1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00
Earle F. Philhower, III a389a995fb Add LittleFS as an optional filesystem, API compatible w/SPIFFS (but not on-flash-format compatible) (#5511)
* Add LittleFS as internal flash filesystem

Adds a LittleFS object which uses the ARMmbed littlefs embedded filesystem,
https://github.com/ARMmbed/littlefs, to enable a new filesystem for onboard
flash utilizing the exact same API as the existing SPIFFS filesystem.

LittleFS is built for low memory systems that are subject to random power
losses, is actively supported by the ARMmbed community, supports directories,
and seems to be much faster in the large-ish read-mostly applications I use.

LittleFS, however, has a larger minimum file allocation unit and does not do
static wear levelling.  This means that for systems that need many little
files (<4K), have small SPIFFS areas (64K), or which have a large static
set of files covering the majority of flash coupled with a frequently
updated set of other files, it may not perform as well.

Simply replace SPIFFS.begin() with LittleFS.begin() in your sketch,
use LittleFS.open in place of SPIFFS.open to open files, and everything
else just works thanks to the magic of @igrr's File base class.

**LITTLEFS FLASH LAYOUT IS INCOMPATIBLE WITH SPIFFS**
Since it is a completely different filesystem, you will need to reformat
your flash (and lose any data therein) to use it. Tools to build the
flash filesystem and upload are at
https://github.com/earlephilhower/arduino-esp8266littlefs-plugin and
https://github.com/earlephilhower/mklittlefs/ .  The mklittlefs tool
is installed as part of the Arduino platform installation, automatically.

The included example shows a contrived read-mostly example and
demonstrates how the same calls work on either SPIFFS.* or LittleFS.*
Host tests are also included as part of CI.

Directories are fully supported in LittleFS. This means that LittleFS
will have a slight difference vs. SPIFFS when you use
LittleFS.openDir()/Dir.next().  On SPIFFS dir.next()
will return all filesystem entries, including ones in "subdirs"
(because in SPIFFS there are no subdirs and "/" is the same as any
other character in a filename).

On LittleFS, dir.next() will only return entries in the directory
specified, not subdirs.  So to list files in "/subdir/..." you need
to actually openDir("/subdir") and use Dir.next() to parse through
just those elements.  The returned filenames also only have the
filename returned, not full paths.  So on a FS with "/a/1", "/a/2"
when you do openDir("/a"); dir.next().getName(); you get "1" and "2"
and not "/a/1" and "/a/2" like in SPIFFS.  This is consistent with
POSIX ideas about reading directories and more natural for a FS.

Most code will not be affected by this, but if you depend on
openDir/Dir.next() you need to be aware of it.

Corresponding ::mkdir, ::rmdir, ::isDirectory, ::isFile,
::openNextFile, and ::rewind methods added to Filesystem objects.
Documentation has been updated with this and other LittleFS information.

Subdirectories are made silently when they do not exist when you
try and create a file in a subdir.  They are silently removed when
the last file in them is deleted.  This is consistent with what
SPIFFS does but is obviously not normal POSIX behavior.  Since there
has never been a "FS.mkdir()" method this is the only way to be
compatible with legacy SPIFFS code.

SPIFFS code has been refactored to pull out common flash_hal_* ops
and placed in its own namespace, like LittleFS.

* Fix up merge blank line issue

* Merge in the FSConfig changs from SDFS PR

Enable setConfig for LittleFS as well plys merge the SPIFFS changes
done in the SDFS PR.

* Fix merge errors

* Update to use v2-alpha branch

The V2-alpha branch supports small file optimizations which can help
increase the utilization of flash when small files are prevalent.
It also adds support for metadata, which means we can start adding
things like file creation times, if desired (not yet).

* V2 of littlefs is now in upstream/master

* Update test to support non-creation-ordered files

In a directory, the order in which "readNextFile()" will return a name
is undefined.  SPIFFS may return it in order, but LittleFS does not as
of V2.  Update the test to look for files by name when doing
readNextFile() testing.

