init(mcsv1Context* context,
COL_TYPES& colTypes);
/**
* init()
*
* Mandatory. Implement this to initialize flags and instance
* data. Called once per SQL statement. You can do any sanity
* checks here.
*
* colTypes (in) - A vector of ColDataType defining the
* parameters of the UDA(n)F call. These can be used to decide
* to override the default return type. If desired, the new
* return type can be set by context->setReturnType() and
* decimal scale and precision can be set by context->setScale
* and context->setPrecision respectively.
*
* Return mcsv1_UDAF::ERROR on any error, such as non-compatible
* colTypes or wrong number of arguments. Else return
* mcsv1_UDAF::SUCCESS.
*/
virtual ReturnCode init(mcsv1Context* context,
COL_TYPES& colTypes);
/**
* reset()
*
* Mandatory. Reset the UDA(n)F for a new group, partition or,
* in some cases, new Window Frame. Do not free any memory
* allocated by context->setUserDataSize(). The SDK Framework owns
* that memory and will handle that. Use this opportunity to
* reset any variables in context->getUserData() needed for the
* next aggregation. May be called multiple times if running in
* a ditributed fashion.
*
* Use this opportunity to initialize the userData.
*/
virtual ReturnCode reset(mcsv1Context* context);
/**
* reset()
*
* Mandatory. Reset the UDA(n)F for a new group, partition or,
* in some cases, new Window Frame. Do not free any memory
* allocated by context->setUserDataSize(). The SDK Framework owns
* that memory and will handle that. Use this opportunity to
* reset any variables in context->getUserData() needed for the
* next aggregation. May be called multiple times if running in
* a ditributed fashion.
*
* Use this opportunity to initialize the userData.
*/
virtual ReturnCode reset(mcsv1Context* context);
/**
* nextValue()
*
* Mandatory. Handle a single row.
*
* colsIn - A vector of data structure describing the input
* data.
*
* This function is called once for every row in the filtered
* result set (before aggregation). It is very important that
* this function is efficient.
*
* If the UDAF is running in a distributed fashion, nextValue
* cannot depend on order, as it will only be called for each
* row found on the specific PM.
*
* valsIn (in) - a vector of the parameters from the row.
*/
virtual ReturnCode nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn);
/**
* nextValue()
*
* Mandatory. Handle a single row.
*
* colsIn - A vector of data structure describing the input
* data.
*
* This function is called once for every row in the filtered
* result set (before aggregation). It is very important that
* this function is efficient.
*
* If the UDAF is running in a distributed fashion, nextValue
* cannot depend on order, as it will only be called for each
* row found on the specific PM.
*
* valsIn (in) - a vector of the parameters from the row.
*/
virtual ReturnCode nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn);
/**
* subEvaluate()
*
* Mandatory -- Called if the UDAF is running in a distributed
* fashion. Columnstore tries to run all aggregate functions
* distributed, depending on context.
*
* Perform an aggregation on rows partially aggregated by
* nextValue. Columnstore calls nextValue for each row on a
* given PM for a group (GROUP BY). subEvaluate is called on the
* UM to consolodate those values into a single instance of
* userData. Keep your aggregated totals in context's userData.
* The first time this is called for a group, reset() would have
* been called with this version of userData.
*
* Called for every partial data set in each group in GROUP BY.
*
* When subEvaluate has been called for all subAggregated data
* sets, Evaluate will be called with the same context as here.
*
* valIn (In) - This is a pointer to a memory block of the size
* set in setUserDataSize. It will contain the value of userData
* as seen in the last call to NextValue for a given PM.
*
*/
virtual ReturnCode subEvaluate(mcsv1Context* context, const UserData* valIn);
/**
* subEvaluate()
*
* Mandatory -- Called if the UDAF is running in a distributed
* fashion. Columnstore tries to run all aggregate functions
* distributed, depending on context.
*
* Perform an aggregation on rows partially aggregated by
* nextValue. Columnstore calls nextValue for each row on a
* given PM for a group (GROUP BY). subEvaluate is called on the
* UM to consolodate those values into a single instance of
* userData. Keep your aggregated totals in context's userData.
* The first time this is called for a group, reset() would have
* been called with this version of userData.
*
* Called for every partial data set in each group in GROUP BY.
*
* When subEvaluate has been called for all subAggregated data
* sets, Evaluate will be called with the same context as here.
*
* valIn (In) - This is a pointer to a memory block of the size
* set in setUserDataSize. It will contain the value of userData
* as seen in the last call to NextValue for a given PM.
*
*/
virtual ReturnCode subEvaluate(mcsv1Context* context, const UserData* valIn);
/**
* evaluate()
*
* Mandatory. Get the aggregated value.
*
* Called for every new group if UDAF GROUP BY, UDAnF partition
* or, in some cases, new Window Frame.
*
* Set the aggregated value into valOut. The datatype is assumed
* to be the same as that set in the init() function;
*
* If the UDAF is running in a distributed fashion, evaluate is
* called after a series of subEvaluate calls.
*
* valOut (out) - Set the aggregated value here. The datatype is
* assumed to be the same as that set in the init() function;
*
* To return a NULL value, don't assign to valOut.
*/
virtual ReturnCode evaluate(mcsv1Context* context, static_any::any& valOut);
/**
* evaluate()
*
* Mandatory. Get the aggregated value.
*
* Called for every new group if UDAF GROUP BY, UDAnF partition
* or, in some cases, new Window Frame.
*
* Set the aggregated value into valOut. The datatype is assumed
* to be the same as that set in the init() function;
*
* If the UDAF is running in a distributed fashion, evaluate is
* called after a series of subEvaluate calls.
*
* valOut (out) - Set the aggregated value here. The datatype is
* assumed to be the same as that set in the init() function;
*
* To return a NULL value, don't assign to valOut.
*/
virtual ReturnCode evaluate(mcsv1Context* context, static_any::any& valOut);
/**
* dropValue()
*
* Optional -- If defined, the server will call this instead of
* reset for UDAnF.
*
* Don't implement if a UDAnF has one or more of the following:
* The UDAnF can't be used with a Window Frame
* The UDAnF is not reversable in some way
* The UDAnF is not interested in optimal performance
*
* If not implemented, reset() followed by a series of
* nextValue() will be called for each movement of the Window
* Frame.
*
* If implemented, then each movement of the Window Frame will
* result in dropValue() being called for each row falling out
* of the Frame and nextValue() being called for each new row
* coming into the Frame.
*
* valsDropped (in) - a vector of the parameters from the row
* leaving the Frame
*
* dropValue() will not be called for unbounded/current row type
* frames, as those are already optimized.
*/
virtual ReturnCode dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped);
/**
* dropValue()
*
* Optional -- If defined, the server will call this instead of
* reset for UDAnF.
*
* Don't implement if a UDAnF has one or more of the following:
* The UDAnF can't be used with a Window Frame
* The UDAnF is not reversable in some way
* The UDAnF is not interested in optimal performance
*
* If not implemented, reset() followed by a series of
* nextValue() will be called for each movement of the Window
* Frame.
*
* If implemented, then each movement of the Window Frame will
* result in dropValue() being called for each row falling out
* of the Frame and nextValue() being called for each new row
* coming into the Frame.
*
* valsDropped (in) - a vector of the parameters from the row
* leaving the Frame
*
* dropValue() will not be called for unbounded/current row type
* frames, as those are already optimized.
*/
virtual ReturnCode dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped);
/**
* createUserData()
*
* Optional -- If defined, the server will call this instead of
* createUserData on context.
*
* Create your variable length data structure via
* data = new <datatype>
*
* The data structure may contain references to containers or
* pointers to other objects. Remember that for distributed
* processing, this may be called multiple times for variaous
* computing blocks. At the least, it will be called once per PM
* that processes the data, and once more for the UM. For UDAnF,
* it may only be called once.
*
* Set length to the length of the data structure you create.
*
* For each call to createUserData(), there will be a
* corresponding deleteUserData() where you must clean up. Any
* memory leaks are your fault.
