mirror of
https://github.com/esp8266/Arduino.git
synced 2025-04-21 10:26:06 +03:00
159 lines
4.4 KiB
C++
159 lines
4.4 KiB
C++
/*
|
|
SPI.cpp - SPI library for esp8266
|
|
|
|
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
|
|
This file is part of the esp8266 core for Arduino environment.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "SPI.h"
|
|
#include "HardwareSerial.h"
|
|
typedef struct {
|
|
uint32_t divider;
|
|
uint32_t regValue;
|
|
} spiClockDiv_t;
|
|
|
|
static const spiClockDiv_t spiClockDiv[] = {
|
|
{ 0, (0x80000000) }, ///< @80Mhz = 80 MHz @160Mhz = 160 MHz
|
|
{ 2, (0x00001001) }, ///< @80Mhz = 40 MHz @160Mhz = 80 MHz
|
|
{ 4, (0x00041001) }, ///< @80Mhz = 20 MHz @160Mhz = 40 MHz
|
|
{ 6, (0x000fffc0) }, ///< @80Mhz = 16 MHz @160Mhz = 32 MHz
|
|
{ 8, (0x000c1001) }, ///< @80Mhz = 10 MHz @160Mhz = 20 MHz
|
|
{ 10, (0x00101001) }, ///< @80Mhz = 8 MHz @160Mhz = 16 MHz
|
|
{ 16, (0x001c1001) }, ///< @80Mhz = 5 MHz @160Mhz = 10 MHz
|
|
{ 20, (0x00241001) }, ///< @80Mhz = 4 MHz @160Mhz = 8 MHz
|
|
{ 40, (0x004c1001) }, ///< @80Mhz = 2 MHz @160Mhz = 4 MHz
|
|
{ 80, (0x009c1001) }, ///< @80Mhz = 1 MHz @160Mhz = 2 MHz
|
|
{ 160, (0x013c1001) }, ///< @80Mhz = 500 KHz @160Mhz = 1 MHz
|
|
{ 320, (0x027c1001) }, ///< @80Mhz = 250 KHz @160Mhz = 500 KHz
|
|
{ 640, (0x04fc1001) } ///< @80Mhz = 125 KHz @160Mhz = 250 KHz
|
|
};
|
|
|
|
static const uint8_t spiClockDiv_count = (sizeof(spiClockDiv) / sizeof(spiClockDiv_t));
|
|
|
|
SPIClass SPI;
|
|
|
|
SPIClass::SPIClass() {
|
|
}
|
|
|
|
void SPIClass::begin() {
|
|
pinMode(SCK, SPECIAL); ///< GPIO14
|
|
pinMode(MISO, SPECIAL); ///< GPIO12
|
|
pinMode(MOSI, SPECIAL); ///< GPIO13
|
|
|
|
GPMUX = 0x105; // note crash if SPI flash Frequency < 40MHz
|
|
SPI1C = 0;
|
|
setFrequency(1000000); ///< 1Mhz
|
|
SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE;
|
|
SPI1U1 = (7 << SPILMOSI) | (7 << SPILMISO);
|
|
SPI1C1 = 0;
|
|
}
|
|
|
|
void SPIClass::end() {
|
|
pinMode(SCK, INPUT);
|
|
pinMode(MISO, INPUT);
|
|
pinMode(MOSI, INPUT);
|
|
}
|
|
|
|
void SPIClass::beginTransaction(SPISettings settings) {
|
|
setFrequency(settings._clock);
|
|
setBitOrder(settings._bitOrder);
|
|
setDataMode(settings._dataMode);
|
|
}
|
|
|
|
void SPIClass::endTransaction() {
|
|
}
|
|
|
|
void SPIClass::setDataMode(uint8_t dataMode) {
|
|
|
|
/**
|
|
SPI_MODE0 0x00 - CPOL: 0 CPHA: 0
|
|
SPI_MODE1 0x01 - CPOL: 0 CPHA: 1
|
|
SPI_MODE2 0x10 - CPOL: 1 CPHA: 0
|
|
SPI_MODE3 0x11 - CPOL: 1 CPHA: 1
|
|
*/
|
|
|
|
bool CPOL = (dataMode&0x10); ///< CPOL (Clock Polarity)
|
|
bool CPHA = (dataMode&0x01); ///< CPHA (Clock Phase)
|
|
|
|
if(CPHA) {
|
|
SPI1U |= (SPIUSME);
|
|
} else {
|
|
SPI1U &= ~(SPIUSME);
|
|
}
|
|
|
|
if(CPOL) {
|
|
//todo How set CPOL???
|
|
}
|
|
|
|
}
|
|
|
|
void SPIClass::setBitOrder(uint8_t bitOrder) {
|
|
if(bitOrder == MSBFIRST) {
|
|
SPI1C &= ~(SPICWBO | SPICRBO);
|
|
} else {
|
|
SPI1C |= (SPICWBO | SPICRBO);
|
|
}
|
|
}
|
|
|
|
void SPIClass::setFrequency(uint32_t freq) {
|
|
uint8_t i = 0;
|
|
// find the best match
|
|
if(freq < F_CPU) {
|
|
for(i = 1; i < (spiClockDiv_count-1); i++) {
|
|
if(freq >= (F_CPU/spiClockDiv[i].divider)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setClockDivider(spiClockDiv[i].regValue);
|
|
}
|
|
|
|
void SPIClass::setClockDivider(uint32_t clockDiv) {
|
|
SPI1CLK = clockDiv;
|
|
}
|
|
|
|
uint8_t SPIClass::transfer(uint8_t data) {
|
|
while(SPI1CMD & SPIBUSY);
|
|
SPI1W0 = data;
|
|
SPI1CMD |= SPIBUSY;
|
|
while(SPI1CMD & SPIBUSY);
|
|
return (uint8_t) (SPI1W0 & 0xff);
|
|
}
|
|
|
|
uint16_t SPIClass::transfer16(uint16_t data) {
|
|
union {
|
|
uint16_t val;
|
|
struct {
|
|
uint8_t lsb;
|
|
uint8_t msb;
|
|
};
|
|
} in, out;
|
|
in.val = data;
|
|
|
|
if((SPI1C & (SPICWBO | SPICRBO))) {
|
|
//MSBFIRST
|
|
out.msb = transfer(in.msb);
|
|
out.lsb = transfer(in.lsb);
|
|
} else {
|
|
//LSBFIRST
|
|
out.lsb = transfer(in.lsb);
|
|
out.msb = transfer(in.msb);
|
|
}
|
|
return out.val;
|
|
}
|
|
|