* Fix LittleFS.truncate implementation

* Fix SDFS tests

SDFS, SPIFFS, and LittleFS now all share the same common set of tests,
greatly increasing the SDFS test coverage.

* Update to point to mklittlefs v2

Upgrade mklittlefs to V2 format support

* Remove extra FS::write(const char *s) method

This was removed in #5861 and erroneously re-introduced here.

* Minimize spurious differences from master

* Dramatically reduce memory usage

Reduce the program and read chunk sizes which impacts performance
minimally but reduces per-file RAM usage of 16KB to <1KB.

* Add @d-a-v's host emulation for LittleFS

* Fix SW Serial library version

* Fix free space reporting

Thanks to @TD-er for discovering the issue

* Update littlefs to latest upstream

* Remove sdfat version included by accident

* Update SDFAT to include MOCK changes required

* Update to include SD.h test of file append
2019-05-25 09:53:24 +02:00

817 lines
28 KiB
C

/*
* spiffs.h
*
* Created on: May 26, 2013
* Author: petera
*/
#ifndef SPIFFS_H_
#define SPIFFS_H_
#if defined(__cplusplus)
extern "C" {
#endif
#include "spiffs_config.h"
#define SPIFFS_OK 0
#define SPIFFS_ERR_NOT_MOUNTED -10000
#define SPIFFS_ERR_FULL -10001
#define SPIFFS_ERR_NOT_FOUND -10002
#define SPIFFS_ERR_END_OF_OBJECT -10003
#define SPIFFS_ERR_DELETED -10004
#define SPIFFS_ERR_NOT_FINALIZED -10005
#define SPIFFS_ERR_NOT_INDEX -10006
#define SPIFFS_ERR_OUT_OF_FILE_DESCS -10007
#define SPIFFS_ERR_FILE_CLOSED -10008
#define SPIFFS_ERR_FILE_DELETED -10009
#define SPIFFS_ERR_BAD_DESCRIPTOR -10010
#define SPIFFS_ERR_IS_INDEX -10011
#define SPIFFS_ERR_IS_FREE -10012
#define SPIFFS_ERR_INDEX_SPAN_MISMATCH -10013
#define SPIFFS_ERR_DATA_SPAN_MISMATCH -10014
#define SPIFFS_ERR_INDEX_REF_FREE -10015
#define SPIFFS_ERR_INDEX_REF_LU -10016
#define SPIFFS_ERR_INDEX_REF_INVALID -10017
#define SPIFFS_ERR_INDEX_FREE -10018
#define SPIFFS_ERR_INDEX_LU -10019
#define SPIFFS_ERR_INDEX_INVALID -10020
#define SPIFFS_ERR_NOT_WRITABLE -10021
#define SPIFFS_ERR_NOT_READABLE -10022
#define SPIFFS_ERR_CONFLICTING_NAME -10023
#define SPIFFS_ERR_NOT_CONFIGURED -10024
#define SPIFFS_ERR_NOT_A_FS -10025
#define SPIFFS_ERR_MOUNTED -10026
#define SPIFFS_ERR_ERASE_FAIL -10027
#define SPIFFS_ERR_MAGIC_NOT_POSSIBLE -10028
#define SPIFFS_ERR_NO_DELETED_BLOCKS -10029
#define SPIFFS_ERR_FILE_EXISTS -10030
#define SPIFFS_ERR_NOT_A_FILE -10031
#define SPIFFS_ERR_RO_NOT_IMPL -10032
#define SPIFFS_ERR_RO_ABORTED_OPERATION -10033
#define SPIFFS_ERR_PROBE_TOO_FEW_BLOCKS -10034
#define SPIFFS_ERR_PROBE_NOT_A_FS -10035
#define SPIFFS_ERR_NAME_TOO_LONG -10036
#define SPIFFS_ERR_IX_MAP_UNMAPPED -10037
#define SPIFFS_ERR_IX_MAP_MAPPED -10038
#define SPIFFS_ERR_IX_MAP_BAD_RANGE -10039
#define SPIFFS_ERR_SEEK_BOUNDS -10040
#define SPIFFS_ERR_INTERNAL -10050
#define SPIFFS_ERR_TEST -10100
// spiffs file descriptor index type. must be signed
typedef s16_t spiffs_file;
// spiffs file descriptor flags
typedef u16_t spiffs_flags;
// spiffs file mode
typedef u16_t spiffs_mode;
// object type
typedef u8_t spiffs_obj_type;
struct spiffs_t;
#if SPIFFS_HAL_CALLBACK_EXTRA
/* spi read call function type */
typedef s32_t (*spiffs_read)(struct spiffs_t *fs, u32_t addr, u32_t size, u8_t *dst);
/* spi write call function type */
typedef s32_t (*spiffs_write)(struct spiffs_t *fs, u32_t addr, u32_t size, const u8_t *src);