*
*/
virtual ReturnCode createUserData(UserData*& data, int32_t& length);
/**
* createUserData()
*
* Optional -- If defined, the server will call this instead of
* createUserData on context.
*
* Create your variable length data structure via
* data = new <datatype>
*
* The data structure may contain references to containers or
* pointers to other objects. Remember that for distributed
* processing, this may be called multiple times for variaous
* computing blocks. At the least, it will be called once per PM
* that processes the data, and once more for the UM. For UDAnF,
* it may only be called once.
*
* Set length to the length of the data structure you create.
*
* For each call to createUserData(), there will be a
* corresponding deleteUserData() where you must clean up. Any
* memory leaks are your fault.
*
*/
virtual ReturnCode createUserData(UserData*& data, int32_t& length);
protected:
};

View File

@ -1,14 +1,14 @@
//{{NO_DEPENDENCIES}}
// Microsoft Visual C++ generated include file.
// Used by libudfsdk-ent.rc
// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 101
#define _APS_NEXT_COMMAND_VALUE 40001
#define _APS_NEXT_CONTROL_VALUE 1001
#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif
//{{NO_DEPENDENCIES}}
// Microsoft Visual C++ generated include file.
// Used by libudfsdk-ent.rc
// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 101
#define _APS_NEXT_COMMAND_VALUE 40001
#define _APS_NEXT_CONTROL_VALUE 1001
#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif

385
utils/udfsdk/ssq.cpp Executable file → Normal file
View File

@ -27,225 +27,236 @@ using namespace mcsv1sdk;
struct ssq_data
{
uint64_t scale;
uint64_t scale;
DATATYPE sumsq;
ssq_data() : scale(0){}
ssq_data() : scale(0) {}
};
#define OUT_TYPE int64_t
mcsv1_UDAF::ReturnCode ssq::init(mcsv1Context* context,
COL_TYPES& colTypes)
COL_TYPES& colTypes)
{
if (colTypes.size() < 1)
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("ssq() with 0 arguments");
return mcsv1_UDAF::ERROR;
}
if (colTypes.size() > 1)
{
context->setErrorMessage("ssq() with more than 1 argument");
return mcsv1_UDAF::ERROR;
}
if (colTypes.size() < 1)
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("ssq() with 0 arguments");
return mcsv1_UDAF::ERROR;
}
if (!(isNumeric(colTypes[0].second)))
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("ssq() with non-numeric argument");
return mcsv1_UDAF::ERROR;
}
if (colTypes.size() > 1)
{
context->setErrorMessage("ssq() with more than 1 argument");
return mcsv1_UDAF::ERROR;
}
context->setUserDataSize(sizeof(ssq_data));
context->setResultType(CalpontSystemCatalog::DOUBLE);
context->setColWidth(8);
context->setScale(context->getScale()*2);
context->setPrecision(19);
context->setRunFlag(mcsv1sdk::UDAF_IGNORE_NULLS);
return mcsv1_UDAF::SUCCESS;
if (!(isNumeric(colTypes[0].second)))
{
// The error message will be prepended with
// "The storage engine for the table doesn't support "
context->setErrorMessage("ssq() with non-numeric argument");
return mcsv1_UDAF::ERROR;
}
context->setUserDataSize(sizeof(ssq_data));
context->setResultType(CalpontSystemCatalog::DOUBLE);
context->setColWidth(8);
context->setScale(context->getScale() * 2);
context->setPrecision(19);
context->setRunFlag(mcsv1sdk::UDAF_IGNORE_NULLS);
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode ssq::reset(mcsv1Context* context)
{
struct ssq_data* data = (struct ssq_data*)context->getUserData()->data;
if (data)
{
data->scale = 0;
data->sumsq = 0;
}
return mcsv1_UDAF::SUCCESS;
struct ssq_data* data = (struct ssq_data*)context->getUserData()->data;
if (data)
{
data->scale = 0;
data->sumsq = 0;
}
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode ssq::nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn)
mcsv1_UDAF::ReturnCode ssq::nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn)
{
static_any::any& valIn = valsIn[0].columnData;
struct ssq_data* data = (struct ssq_data*)context->getUserData()->data;
DATATYPE val = 0.0;
static_any::any& valIn = valsIn[0].columnData;
struct ssq_data* data = (struct ssq_data*)context->getUserData()->data;
DATATYPE val = 0.0;
if (context->isParamNull(0) || valIn.empty())
{
return mcsv1_UDAF::SUCCESS;
}
if (context->isParamNull(0) || valIn.empty())
{
return mcsv1_UDAF::SUCCESS;
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
// For decimal types, we need to move the decimal point.
uint32_t scale = valsIn[0].scale;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
data->sumsq += val*val;
return mcsv1_UDAF::SUCCESS;
// For decimal types, we need to move the decimal point.
uint32_t scale = valsIn[0].scale;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
data->sumsq += val * val;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode ssq::subEvaluate(mcsv1Context* context, const UserData* userDataIn)
{
// If we turn off UDAF_IGNORE_NULLS in init(), then NULLS may be sent here in cases of Joins.
// When a NULL value is sent here, userDataIn will be NULL, so check for NULLS.
if (context->isParamNull(0))
{
return mcsv1_UDAF::SUCCESS;
}
struct ssq_data* outData = (struct ssq_data*)context->getUserData()->data;
struct ssq_data* inData = (struct ssq_data*)userDataIn->data;
outData->sumsq += inData->sumsq;
return mcsv1_UDAF::SUCCESS;
// If we turn off UDAF_IGNORE_NULLS in init(), then NULLS may be sent here in cases of Joins.
// When a NULL value is sent here, userDataIn will be NULL, so check for NULLS.
if (context->isParamNull(0))
{
return mcsv1_UDAF::SUCCESS;
}
struct ssq_data* outData = (struct ssq_data*)context->getUserData()->data;
struct ssq_data* inData = (struct ssq_data*)userDataIn->data;
outData->sumsq += inData->sumsq;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode ssq::evaluate(mcsv1Context* context, static_any::any& valOut)
{
struct ssq_data* data = (struct ssq_data*)context->getUserData()->data;
valOut = data->sumsq;
return mcsv1_UDAF::SUCCESS;
struct ssq_data* data = (struct ssq_data*)context->getUserData()->data;
valOut = data->sumsq;
return mcsv1_UDAF::SUCCESS;
}
mcsv1_UDAF::ReturnCode ssq::dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped)
mcsv1_UDAF::ReturnCode ssq::dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped)
{
static_any::any& valIn = valsDropped[0].columnData;
struct ssq_data* data = (struct ssq_data*)context->getUserData()->data;
DATATYPE val = 0.0;
static_any::any& valIn = valsDropped[0].columnData;
struct ssq_data* data = (struct ssq_data*)context->getUserData()->data;
DATATYPE val = 0.0;
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.empty())
{
return mcsv1_UDAF::SUCCESS; // Ought not happen when UDAF_IGNORE_NULLS is on.
