1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-05-29 21:42:52 +03:00
Allman-astyler eea9999dc5 Revert "Allman now (#6080)" (#6090)
This reverts commit 98125f88605cd7e46e9be4e1b3ad0600dd5d2b51.
2019-05-14 00:09:54 +02:00

130 lines
3.4 KiB
C++

/*
Servo library using shared TIMER1 infrastructure
Original Copyright (c) 2015 Michael C. Miller. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(ESP8266)
#include <Arduino.h>
#include <Servo.h>
#include "core_esp8266_waveform.h"
// similiar to map but will have increased accuracy that provides a more
// symetric api (call it and use result to reverse will provide the original value)
int improved_map(int value, int minIn, int maxIn, int minOut, int maxOut)
{
const int rangeIn = maxIn - minIn;
const int rangeOut = maxOut - minOut;
const int deltaIn = value - minIn;
// fixed point math constants to improve accurancy of divide and rounding
const int fixedHalfDecimal = 1;
const int fixedDecimal = fixedHalfDecimal * 2;
return ((deltaIn * rangeOut * fixedDecimal) / (rangeIn) + fixedHalfDecimal) / fixedDecimal + minOut;
}
//-------------------------------------------------------------------
// Servo class methods
Servo::Servo()
{
_attached = false;
_valueUs = DEFAULT_PULSE_WIDTH;
_minUs = MIN_PULSE_WIDTH;
_maxUs = MAX_PULSE_WIDTH;
}
Servo::~Servo() {
detach();
}
uint8_t Servo::attach(int pin)
{
return attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, uint16_t minUs, uint16_t maxUs)
{
if (!_attached) {
digitalWrite(pin, LOW);
pinMode(pin, OUTPUT);
_pin = pin;
_attached = true;
}
// keep the min and max within 200-3000 us, these are extreme
// ranges and should support extreme servos while maintaining
// reasonable ranges
_maxUs = max((uint16_t)250, min((uint16_t)3000, maxUs));
_minUs = max((uint16_t)200, min(_maxUs, minUs));
write(_valueUs);
return pin;
}
void Servo::detach()
{
if (_attached) {
stopWaveform(_pin);
_attached = false;
digitalWrite(_pin, LOW);
}
}
void Servo::write(int value)
{
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if (value < _minUs) {
// assumed to be 0-180 degrees servo
value = constrain(value, 0, 180);
// writeMicroseconds will contrain the calculated value for us
// for any user defined min and max, but we must use default min max
value = improved_map(value, 0, 180, _minUs, _maxUs);
}
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
_valueUs = value;
if (_attached) {
startWaveform(_pin, _valueUs, REFRESH_INTERVAL - _valueUs, 0);
}
}
int Servo::read() // return the value as degrees
{
// read returns the angle for an assumed 0-180, so we calculate using
// the normal min/max constants and not user defined ones
return improved_map(readMicroseconds(), _minUs, _maxUs, 0, 180);
}
int Servo::readMicroseconds()
{
return _valueUs;
}
bool Servo::attached()
{
return _attached;
}
#endif