/* spi erase call function type */
typedef s32_t (*spiffs_erase)(struct spiffs_t *fs, u32_t addr, u32_t size);
#else // SPIFFS_HAL_CALLBACK_EXTRA
/* spi read call function type */
typedef s32_t (*spiffs_read)(u32_t addr, u32_t size, u8_t *dst);
/* spi write call function type */
typedef s32_t (*spiffs_write)(u32_t addr, u32_t size, const u8_t *src);
/* spi erase call function type */
typedef s32_t (*spiffs_erase)(u32_t addr, u32_t size);
#endif // SPIFFS_HAL_CALLBACK_EXTRA
/* file system check callback report operation */
typedef enum {
SPIFFS_CHECK_LOOKUP = 0,
SPIFFS_CHECK_INDEX,
SPIFFS_CHECK_PAGE
} spiffs_check_type;
/* file system check callback report type */
typedef enum {
SPIFFS_CHECK_PROGRESS = 0,
SPIFFS_CHECK_ERROR,
SPIFFS_CHECK_FIX_INDEX,
SPIFFS_CHECK_FIX_LOOKUP,
SPIFFS_CHECK_DELETE_ORPHANED_INDEX,
SPIFFS_CHECK_DELETE_PAGE,
SPIFFS_CHECK_DELETE_BAD_FILE
} spiffs_check_report;
/* file system check callback function */
#if SPIFFS_HAL_CALLBACK_EXTRA
typedef void (*spiffs_check_callback)(struct spiffs_t *fs, spiffs_check_type type, spiffs_check_report report,
u32_t arg1, u32_t arg2);
#else // SPIFFS_HAL_CALLBACK_EXTRA
typedef void (*spiffs_check_callback)(spiffs_check_type type, spiffs_check_report report,
u32_t arg1, u32_t arg2);
#endif // SPIFFS_HAL_CALLBACK_EXTRA
/* file system listener callback operation */
typedef enum {
/* the file has been created */
SPIFFS_CB_CREATED = 0,
/* the file has been updated or moved to another page */
SPIFFS_CB_UPDATED,
/* the file has been deleted */
SPIFFS_CB_DELETED
} spiffs_fileop_type;
/* file system listener callback function */
typedef void (*spiffs_file_callback)(struct spiffs_t *fs, spiffs_fileop_type op, spiffs_obj_id obj_id, spiffs_page_ix pix);
#ifndef SPIFFS_DBG
#define SPIFFS_DBG(...) \
printf(__VA_ARGS__)
#endif
#ifndef SPIFFS_GC_DBG
#define SPIFFS_GC_DBG(...) printf(__VA_ARGS__)
#endif
#ifndef SPIFFS_CACHE_DBG
#define SPIFFS_CACHE_DBG(...) printf(__VA_ARGS__)
#endif
#ifndef SPIFFS_CHECK_DBG
#define SPIFFS_CHECK_DBG(...) printf(__VA_ARGS__)
#endif
/* Any write to the filehandle is appended to end of the file */
#define SPIFFS_APPEND (1<<0)
#define SPIFFS_O_APPEND SPIFFS_APPEND
/* If the opened file exists, it will be truncated to zero length before opened */
#define SPIFFS_TRUNC (1<<1)
#define SPIFFS_O_TRUNC SPIFFS_TRUNC
/* If the opened file does not exist, it will be created before opened */
#define SPIFFS_CREAT (1<<2)
#define SPIFFS_O_CREAT SPIFFS_CREAT
/* The opened file may only be read */
#define SPIFFS_RDONLY (1<<3)
#define SPIFFS_O_RDONLY SPIFFS_RDONLY
/* The opened file may only be written */
#define SPIFFS_WRONLY (1<<4)
#define SPIFFS_O_WRONLY SPIFFS_WRONLY
/* The opened file may be both read and written */
#define SPIFFS_RDWR (SPIFFS_RDONLY | SPIFFS_WRONLY)
#define SPIFFS_O_RDWR SPIFFS_RDWR
/* Any writes to the filehandle will never be cached but flushed directly */
#define SPIFFS_DIRECT (1<<5)
#define SPIFFS_O_DIRECT SPIFFS_DIRECT
/* If SPIFFS_O_CREAT and SPIFFS_O_EXCL are set, SPIFFS_open() shall fail if the file exists */
#define SPIFFS_EXCL (1<<6)
#define SPIFFS_O_EXCL SPIFFS_EXCL
#define SPIFFS_SEEK_SET (0)
#define SPIFFS_SEEK_CUR (1)
#define SPIFFS_SEEK_END (2)
#define SPIFFS_TYPE_FILE (1)
#define SPIFFS_TYPE_DIR (2)
#define SPIFFS_TYPE_HARD_LINK (3)
#define SPIFFS_TYPE_SOFT_LINK (4)
#ifndef SPIFFS_LOCK