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
if (valIn.compatible(charTypeId))
{
val = valIn.cast<char>();
}
else if (valIn.compatible(scharTypeId))
{
val = valIn.cast<signed char>();
}
else if (valIn.compatible(shortTypeId))
{
val = valIn.cast<short>();
}
else if (valIn.compatible(intTypeId))
{
val = valIn.cast<int>();
}
else if (valIn.compatible(longTypeId))
{
val = valIn.cast<long>();
}
else if (valIn.compatible(llTypeId))
{
val = valIn.cast<long long>();
}
else if (valIn.compatible(ucharTypeId))
{
val = valIn.cast<unsigned char>();
}
else if (valIn.compatible(ushortTypeId))
{
val = valIn.cast<unsigned short>();
}
else if (valIn.compatible(uintTypeId))
{
val = valIn.cast<unsigned int>();
}
else if (valIn.compatible(ulongTypeId))
{
val = valIn.cast<unsigned long>();
}
else if (valIn.compatible(ullTypeId))
{
val = valIn.cast<unsigned long long>();
}
else if (valIn.compatible(floatTypeId))
{
val = valIn.cast<float>();
}
else if (valIn.compatible(doubleTypeId))
{
val = valIn.cast<double>();
}
// For decimal types, we need to move the decimal point.
uint32_t scale = valsDropped[0].scale;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
data->sumsq -= val*val;
return mcsv1_UDAF::SUCCESS;
// For decimal types, we need to move the decimal point.
uint32_t scale = valsDropped[0].scale;
if (val != 0 && scale > 0)
{
val /= pow(10.0, (double)scale);
}
data->sumsq -= val * val;
return mcsv1_UDAF::SUCCESS;
}

314
utils/udfsdk/ssq.h Executable file → Normal file
View File

@ -21,34 +21,34 @@
* mcsv1_UDAF.h
***********************************************************************/
/**
* Columnstore interface for writing a User Defined Aggregate
* Functions (UDAF) and User Defined Analytic Functions (UDAnF)
* or a function that can act as either - UDA(n)F
*
/**
* Columnstore interface for writing a User Defined Aggregate
* Functions (UDAF) and User Defined Analytic Functions (UDAnF)
* or a function that can act as either - UDA(n)F
*
* The basic steps are:
*
* 1. Create a the UDA(n)F function interface in some .h file.
* 2. Create the UDF function implementation in some .cpp file
* 3. Create the connector stub (MariaDB UDAF definition) for
* this UDF function.
* 4. build the dynamic library using all of the source.
* 5 Put the library in $COLUMNSTORE_INSTALL/lib of
* all modules
* 6. restart the Columnstore system.
* 1. Create a the UDA(n)F function interface in some .h file.
* 2. Create the UDF function implementation in some .cpp file
* 3. Create the connector stub (MariaDB UDAF definition) for
* this UDF function.
* 4. build the dynamic library using all of the source.
* 5 Put the library in $COLUMNSTORE_INSTALL/lib of
* all modules
* 6. restart the Columnstore system.
* 7. notify mysqld about the new function:
*
*
* CREATE AGGREGATE FUNCTION ssq returns REAL soname
* 'libudf_mysql.so';
*
* The UDAF function will run distributed in the Columnstore
* engine. UDAnF do not run distributed.
*
* UDAF is User Defined Aggregate Function.
* UDAnF is User Defined Analytic Function.
* UDA(n)F is an acronym for a function that could be either. It
* is also used to describe the interface that is used for
* either.
*
* The UDAF function will run distributed in the Columnstore
* engine. UDAnF do not run distributed.
*
* UDAF is User Defined Aggregate Function.
* UDAnF is User Defined Analytic Function.
* UDA(n)F is an acronym for a function that could be either. It
* is also used to describe the interface that is used for
* either.
*/
#ifndef HEADER_ssq
#define HEADER_ssq
@ -77,155 +77,155 @@ using namespace execplan;
namespace mcsv1sdk
{
// Override mcsv1_UDAF to build your User Defined Aggregate (UDAF) and/or
// Override mcsv1_UDAF to build your User Defined Aggregate (UDAF) and/or
// User Defined Analytic Function (UDAnF).
// These will be singleton classes, so don't put any instance
// specific data in here. All instance data is stored in mcsv1Context
// passed to each user function and retrieved by the getUserData() method.
//
// Each API function returns a ReturnCode. If ERROR is returned at any time,
// the query is aborted, getInterrupted() will begin to return true and the
// message set in config->setErrorMessage() is returned to MariaDB.
//
// Each API function returns a ReturnCode. If ERROR is returned at any time,
// the query is aborted, getInterrupted() will begin to return true and the
// message set in config->setErrorMessage() is returned to MariaDB.
// A simple aggregate to return the sum of squares
class ssq : public mcsv1_UDAF
{
public:
// Defaults OK
ssq() : mcsv1_UDAF(){};
virtual ~ssq(){};
// Defaults OK
ssq() : mcsv1_UDAF() {};
virtual ~ssq() {};
/**
* init()
*
* Mandatory. Implement this to initialize flags and instance
* data. Called once per SQL statement. You can do any sanity
* checks here.
*
* colTypes (in) - A vector of ColDataType defining the
* parameters of the UDA(n)F call. These can be used to decide
* to override the default return type. If desired, the new
* return type can be set by context->setReturnType() and
* decimal scale and precision can be set by context->setScale
* and context->setPrecision respectively.
*
* Return mcsv1_UDAF::ERROR on any error, such as non-compatible
* colTypes or wrong number of arguments. Else return
* mcsv1_UDAF::SUCCESS.
*/
virtual ReturnCode init(mcsv1Context* context,
COL_TYPES& colTypes);
/**
* init()
*
* Mandatory. Implement this to initialize flags and instance
* data. Called once per SQL statement. You can do any sanity
* checks here.
*
* colTypes (in) - A vector of ColDataType defining the
* parameters of the UDA(n)F call. These can be used to decide
* to override the default return type. If desired, the new
* return type can be set by context->setReturnType() and
* decimal scale and precision can be set by context->setScale
* and context->setPrecision respectively.
*
* Return mcsv1_UDAF::ERROR on any error, such as non-compatible
* colTypes or wrong number of arguments. Else return
* mcsv1_UDAF::SUCCESS.
*/
virtual ReturnCode init(mcsv1Context* context,
COL_TYPES& colTypes);
/**
* reset()
*
* Mandatory. Reset the UDA(n)F for a new group, partition or,
* in some cases, new Window Frame. Do not free any memory
* allocated by context->createUserData(). The SDK Framework
* owns that memory and will handle that. Use this opportunity
* to reset any variables in context->getUserData() needed for
* the next aggregation. May be called multiple times on
* different modules.
*/
virtual ReturnCode reset(mcsv1Context* context);
/**
* reset()
*
* Mandatory. Reset the UDA(n)F for a new group, partition or,
* in some cases, new Window Frame. Do not free any memory
* allocated by context->createUserData(). The SDK Framework
* owns that memory and will handle that. Use this opportunity
* to reset any variables in context->getUserData() needed for
* the next aggregation. May be called multiple times on
* different modules.
*/
virtual ReturnCode reset(mcsv1Context* context);
/**
* nextValue()
*
* Mandatory. Handle a single row.
*
* colsIn - A vector of data structure describing the input
* data.
*
* This function is called once for every row in the filtered
* result set (before aggregation). It is very important that
* this function is efficient.
*
* If the UDAF is running in a distributed fashion, nextValue
* cannot depend on order, as it will only be called for each
* row found on the specific PM.
*
* valsIn (in) - a vector of the parameters from the row.
*/
virtual ReturnCode nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn);
/**
* nextValue()
*
* Mandatory. Handle a single row.
*
* colsIn - A vector of data structure describing the input
* data.
*
* This function is called once for every row in the filtered
* result set (before aggregation). It is very important that
* this function is efficient.
*
* If the UDAF is running in a distributed fashion, nextValue
* cannot depend on order, as it will only be called for each
* row found on the specific PM.
*
* valsIn (in) - a vector of the parameters from the row.
*/
virtual ReturnCode nextValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsIn);
/**
* subEvaluate()
*
* Mandatory -- Called if the UDAF is running in a distributed
* fashion. Columnstore tries to run all aggregate functions
* distributed, depending on context.
*
* Perform an aggregation on rows partially aggregated by
* nextValue. Columnstore calls nextValue for each row on a
* given PM for a group (GROUP BY). subEvaluate is called on the
* UM to consolodate those values into a single instance of
* userData. Keep your aggregated totals in context's userData.
* The first time this is called for a group, reset() would have
* been called with this version of userData.
*
* Called for every partial data set in each group in GROUP BY.
*
* When subEvaluate has been called for all subAggregated data
* sets, Evaluate will be called.
*
* valIn (In) - This is a pointer to a memory block of the size
* set in setUserDataSize. It will contain the value of userData
* as seen in the last call to NextValue for a given PM.
*
*/
virtual ReturnCode subEvaluate(mcsv1Context* context, const UserData* userDataIn);
/**
* subEvaluate()
*
* Mandatory -- Called if the UDAF is running in a distributed
* fashion. Columnstore tries to run all aggregate functions
* distributed, depending on context.
*
* Perform an aggregation on rows partially aggregated by
* nextValue. Columnstore calls nextValue for each row on a
* given PM for a group (GROUP BY). subEvaluate is called on the
* UM to consolodate those values into a single instance of
* userData. Keep your aggregated totals in context's userData.
* The first time this is called for a group, reset() would have
* been called with this version of userData.
*
* Called for every partial data set in each group in GROUP BY.
*
* When subEvaluate has been called for all subAggregated data
* sets, Evaluate will be called.
*
* valIn (In) - This is a pointer to a memory block of the size
* set in setUserDataSize. It will contain the value of userData
* as seen in the last call to NextValue for a given PM.
*
*/
virtual ReturnCode subEvaluate(mcsv1Context* context, const UserData* userDataIn);
/**
* evaluate()
*
* Mandatory. Get the aggregated value.
*
* Called for every new group if UDAF GROUP BY, UDAnF partition
* or, in some cases, new Window Frame.
*
* Set the aggregated value into valOut. The datatype is assumed
* to be the same as that set in the init() function;
*
* If the UDAF is running in a distributed fashion, evaluate is
* called after a series of subEvaluate calls.
*
* valOut (out) - Set the aggregated value here. The datatype is
* assumed to be the same as that set in the init() function;
*
* To return a NULL value, don't assign to valOut.
*/
virtual ReturnCode evaluate(mcsv1Context* context, static_any::any& valOut);
/**
* evaluate()
*
* Mandatory. Get the aggregated value.
*
* Called for every new group if UDAF GROUP BY, UDAnF partition
* or, in some cases, new Window Frame.
*
* Set the aggregated value into valOut. The datatype is assumed
* to be the same as that set in the init() function;
*
* If the UDAF is running in a distributed fashion, evaluate is
* called after a series of subEvaluate calls.
*
* valOut (out) - Set the aggregated value here. The datatype is
* assumed to be the same as that set in the init() function;
*
* To return a NULL value, don't assign to valOut.
*/
virtual ReturnCode evaluate(mcsv1Context* context, static_any::any& valOut);
/**
* dropValue()
*
* Optional -- If defined, the server will call this instead of
* reset for UDAnF.
*
* Don't implement if a UDAnF has one or more of the following:
* The UDAnF can't be used with a Window Frame
* The UDAnF is not reversable in some way
* The UDAnF is not interested in optimal performance
*
* If not implemented, reset() followed by a series of
* nextValue() will be called for each movement of the Window
* Frame.
*
* If implemented, then each movement of the Window Frame will
* result in dropValue() being called for each row falling out
* of the Frame and nextValue() being called for each new row
* coming into the Frame.
*
* valsDropped (in) - a vector of the parameters from the row
* leaving the Frame
*
* dropValue() will not be called for unbounded/current row type
* frames, as those are already optimized.
*/
virtual ReturnCode dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped);
/**
* dropValue()
*
* Optional -- If defined, the server will call this instead of
* reset for UDAnF.
*
* Don't implement if a UDAnF has one or more of the following:
* The UDAnF can't be used with a Window Frame
* The UDAnF is not reversable in some way
* The UDAnF is not interested in optimal performance
*
* If not implemented, reset() followed by a series of
* nextValue() will be called for each movement of the Window
* Frame.
*
* If implemented, then each movement of the Window Frame will
* result in dropValue() being called for each row falling out
* of the Frame and nextValue() being called for each new row
* coming into the Frame.
*
* valsDropped (in) - a vector of the parameters from the row
* leaving the Frame
*
* dropValue() will not be called for unbounded/current row type
* frames, as those are already optimized.
*/
virtual ReturnCode dropValue(mcsv1Context* context,
std::vector<ColumnDatum>& valsDropped);
protected:
};

682
utils/udfsdk/udfmysql.cpp Executable file → Normal file
View File

@ -6,78 +6,94 @@ using namespace std;
#include "idb_mysql.h"
namespace {
namespace
{
inline double cvtArgToDouble(int t, const char* v)
{
double d = 0.0;
switch (t)
{
case INT_RESULT:
d = (double)(*((long long*)v));
break;
case REAL_RESULT:
d = *((double*)v);
break;
case DECIMAL_RESULT:
case STRING_RESULT:
d = strtod(v, 0);
break;
case ROW_RESULT:
break;
}
return d;
double d = 0.0;
switch (t)
{
case INT_RESULT:
d = (double)(*((long long*)v));
break;
case REAL_RESULT:
d = *((double*)v);
break;
case DECIMAL_RESULT:
case STRING_RESULT:
d = strtod(v, 0);
break;
case ROW_RESULT:
break;
}
return d;
}
inline long long cvtArgToInt(int t, const char* v)
{
long long ll = 0;
switch (t)
{
case INT_RESULT:
ll = *((long long*)v);
break;
case REAL_RESULT:
ll = (long long)(*((double*)v));
break;
case DECIMAL_RESULT:
case STRING_RESULT:
ll = strtoll(v, 0, 0);
break;
case ROW_RESULT:
break;
}
return ll;
long long ll = 0;
switch (t)
{
case INT_RESULT:
ll = *((long long*)v);
break;
case REAL_RESULT:
ll = (long long)(*((double*)v));
break;
case DECIMAL_RESULT:
case STRING_RESULT:
ll = strtoll(v, 0, 0);
break;
case ROW_RESULT:
break;
}
return ll;
}
inline string cvtArgToString(int t, const char* v)
{
string str;
switch (t)
{
case INT_RESULT:
{
long long ll;
ll = *((long long*)v);
ostringstream oss;
oss << ll;
str = oss.str();
break;
}
case REAL_RESULT:
{
double d;
d = *((double*)v);
ostringstream oss;
oss << d;
str = oss.str();
break;
}
case DECIMAL_RESULT:
case STRING_RESULT:
str = v;
break;
case ROW_RESULT:
break;
}
return str;
string str;
switch (t)
{
case INT_RESULT:
{
long long ll;
ll = *((long long*)v);
ostringstream oss;
oss << ll;
str = oss.str();
break;
}
case REAL_RESULT:
{
double d;
d = *((double*)v);
ostringstream oss;
oss << d;
str = oss.str();
break;
}
case DECIMAL_RESULT:
case STRING_RESULT:
str = v;
break;
case ROW_RESULT:
break;
}
return str;
}
}
@ -95,7 +111,7 @@ inline string cvtArgToString(int t, const char* v)
* ~/sql/udf_example.cc.