#define SPIFFS_LOCK(fs)
#endif
#ifndef SPIFFS_UNLOCK
#define SPIFFS_UNLOCK(fs)
#endif
// phys structs
// spiffs spi configuration struct
typedef struct {
// physical read function
spiffs_read hal_read_f;
// physical write function
spiffs_write hal_write_f;
// physical erase function
spiffs_erase hal_erase_f;
#if SPIFFS_SINGLETON == 0
// physical size of the spi flash
u32_t phys_size;
// physical offset in spi flash used for spiffs,
// must be on block boundary
u32_t phys_addr;
// physical size when erasing a block
u32_t phys_erase_block;
// logical size of a block, must be on physical
// block size boundary and must never be less than
// a physical block
u32_t log_block_size;
// logical size of a page, must be at least
// log_block_size / 8
u32_t log_page_size;
#endif
#if SPIFFS_FILEHDL_OFFSET
// an integer offset added to each file handle
u16_t fh_ix_offset;
#endif
} spiffs_config;
typedef struct spiffs_t {
// file system configuration
spiffs_config cfg;
// number of logical blocks
u32_t block_count;
// cursor for free blocks, block index
spiffs_block_ix free_cursor_block_ix;
// cursor for free blocks, entry index
int free_cursor_obj_lu_entry;
// cursor when searching, block index
spiffs_block_ix cursor_block_ix;
// cursor when searching, entry index
int cursor_obj_lu_entry;
// primary work buffer, size of a logical page
u8_t *lu_work;
// secondary work buffer, size of a logical page
u8_t *work;
// file descriptor memory area
u8_t *fd_space;
// available file descriptors
u32_t fd_count;
// last error
s32_t err_code;
// current number of free blocks
u32_t free_blocks;
// current number of busy pages
u32_t stats_p_allocated;
// current number of deleted pages
u32_t stats_p_deleted;
// flag indicating that garbage collector is cleaning
u8_t cleaning;
// max erase count amongst all blocks
spiffs_obj_id max_erase_count;
#if SPIFFS_GC_STATS
u32_t stats_gc_runs;
#endif
#if SPIFFS_CACHE
// cache memory
void *cache;
// cache size
u32_t cache_size;
#if SPIFFS_CACHE_STATS
u32_t cache_hits;
u32_t cache_misses;
#endif
#endif
// check callback function
spiffs_check_callback check_cb_f;
// file callback function
spiffs_file_callback file_cb_f;
// mounted flag
u8_t mounted;
// user data
void *user_data;
// config magic
u32_t config_magic;
} spiffs;
/* spiffs file status struct */
typedef struct {
spiffs_obj_id obj_id;
u32_t size;
spiffs_obj_type type;
spiffs_page_ix pix;
u8_t name[SPIFFS_OBJ_NAME_LEN];
#if SPIFFS_OBJ_META_LEN
u8_t meta[SPIFFS_OBJ_META_LEN];
#endif
} spiffs_stat;
struct spiffs_dirent {
spiffs_obj_id obj_id;
u8_t name[SPIFFS_OBJ_NAME_LEN];
spiffs_obj_type type;
u32_t size;
spiffs_page_ix pix;
#if SPIFFS_OBJ_META_LEN
u8_t meta[SPIFFS_OBJ_META_LEN];
#endif
};
typedef struct {
spiffs *fs;
spiffs_block_ix block;
int entry;
} spiffs_DIR;
#if SPIFFS_IX_MAP
typedef struct {
// buffer with looked up data pixes
spiffs_page_ix *map_buf;
// precise file byte offset
u32_t offset;
// start data span index of lookup buffer
spiffs_span_ix start_spix;
// end data span index of lookup buffer
spiffs_span_ix end_spix;
} spiffs_ix_map;
#endif
// functions
#if SPIFFS_USE_MAGIC && SPIFFS_USE_MAGIC_LENGTH && SPIFFS_SINGLETON==0
/**
* Special function. This takes a spiffs config struct and returns the number
* of blocks this file system was formatted with. This function relies on
* that following info is set correctly in given config struct:
*
* phys_addr, log_page_size, and log_block_size.
*
* Also, hal_read_f must be set in the config struct.
*
* One must be sure of the correct page size and that the physical address is
* correct in the probed file system when calling this function. It is not
* checked if the phys_addr actually points to the start of the file system,
* so one might get a false positive if entering a phys_addr somewhere in the
* middle of the file system at block boundary. In addition, it is not checked
* if the page size is actually correct. If it is not, weird file system sizes
* will be returned.
*
* If this function detects a file system it returns the assumed file system
* size, which can be used to set the phys_size.
*
* Otherwise, it returns an error indicating why it is not regarded as a file
* system.
*
* Note: this function is not protected with SPIFFS_LOCK and SPIFFS_UNLOCK
* macros. It returns the error code directly, instead of as read by
* SPIFFS_errno.
*
* @param config essential parts of the physical and logical
* configuration of the file system.
*/
s32_t SPIFFS_probe_fs(spiffs_config *config);
#endif // SPIFFS_USE_MAGIC && SPIFFS_USE_MAGIC_LENGTH && SPIFFS_SINGLETON==0
/**
* Initializes the file system dynamic parameters and mounts the filesystem.
* If SPIFFS_USE_MAGIC is enabled the mounting may fail with SPIFFS_ERR_NOT_A_FS
* if the flash does not contain a recognizable file system.
* In this case, SPIFFS_format must be called prior to remounting.
* @param fs the file system struct
* @param config the physical and logical configuration of the file system
* @param work a memory work buffer comprising 2*config->log_page_size
* bytes used throughout all file system operations
* @param fd_space memory for file descriptors
* @param fd_space_size memory size of file descriptors
* @param cache memory for cache, may be null
* @param cache_size memory size of cache
* @param check_cb_f callback function for reporting during consistency checks
*/
s32_t SPIFFS_mount(spiffs *fs, spiffs_config *config, u8_t *work,
u8_t *fd_space, u32_t fd_space_size,
void *cache, u32_t cache_size,
spiffs_check_callback check_cb_f);
/**
* Unmounts the file system. All file handles will be flushed of any
* cached writes and closed.
* @param fs the file system struct
*/
void SPIFFS_unmount(spiffs *fs);
/**
* Creates a new file.
* @param fs the file system struct
* @param path the path of the new file
* @param mode ignored, for posix compliance
*/
s32_t SPIFFS_creat(spiffs *fs, const char *path, spiffs_mode mode);
/**
* Opens/creates a file.
* @param fs the file system struct
* @param path the path of the new file
* @param flags the flags for the open command, can be combinations of
* SPIFFS_O_APPEND, SPIFFS_O_TRUNC, SPIFFS_O_CREAT, SPIFFS_O_RDONLY,
* SPIFFS_O_WRONLY, SPIFFS_O_RDWR, SPIFFS_O_DIRECT, SPIFFS_O_EXCL
* @param mode ignored, for posix compliance
*/
spiffs_file SPIFFS_open(spiffs *fs, const char *path, spiffs_flags flags, spiffs_mode mode);
/**
* Opens a file by given dir entry.
* Optimization purposes, when traversing a file system with SPIFFS_readdir
* a normal SPIFFS_open would need to traverse the filesystem again to find
* the file, whilst SPIFFS_open_by_dirent already knows where the file resides.
* @param fs the file system struct
* @param e the dir entry to the file