*
* Please note that the implementation of the function defined on the connector
* will only be called when all the input arguments are constant. e.g.,
* will only be called when all the input arguments are constant. e.g.,
* mcs_add(2,3). That way, the function does not run in a distributed fashion
* and could be slow. If there is a need for the UDF function to run with
* pure constant input, then one needs to put a implementation in the XXX
@ -105,371 +121,375 @@ inline string cvtArgToString(int t, const char* v)
*/
extern "C"
{
/**
* MCS_ADD connector stub
*/
/**
* MCS_ADD connector stub
*/
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
my_bool mcs_add_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 2)
{
strcpy(message,"mcs_add() requires two argument");
return 1;
}
my_bool mcs_add_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 2)
{
strcpy(message, "mcs_add() requires two argument");
return 1;
}
return 0;
}
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void mcs_add_deinit(UDF_INIT* initid)
{
}
void mcs_add_deinit(UDF_INIT* initid)
{
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
double mcs_add(UDF_INIT *initid, UDF_ARGS *args, char *is_null, char *error)
{
double op1, op2;
double mcs_add(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* error)
{
double op1, op2;
op1 = cvtArgToDouble(args->arg_type[0], args->args[0]);
op2 = cvtArgToDouble(args->arg_type[1], args->args[1]);
op1 = cvtArgToDouble(args->arg_type[0], args->args[0]);
op2 = cvtArgToDouble(args->arg_type[1], args->args[1]);
return op1+op2;
}
return op1 + op2;
}
/**
* MCS_ISNULL connector stub
*/
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool mcs_isnull_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message,"mcs_isnull() requires one argument");
return 1;
}
return 0;
}
/**
* MCS_ISNULL connector stub
*/
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void mcs_isnull_deinit(UDF_INIT* initid)
{
}
my_bool mcs_isnull_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message, "mcs_isnull() requires one argument");
return 1;
}
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
long long mcs_isnull(UDF_INIT *initid, UDF_ARGS *args, char *is_null, char *error)
{
return 0;
}
void mcs_isnull_deinit(UDF_INIT* initid)
{
}
/**
* ALLNULL connector stub
*/
struct allnull_data
{
ulonglong totalQuantity;
ulonglong totalNulls;
};
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
my_bool allnull_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct allnull_data* data;
long long mcs_isnull(UDF_INIT* initid, UDF_ARGS* args, char* is_null, char* error)
{
return 0;
}
/**
* ALLNULL connector stub
*/
struct allnull_data
{
ulonglong totalQuantity;
ulonglong totalNulls;
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool allnull_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct allnull_data* data;
// if (args->arg_count != 1)
// {
// strcpy(message,"allnull() requires one argument");
// return 1;
// }
if (!(data = (struct allnull_data*) malloc(sizeof(struct allnull_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->totalQuantity = 0;
data->totalNulls = 0;
if (!(data = (struct allnull_data*) malloc(sizeof(struct allnull_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
initid->ptr = (char*)data;
data->totalQuantity = 0;
data->totalNulls = 0;
return 0;
}
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void allnull_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
void allnull_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
long long allnull(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct allnull_data* data = (struct allnull_data*)initid->ptr;
return data->totalQuantity > 0 && data->totalNulls == data->totalQuantity;
}
long long allnull(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct allnull_data* data = (struct allnull_data*)initid->ptr;
return data->totalQuantity > 0 && data->totalNulls == data->totalQuantity;
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void
allnull_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
void
allnull_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct allnull_data* data = (struct allnull_data*)initid->ptr;
data->totalQuantity = 0;
data->totalNulls = 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
allnull_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
struct allnull_data* data = (struct allnull_data*)initid->ptr;
const char* word = args->args[0];
data->totalQuantity++;
if (!word)
{
data->totalNulls++;
}
}
/**
* SSQ connector stub
*/
struct ssq_data
{
double sumsq;
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool ssq_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct ssq_data* data;
if (args->arg_count != 1)
{
strcpy(message, "ssq() requires one argument");
return 1;
}
if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data))))
{
strmov(message, "Couldn't allocate memory");
return 1;
}
data->sumsq = 0;
initid->ptr = (char*)data;
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void ssq_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
ssq_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct allnull_data* data = (struct allnull_data*)initid->ptr;
data->totalQuantity = 0;
data->totalNulls = 0;
}
{
struct ssq_data* data = (struct ssq_data*)initid->ptr;
data->sumsq = 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void
allnull_add(UDF_INIT* initid, UDF_ARGS* args,
void
ssq_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
struct allnull_data* data = (struct allnull_data*)initid->ptr;
const char *word=args->args[0];
data->totalQuantity++;
if (!word)
{
data->totalNulls++;
}
}
/**
* SSQ connector stub
*/
struct ssq_data
{
double sumsq;
};
#ifdef _MSC_VER
__declspec(dllexport)
#endif
my_bool ssq_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
struct ssq_data* data;
if (args->arg_count != 1)
{
strcpy(message,"ssq() requires one argument");
return 1;
}
if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->sumsq = 0;
initid->ptr = (char*)data;
return 0;
}
{
struct ssq_data* data = (struct ssq_data*)initid->ptr;
double val = cvtArgToDouble(args->arg_type[0], args->args[0]);
data->sumsq = val * val;
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void ssq_deinit(UDF_INIT* initid)
{
free(initid->ptr);
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
ssq_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
struct ssq_data* data = (struct ssq_data*)initid->ptr;
data->sumsq = 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
void
ssq_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
struct ssq_data* data = (struct ssq_data*)initid->ptr;
double val = cvtArgToDouble(args->arg_type[0], args->args[0]);
data->sumsq = val*val;
}
#ifdef _MSC_VER
__declspec(dllexport)
#endif
long long ssq(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct ssq_data* data = (struct ssq_data*)initid->ptr;
return data->sumsq;
}
long long ssq(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
struct ssq_data* data = (struct ssq_data*)initid->ptr;
return data->sumsq;
}
//=======================================================================
/**
* MEDIAN connector stub
*/
/**
* MEDIAN connector stub
*/
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
my_bool median_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message,"median() requires one argument");
return 1;
}
my_bool median_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message, "median() requires one argument");
return 1;
}
/*
if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->sumsq = 0;
/*
if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->sumsq = 0;
initid->ptr = (char*)data;
*/
return 0;
}
initid->ptr = (char*)data;
*/
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void median_deinit(UDF_INIT* initid)
{
void median_deinit(UDF_INIT* initid)
{
// free(initid->ptr);
}
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void
median_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
void
median_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// data->sumsq = 0;
}
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void
median_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
void
median_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// double val = cvtArgToDouble(args->arg_type[0], args->args[0]);
// data->sumsq = val*val;
}
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
long long median(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
long long median(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// return data->sumsq;
return 0;
}
return 0;
}
/**
* avg_mode connector stub
*/
/**
* avg_mode connector stub
*/
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
my_bool avg_mode_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message,"avg_mode() requires one argument");
return 1;
}
my_bool avg_mode_init(UDF_INIT* initid, UDF_ARGS* args, char* message)
{
if (args->arg_count != 1)
{
strcpy(message, "avg_mode() requires one argument");
return 1;
}
/*
if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->sumsq = 0;
/*
if (!(data = (struct ssq_data*) malloc(sizeof(struct ssq_data))))
{
strmov(message,"Couldn't allocate memory");
return 1;
}
data->sumsq = 0;
initid->ptr = (char*)data;
*/
return 0;
}
initid->ptr = (char*)data;
*/
return 0;
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void avg_mode_deinit(UDF_INIT* initid)
{
void avg_mode_deinit(UDF_INIT* initid)
{
// free(initid->ptr);
}
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void
avg_mode_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
void
avg_mode_clear(UDF_INIT* initid, char* is_null __attribute__((unused)),
char* message __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// data->sumsq = 0;
}
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
void
avg_mode_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
void
avg_mode_add(UDF_INIT* initid, UDF_ARGS* args,
char* is_null,
char* message __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// double val = cvtArgToDouble(args->arg_type[0], args->args[0]);
// data->sumsq = val*val;
}
}
#ifdef _MSC_VER
__declspec(dllexport)
__declspec(dllexport)
#endif
long long avg_mode(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
long long avg_mode(UDF_INIT* initid, UDF_ARGS* args __attribute__((unused)),
char* is_null, char* error __attribute__((unused)))
{
// struct ssq_data* data = (struct ssq_data*)initid->ptr;
// return data->sumsq;
return 0;
}
return 0;
}
}
// vim:ts=4 sw=4:

View File

@ -53,70 +53,71 @@ UDFSDK::~UDFSDK()
/**
* All UDF functions should be registered in the function map. They will be
* picked up by the MariaDB ColumnStore F&E framework when the servers are started.
* picked up by the MariaDB ColumnStore F&E framework when the servers are started.
* That will make sure the UDF functions runs distributedly in ColumnStore
* engines just like the internal ColumnStore functions.
*/
FuncMap UDFSDK::UDFMap() const
{
FuncMap fm;
// first: function name
// second: Function pointer
// please use lower case for the function name. Because the names might be
// case-insensitive in MariaDB depending on the setting. In such case,
// the function names passed to the interface is always in lower case.
fm["mcs_add"] = new MCS_add();
fm["mcs_isnull"] = new MCS_isnull();
return fm;
FuncMap fm;
// first: function name
// second: Function pointer
// please use lower case for the function name. Because the names might be
// case-insensitive in MariaDB depending on the setting. In such case,
// the function names passed to the interface is always in lower case.
fm["mcs_add"] = new MCS_add();
fm["mcs_isnull"] = new MCS_isnull();
return fm;
}
/***************************************************************************
* MCS_ADD implementation
* MCS_ADD implementation
*
* OperationType() definition
*/
CalpontSystemCatalog::ColType MCS_add::operationType (FunctionParm& fp,
CalpontSystemCatalog::ColType& resultType)
CalpontSystemCatalog::ColType MCS_add::operationType (FunctionParm& fp,
CalpontSystemCatalog::ColType& resultType)
{
// operation type of MCS_add is determined by the argument types
assert (fp.size() == 2);
CalpontSystemCatalog::ColType rt;
if (fp[0]->data()->resultType() == fp[1]->data()->resultType())
{
rt = fp[0]->data()->resultType();
}
else if (fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::CHAR ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::CHAR ||
fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::VARCHAR ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::VARCHAR ||
fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::DOUBLE ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::DOUBLE)
{
rt.colDataType = CalpontSystemCatalog::DOUBLE;
rt.colWidth = 8;
}
else if (fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::DATE ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::DATE ||
fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::DATETIME ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::DATETIME)
{
rt.colDataType = CalpontSystemCatalog::BIGINT;
rt.colWidth = 8;
}
else if (fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::DECIMAL ||
// operation type of MCS_add is determined by the argument types
assert (fp.size() == 2);
CalpontSystemCatalog::ColType rt;
if (fp[0]->data()->resultType() == fp[1]->data()->resultType())
{
rt = fp[0]->data()->resultType();
}
else if (fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::CHAR ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::CHAR ||
fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::VARCHAR ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::VARCHAR ||
fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::DOUBLE ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::DOUBLE)
{
rt.colDataType = CalpontSystemCatalog::DOUBLE;
rt.colWidth = 8;
}
else if (fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::DATE ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::DATE ||
fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::DATETIME ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::DATETIME)
{
rt.colDataType = CalpontSystemCatalog::BIGINT;
rt.colWidth = 8;
}
else if (fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::DECIMAL ||
fp[0]->data()->resultType().colDataType == CalpontSystemCatalog::UDECIMAL ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::DECIMAL ||
fp[1]->data()->resultType().colDataType == CalpontSystemCatalog::UDECIMAL)
{
rt.colDataType = CalpontSystemCatalog::DECIMAL;
rt.colWidth = 8;
}
else
{
{
rt.colDataType = CalpontSystemCatalog::DECIMAL;
rt.colWidth = 8;
}
else
{
if (isUnsigned(fp[0]->data()->resultType().colDataType) ||
isUnsigned(fp[1]->data()->resultType().colDataType))
isUnsigned(fp[1]->data()->resultType().colDataType))
{
rt.colDataType = CalpontSystemCatalog::UBIGINT;
rt.colWidth = 8;
@ -126,8 +127,9 @@ CalpontSystemCatalog::ColType MCS_add::operationType (FunctionParm& fp,
rt.colDataType = CalpontSystemCatalog::BIGINT;
rt.colWidth = 8;
}
}
return rt;
}
return rt;
}
/**
@ -136,66 +138,73 @@ CalpontSystemCatalog::ColType MCS_add::operationType (FunctionParm& fp,
* This API is called when an double value is needed to return from the UDF function
*/
double MCS_add::getDoubleVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
switch (op_ct.colDataType)
{
// The APIs for the evaluation of the function parameters are the same getXXXval()
// functions. However, only two arguments are passed in, the current
// row reference and the NULL indicator isNull.
case CalpontSystemCatalog::BIGINT:
case CalpontSystemCatalog::MEDINT:
case CalpontSystemCatalog::SMALLINT:
case CalpontSystemCatalog::TINYINT:
return ( parm[0]->data()->getIntVal(row, isNull) +
parm[1]->data()->getIntVal(row, isNull));
switch (op_ct.colDataType)
{
// The APIs for the evaluation of the function parameters are the same getXXXval()
// functions. However, only two arguments are passed in, the current
// row reference and the NULL indicator isNull.
case CalpontSystemCatalog::BIGINT:
case CalpontSystemCatalog::MEDINT:
case CalpontSystemCatalog::SMALLINT:
case CalpontSystemCatalog::TINYINT:
return ( parm[0]->data()->getIntVal(row, isNull) +
parm[1]->data()->getIntVal(row, isNull));
case CalpontSystemCatalog::UBIGINT:
case CalpontSystemCatalog::UMEDINT:
case CalpontSystemCatalog::USMALLINT:
case CalpontSystemCatalog::UTINYINT:
return ( parm[0]->data()->getUintVal(row, isNull) +
parm[1]->data()->getUintVal(row, isNull));
case CalpontSystemCatalog::DOUBLE:
return ( parm[0]->data()->getDoubleVal(row, isNull) +
parm[1]->data()->getDoubleVal(row, isNull));
case CalpontSystemCatalog::DECIMAL:
case CalpontSystemCatalog::DOUBLE:
return ( parm[0]->data()->getDoubleVal(row, isNull) +
parm[1]->data()->getDoubleVal(row, isNull));
case CalpontSystemCatalog::DECIMAL:
case CalpontSystemCatalog::UDECIMAL:
{
IDB_Decimal dec;
IDB_Decimal op1 = parm[0]->data()->getDecimalVal(row, isNull);
IDB_Decimal op2 = parm[1]->data()->getDecimalVal(row, isNull);
if (op1.scale == op2.scale)
{
dec.scale = op1.scale;
}
else if (op1.scale >= op2.scale)
{
dec.scale = op2.scale;
op1.value *= (int64_t)pow((double)10, op1.scale-op2.scale);
}
else
{
dec.scale = op1.scale;
op2.value *= (int64_t)pow((double)10, op2.scale-op1.scale);
}
dec.value = op1.value + op2.value;
return (double)(dec.value / pow((double)10, dec.scale));
}
default:
return ( parm[0]->data()->getDoubleVal(row, isNull) +
parm[1]->data()->getDoubleVal(row, isNull));
}
return 0;
{
IDB_Decimal dec;
IDB_Decimal op1 = parm[0]->data()->getDecimalVal(row, isNull);
IDB_Decimal op2 = parm[1]->data()->getDecimalVal(row, isNull);
if (op1.scale == op2.scale)
{
dec.scale = op1.scale;
}
else if (op1.scale >= op2.scale)
{
dec.scale = op2.scale;
op1.value *= (int64_t)pow((double)10, op1.scale - op2.scale);
}
else
{
dec.scale = op1.scale;
op2.value *= (int64_t)pow((double)10, op2.scale - op1.scale);
}
dec.value = op1.value + op2.value;
return (double)(dec.value / pow((double)10, dec.scale));
}
default:
return ( parm[0]->data()->getDoubleVal(row, isNull) +
parm[1]->data()->getDoubleVal(row, isNull));
}
return 0;
}
float MCS_add::getFloatVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
return (float)getDoubleVal(row, parm, isNull, op_ct);
return (float)getDoubleVal(row, parm, isNull, op_ct);
}
/**
@ -203,39 +212,39 @@ float MCS_add::getFloatVal(Row& row,
*
* This API is called when an integer value is needed to return from the UDF function
*
* Because the result type MCS_add is double(real), all the other API can simply call
* Because the result type MCS_add is double(real), all the other API can simply call
* getDoubleVal and apply the conversion. This method may not fit for all the UDF
* implementation.