* @param flags the flags for the open command, can be combinations of
* SPIFFS_APPEND, SPIFFS_TRUNC, SPIFFS_CREAT, SPIFFS_RD_ONLY,
* SPIFFS_WR_ONLY, SPIFFS_RDWR, SPIFFS_DIRECT.
* SPIFFS_CREAT will have no effect in this case.
* @param mode ignored, for posix compliance
*/
spiffs_file SPIFFS_open_by_dirent(spiffs *fs, struct spiffs_dirent *e, spiffs_flags flags, spiffs_mode mode);
/**
* Opens a file by given page index.
* Optimization purposes, opens a file by directly pointing to the page
* index in the spi flash.
* If the page index does not point to a file header SPIFFS_ERR_NOT_A_FILE
* is returned.
* @param fs the file system struct
* @param page_ix the page index
* @param flags the flags for the open command, can be combinations of
* SPIFFS_APPEND, SPIFFS_TRUNC, SPIFFS_CREAT, SPIFFS_RD_ONLY,
* SPIFFS_WR_ONLY, SPIFFS_RDWR, SPIFFS_DIRECT.
* SPIFFS_CREAT will have no effect in this case.
* @param mode ignored, for posix compliance
*/
spiffs_file SPIFFS_open_by_page(spiffs *fs, spiffs_page_ix page_ix, spiffs_flags flags, spiffs_mode mode);
/**
* Reads from given filehandle.
* @param fs the file system struct
* @param fh the filehandle
* @param buf where to put read data
* @param len how much to read
* @returns number of bytes read, or -1 if error
*/
s32_t SPIFFS_read(spiffs *fs, spiffs_file fh, void *buf, s32_t len);
/**
* Writes to given filehandle.
* @param fs the file system struct
* @param fh the filehandle
* @param buf the data to write
* @param len how much to write
* @returns number of bytes written, or -1 if error
*/
s32_t SPIFFS_write(spiffs *fs, spiffs_file fh, void *buf, s32_t len);
/**
* Moves the read/write file offset. Resulting offset is returned or negative if error.
* lseek(fs, fd, 0, SPIFFS_SEEK_CUR) will thus return current offset.
* @param fs the file system struct
* @param fh the filehandle
* @param offs how much/where to move the offset
* @param whence if SPIFFS_SEEK_SET, the file offset shall be set to offset bytes
* if SPIFFS_SEEK_CUR, the file offset shall be set to its current location plus offset
* if SPIFFS_SEEK_END, the file offset shall be set to the size of the file plus offse, which should be negative
*/
s32_t SPIFFS_lseek(spiffs *fs, spiffs_file fh, s32_t offs, int whence);
/**
* Removes a file by path
* @param fs the file system struct
* @param path the path of the file to remove
*/
s32_t SPIFFS_remove(spiffs *fs, const char *path);
/**
* Removes a file by filehandle
* @param fs the file system struct
* @param fh the filehandle of the file to remove
*/
s32_t SPIFFS_fremove(spiffs *fs, spiffs_file fh);
/**
* Gets file status by path
* @param fs the file system struct
* @param path the path of the file to stat
* @param s the stat struct to populate
*/
s32_t SPIFFS_stat(spiffs *fs, const char *path, spiffs_stat *s);
/**
* Gets file status by filehandle
* @param fs the file system struct
* @param fh the filehandle of the file to stat
* @param s the stat struct to populate
*/
s32_t SPIFFS_fstat(spiffs *fs, spiffs_file fh, spiffs_stat *s);
/**
* Flushes all pending write operations from cache for given file
* @param fs the file system struct
* @param fh the filehandle of the file to flush
*/
s32_t SPIFFS_fflush(spiffs *fs, spiffs_file fh);
/**
* Closes a filehandle. If there are pending write operations, these are finalized before closing.
* @param fs the file system struct
* @param fh the filehandle of the file to close
*/
s32_t SPIFFS_close(spiffs *fs, spiffs_file fh);
/**
* Renames a file
* @param fs the file system struct
* @param old path of file to rename
* @param newPath new path of file
*/
s32_t SPIFFS_rename(spiffs *fs, const char *old, const char *newPath);
#if SPIFFS_OBJ_META_LEN
/**
* Updates file's metadata
* @param fs the file system struct
* @param path path to the file
* @param meta new metadata. must be SPIFFS_OBJ_META_LEN bytes long.
*/
s32_t SPIFFS_update_meta(spiffs *fs, const char *name, const void *meta);
/**
* Updates file's metadata
* @param fs the file system struct
* @param fh file handle of the file
* @param meta new metadata. must be SPIFFS_OBJ_META_LEN bytes long.
*/
s32_t SPIFFS_fupdate_meta(spiffs *fs, spiffs_file fh, const void *meta);
#endif
/**
* Returns last error of last file operation.
* @param fs the file system struct
*/
s32_t SPIFFS_errno(spiffs *fs);
/**
* Clears last error.
* @param fs the file system struct
*/
void SPIFFS_clearerr(spiffs *fs);
/**
* Opens a directory stream corresponding to the given name.
* The stream is positioned at the first entry in the directory.
* On hydrogen builds the name argument is ignored as hydrogen builds always correspond
* to a flat file structure - no directories.
* @param fs the file system struct
* @param name the name of the directory
* @param d pointer the directory stream to be populated
*/
spiffs_DIR *SPIFFS_opendir(spiffs *fs, const char *name, spiffs_DIR *d);
/**
* Closes a directory stream
* @param d the directory stream to close
*/
s32_t SPIFFS_closedir(spiffs_DIR *d);
/**
* Reads a directory into given spifs_dirent struct.
* @param d pointer to the directory stream
* @param e the dirent struct to be populated
* @returns null if error or end of stream, else given dirent is returned
*/
struct spiffs_dirent *SPIFFS_readdir(spiffs_DIR *d, struct spiffs_dirent *e);
/**
* Runs a consistency check on given filesystem.
* @param fs the file system struct
*/
s32_t SPIFFS_check(spiffs *fs);
/**
* Returns number of total bytes available and number of used bytes.
* This is an estimation, and depends on if there a many files with little
* data or few files with much data.
* NB: If used number of bytes exceeds total bytes, a SPIFFS_check should
* run. This indicates a power loss in midst of things. In worst case
* (repeated powerlosses in mending or gc) you might have to delete some files.
*
* @param fs the file system struct
* @param total total number of bytes in filesystem
* @param used used number of bytes in filesystem
*/
s32_t SPIFFS_info(spiffs *fs, u32_t *total, u32_t *used);
/**
* Formats the entire file system. All data will be lost.
* The filesystem must not be mounted when calling this.
*
* NB: formatting is awkward. Due to backwards compatibility, SPIFFS_mount
* MUST be called prior to formatting in order to configure the filesystem.
* If SPIFFS_mount succeeds, SPIFFS_unmount must be called before calling
* SPIFFS_format.
* If SPIFFS_mount fails, SPIFFS_format can be called directly without calling
* SPIFFS_unmount first.
*
* @param fs the file system struct
*/
s32_t SPIFFS_format(spiffs *fs);
/**
* Returns nonzero if spiffs is mounted, or zero if unmounted.
* @param fs the file system struct
*/
u8_t SPIFFS_mounted(spiffs *fs);
/**