*/
int64_t MCS_add::getIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
return (int64_t)getDoubleVal(row, parm, isNull, op_ct);
return (int64_t)getDoubleVal(row, parm, isNull, op_ct);
}
string MCS_add::getStrVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
// One will need a more efficient implementation if this API is frequently
// called for this UDF function. This code is for demonstration purpose.
ostringstream oss;
oss << getDoubleVal(row, parm, isNull, op_ct);
return oss.str();
// One will need a more efficient implementation if this API is frequently
// called for this UDF function. This code is for demonstration purpose.
ostringstream oss;
oss << getDoubleVal(row, parm, isNull, op_ct);
return oss.str();
}
IDB_Decimal MCS_add::getDecimalVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
IDB_Decimal dec;
dec.value = getIntVal(row, parm, isNull, op_ct);
dec.scale = 0;
return dec;
IDB_Decimal dec;
dec.value = getIntVal(row, parm, isNull, op_ct);
dec.scale = 0;
return dec;
}
/**
@ -245,11 +254,11 @@ IDB_Decimal MCS_add::getDecimalVal(Row& row,
* or throw a customized exception here.
*/
int32_t MCS_add::getDateIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
throw logic_error("Invalid API called for MCS_ADD");
throw logic_error("Invalid API called for MCS_ADD");
}
/**
@ -259,32 +268,32 @@ int32_t MCS_add::getDateIntVal(Row& row,
* or throw a customized exception here.
*/
int64_t MCS_add::getDatetimeIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
return (int64_t)getDoubleVal(row, parm, isNull, op_ct);
return (int64_t)getDoubleVal(row, parm, isNull, op_ct);
}
bool MCS_add::getBoolVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
return false;
return false;
}
/***************************************************************************
* MCS_ISNULL implementation
* MCS_ISNULL implementation
*
* OperationType() definition
*/
CalpontSystemCatalog::ColType MCS_isnull::operationType (FunctionParm& fp,
CalpontSystemCatalog::ColType& resultType)
CalpontSystemCatalog::ColType MCS_isnull::operationType (FunctionParm& fp,
CalpontSystemCatalog::ColType& resultType)
{
// operation type of MCS_isnull should be the same as the argument type
assert (fp.size() == 1);
return fp[0]->data()->resultType();
// operation type of MCS_isnull should be the same as the argument type
assert (fp.size() == 1);
return fp[0]->data()->resultType();
}
/**
@ -293,33 +302,36 @@ CalpontSystemCatalog::ColType MCS_isnull::operationType (FunctionParm& fp,
* This would be the most commonly called API for MCS_isnull function
*/
bool MCS_isnull::getBoolVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
switch (op_ct.colDataType)
{
// For the purpose of this function, one does not need to get the value of
// the argument. One only need to know if the argument is NULL. The passed
// in parameter isNull will be set if the parameter is evaluated NULL.
// Please note that before this function returns, isNull should be set to
// false, otherwise the result of the function would be considered NULL,
// which is not possible for MCS_isnull().
case CalpontSystemCatalog::DECIMAL:
switch (op_ct.colDataType)
{
// For the purpose of this function, one does not need to get the value of
// the argument. One only need to know if the argument is NULL. The passed
// in parameter isNull will be set if the parameter is evaluated NULL.
// Please note that before this function returns, isNull should be set to
// false, otherwise the result of the function would be considered NULL,
// which is not possible for MCS_isnull().
case CalpontSystemCatalog::DECIMAL:
case CalpontSystemCatalog::UDECIMAL:
parm[0]->data()->getDecimalVal(row, isNull);
break;
case CalpontSystemCatalog::CHAR:
case CalpontSystemCatalog::VARCHAR:
parm[0]->data()->getStrVal(row, isNull);
break;
default:
parm[0]->data()->getIntVal(row, isNull);
}
bool ret = isNull;
// It's important to reset isNull indicator.
isNull = false;
return ret;
parm[0]->data()->getDecimalVal(row, isNull);
break;
case CalpontSystemCatalog::CHAR:
case CalpontSystemCatalog::VARCHAR:
parm[0]->data()->getStrVal(row, isNull);
break;
default:
parm[0]->data()->getIntVal(row, isNull);
}
bool ret = isNull;
// It's important to reset isNull indicator.
isNull = false;
return ret;
}
/**
@ -328,19 +340,19 @@ bool MCS_isnull::getBoolVal(Row& row,
* This API is called when a double value is needed to return from the UDF function
*/
double MCS_isnull::getDoubleVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
}
float MCS_isnull::getFloatVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
}
/**
@ -348,54 +360,54 @@ float MCS_isnull::getFloatVal(Row& row,
*
* This API is called when an integer value is needed to return from the UDF function
*
* Because the result type MCS_add is double(real), all the other API can simply call
* Because the result type MCS_add is double(real), all the other API can simply call
* getDoubleVal and apply the conversion. This method may not fit for all the UDF
* implementations.
*/
int64_t MCS_isnull::getIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
}
string MCS_isnull::getStrVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
// This needs to be more efficient if this API will be frequently
// called for this UDF function.
return (getBoolVal(row, parm, isNull, op_ct) ? "1" : "0");
// This needs to be more efficient if this API will be frequently
// called for this UDF function.
return (getBoolVal(row, parm, isNull, op_ct) ? "1" : "0");
}
IDB_Decimal MCS_isnull::getDecimalVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
IDB_Decimal dec;
dec.value = (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
dec.scale = 0;
return dec;
IDB_Decimal dec;
dec.value = (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
dec.scale = 0;
return dec;
}
int32_t MCS_isnull::getDateIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
}
int64_t MCS_isnull::getDatetimeIntVal(Row& row,
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
FunctionParm& parm,
bool& isNull,
CalpontSystemCatalog::ColType& op_ct)
{
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
return (getBoolVal(row, parm, isNull, op_ct) ? 1 : 0);
}
}

View File

@ -22,7 +22,7 @@
*
***********************************************************************/
/**
/**
* MariaDB ColumnStore interface for writing a user defined function (UDF).
*
* The basic steps are:
@ -62,18 +62,18 @@ namespace udfsdk
class UDFSDK
{
public:
EXPORT UDFSDK();
EXPORT UDFSDK();
EXPORT ~UDFSDK();
EXPORT ~UDFSDK();
EXPORT funcexp::FuncMap UDFMap() const;
EXPORT funcexp::FuncMap UDFMap() const;
protected:
private:
//defaults okay
//UDFSDK(const UDFSDK& rhs);
//UDFSDK& operator=(const UDFSDK& rhs);
//defaults okay
//UDFSDK(const UDFSDK& rhs);
//UDFSDK& operator=(const UDFSDK& rhs);
};
@ -85,18 +85,18 @@ private:
* The function interface is defined here. All UDF functions are derived from
* class funcexp::Func. A set of getXXXval interface APIs are declared in the
* parent class Func, which will be called by IDB function and expression (F&E)
* framwork when evaluating the function. Which API to be called depends on
* the context of the function in the SQL query, i.e., the result type that
* framwork when evaluating the function. Which API to be called depends on
* the context of the function in the SQL query, i.e., the result type that
* the function is expected to return.
*
* For example, given the following two queries, different APIs will be called
* to evaluate the function MCS_add.
*
* select MCS_add(int1, int2) from t1;
* select MCS_add(int1, int2) from t1;
* getDoubleVal() is called, because the result type of MCS_add is DOUBLE(real).
*
* select substr(string1, int1, MCS_add(int1+int2));
* getIntVal() will be called, because MCS_add() is passed as the third argument
* getIntVal() will be called, because MCS_add() is passed as the third argument
* to substr function, and an integer result is expected.
*
* If one API is not implemented but called for a function, IDB-5001 error will
@ -105,126 +105,126 @@ private:
class MCS_add : public funcexp::Func
{
public:
/*
* Constructor. Pass the function name to the base constructor.
*/
MCS_add() : Func("mcs_add") {}
/*
* Destructor. MCS_add does not need to do anything here to clean up.
*/
virtual ~MCS_add() {}
/**
* Decide on the function's operation type
*
* Operation type decides which API needs to be called for each function
* parameter. Sometimes it is obvious. e.g. for function substr (c1, c2, c3),
* one knows that getStrVal(), getIntVal() and getIntVal() should be called for
* the three parameters in sequence. In that case, a dummy type can be returned
* because it won't be used in the function implementation. Sometimes the
* operation type is decided by the data type of the function parameters.
* e.g., isnull(c1) function, one should call the corresponding getXXXval()
* function that in compatible with the result type of c1.
*
* @parm fp vector of function parameters
* Each element is a boost::shared_ptr of execplan::ParseTree. class
* ParseTree is defined in ~/dbcon/execplan/parsetree.h
* @parm resultType result type of this function
* Sometimes it may affect the operation type, but most of the time it
* can be ignored. Struct ColType is defined in ~/dbcon/execplan/calpontsystemcatalog.h
* @return operation type for this function
*
* This function is called only one from the connector. Once it's determined, it
* will be passed to the getXXXval() APIs during function evaluation.
*/
execplan::CalpontSystemCatalog::ColType operationType(funcexp::FunctionParm& fp, execplan::CalpontSystemCatalog::ColType& resultType);
/*
* Constructor. Pass the function name to the base constructor.
*/
MCS_add() : Func("mcs_add") {}
/**
* Returns an integer result of this function.
* All the getXXXvalue APIs take the same arguments. They will be called
* for every row in the result set when the function is being evaluated.
* So these functions needs to be efficient.
*
* @parm row reference of the current row
* @parm fp function parameters
* @parm isNull NULL indicator throughout this function evaluation.
* the same reference is passed to all the function argument
* evaluations. One always need to know if any argument is NULL
* to decide the result of the function. It's explained in detail
* in MCS_isnull() function example.
* @parm op_ct the operation type that is determined in operationType().
*
*/
virtual int64_t getIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a double result of this function.
*/
/*
* Destructor. MCS_add does not need to do anything here to clean up.
*/
virtual ~MCS_add() {}
virtual double getDoubleVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Decide on the function's operation type
*
* Operation type decides which API needs to be called for each function
* parameter. Sometimes it is obvious. e.g. for function substr (c1, c2, c3),
* one knows that getStrVal(), getIntVal() and getIntVal() should be called for
* the three parameters in sequence. In that case, a dummy type can be returned
* because it won't be used in the function implementation. Sometimes the
* operation type is decided by the data type of the function parameters.
* e.g., isnull(c1) function, one should call the corresponding getXXXval()
* function that in compatible with the result type of c1.
*
* @parm fp vector of function parameters
* Each element is a boost::shared_ptr of execplan::ParseTree. class
* ParseTree is defined in ~/dbcon/execplan/parsetree.h
* @parm resultType result type of this function
* Sometimes it may affect the operation type, but most of the time it
* can be ignored. Struct ColType is defined in ~/dbcon/execplan/calpontsystemcatalog.h
* @return operation type for this function
*
* This function is called only one from the connector. Once it's determined, it
* will be passed to the getXXXval() APIs during function evaluation.
*/
execplan::CalpontSystemCatalog::ColType operationType(funcexp::FunctionParm& fp, execplan::CalpontSystemCatalog::ColType& resultType);
/**
* Returns a float result of this function.
*/
virtual float getFloatVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a string result of this function.
*/
virtual std::string getStrVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a bool result of this function.
*/
virtual bool getBoolVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a decimal result of this function.
*
* IDB_Decimal is defined in ~/execplan/treenode.h
*/
virtual execplan::IDB_Decimal getDecimalVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns an integer representation of a date result of the function.
*
* Check the date/time functions in ~/utils/funcexp for implementation
* example of this API.
*/
virtual int32_t getDateIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns an integer representation of a datetime result of the function.
*
* Check the date/time functions in ~/utils/funcexp for implementation
* example of this API.
*/
virtual int64_t getDatetimeIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns an integer result of this function.
* All the getXXXvalue APIs take the same arguments. They will be called
* for every row in the result set when the function is being evaluated.
* So these functions needs to be efficient.
*
* @parm row reference of the current row
* @parm fp function parameters
* @parm isNull NULL indicator throughout this function evaluation.
* the same reference is passed to all the function argument
* evaluations. One always need to know if any argument is NULL
* to decide the result of the function. It's explained in detail
* in MCS_isnull() function example.
* @parm op_ct the operation type that is determined in operationType().
*
*/
virtual int64_t getIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a double result of this function.
*/
virtual double getDoubleVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a float result of this function.
*/
virtual float getFloatVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a string result of this function.
*/
virtual std::string getStrVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a bool result of this function.
*/
virtual bool getBoolVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a decimal result of this function.
*
* IDB_Decimal is defined in ~/execplan/treenode.h
*/
virtual execplan::IDB_Decimal getDecimalVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns an integer representation of a date result of the function.
*
* Check the date/time functions in ~/utils/funcexp for implementation
* example of this API.
*/
virtual int32_t getDateIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns an integer representation of a datetime result of the function.
*
* Check the date/time functions in ~/utils/funcexp for implementation
* example of this API.
*/
virtual int64_t getDatetimeIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
};
/**
@ -235,92 +235,92 @@ public:
class MCS_isnull : public funcexp::Func
{
public:
/*
* Constructor. Pass the function name to the base constructor.
*/
MCS_isnull() : Func("mcs_isnull") {}
/*
* Destructor. MCS_add does not need to do anything here to clean up.
*/
virtual ~MCS_isnull() {}
/**
* Decide on the function's operation type
*/
execplan::CalpontSystemCatalog::ColType operationType(funcexp::FunctionParm& fp, execplan::CalpontSystemCatalog::ColType& resultType);
/*
* Constructor. Pass the function name to the base constructor.
*/
MCS_isnull() : Func("mcs_isnull") {}
/**
* Returns an integer result of this function.
*/
virtual int64_t getIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a double result of this function.
*/
virtual double getDoubleVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/*
* Destructor. MCS_add does not need to do anything here to clean up.
*/
virtual ~MCS_isnull() {}
/**
* Returns a float result of this function.
*/
virtual float getFloatVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a string result of this function.
*/
virtual std::string getStrVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a bool result of this function.
*/
virtual bool getBoolVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a decimal result of this function.
*
* IDB_Decimal is defined in ~/execplan/treenode.h
*/
virtual execplan::IDB_Decimal getDecimalVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Decide on the function's operation type
*/
execplan::CalpontSystemCatalog::ColType operationType(funcexp::FunctionParm& fp, execplan::CalpontSystemCatalog::ColType& resultType);
/**
* Returns an integer representation of a date result of the function.
*
* Check the date/time functions in ~/utils/funcexp for implementation
* example of this API.
*/
virtual int32_t getDateIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns an integer representation of a datetime result of the function.
*
* Check the date/time functions in ~/utils/funcexp for implementation
* example of this API.
*/
virtual int64_t getDatetimeIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns an integer result of this function.
*/
virtual int64_t getIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a double result of this function.
*/
virtual double getDoubleVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a float result of this function.
*/
virtual float getFloatVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a string result of this function.
*/
virtual std::string getStrVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a bool result of this function.
*/
virtual bool getBoolVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns a decimal result of this function.
*
* IDB_Decimal is defined in ~/execplan/treenode.h
*/
virtual execplan::IDB_Decimal getDecimalVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns an integer representation of a date result of the function.
*
* Check the date/time functions in ~/utils/funcexp for implementation
* example of this API.
*/
virtual int32_t getDateIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
/**
* Returns an integer representation of a datetime result of the function.
*
* Check the date/time functions in ~/utils/funcexp for implementation
* example of this API.
*/
virtual int64_t getDatetimeIntVal(rowgroup::Row& row,
funcexp::FunctionParm& fp,
bool& isNull,
execplan::CalpontSystemCatalog::ColType& op_ct);
};
}