* Tries to find a block where most or all pages are deleted, and erase that
* block if found. Does not care for wear levelling. Will not move pages
* around.
* If parameter max_free_pages are set to 0, only blocks with only deleted
* pages will be selected.
*
* NB: the garbage collector is automatically called when spiffs needs free
* pages. The reason for this function is to give possibility to do background
* tidying when user knows the system is idle.
*
* Use with care.
*
* Setting max_free_pages to anything larger than zero will eventually wear
* flash more as a block containing free pages can be erased.
*
* Will set err_no to SPIFFS_OK if a block was found and erased,
* SPIFFS_ERR_NO_DELETED_BLOCK if no matching block was found,
* or other error.
*
* @param fs the file system struct
* @param max_free_pages maximum number allowed free pages in block
*/
s32_t SPIFFS_gc_quick(spiffs *fs, u16_t max_free_pages);
/**
* Will try to make room for given amount of bytes in the filesystem by moving
* pages and erasing blocks.
* If it is physically impossible, err_no will be set to SPIFFS_ERR_FULL. If
* there already is this amount (or more) of free space, SPIFFS_gc will
* silently return. It is recommended to call SPIFFS_info before invoking
* this method in order to determine what amount of bytes to give.
*
* NB: the garbage collector is automatically called when spiffs needs free
* pages. The reason for this function is to give possibility to do background
* tidying when user knows the system is idle.
*
* Use with care.
*
* @param fs the file system struct
* @param size amount of bytes that should be freed
*/
s32_t SPIFFS_gc(spiffs *fs, u32_t size);
/**
* Check if EOF reached.
* @param fs the file system struct
* @param fh the filehandle of the file to check
*/
s32_t SPIFFS_eof(spiffs *fs, spiffs_file fh);
/**
* Get position in file.
* @param fs the file system struct
* @param fh the filehandle of the file to check
*/
s32_t SPIFFS_tell(spiffs *fs, spiffs_file fh);
/**
* Registers a callback function that keeps track on operations on file
* headers. Do note, that this callback is called from within internal spiffs
* mechanisms. Any operations on the actual file system being callbacked from
* in this callback will mess things up for sure - do not do this.
* This can be used to track where files are and move around during garbage
* collection, which in turn can be used to build location tables in ram.
* Used in conjuction with SPIFFS_open_by_page this may improve performance
* when opening a lot of files.
* Must be invoked after mount.
*
* @param fs the file system struct
* @param cb_func the callback on file operations
*/
s32_t SPIFFS_set_file_callback_func(spiffs *fs, spiffs_file_callback cb_func);
#if SPIFFS_IX_MAP
/**
* Maps the first level index lookup to a given memory map.
* This will make reading big files faster, as the memory map will be used for
* looking up data pages instead of searching for the indices on the physical
* medium. When mapping, all affected indicies are found and the information is
* copied to the array.
* Whole file or only parts of it may be mapped. The index map will cover file
* contents from argument offset until and including arguments (offset+len).
* It is valid to map a longer range than the current file size. The map will
* then be populated when the file grows.
* On garbage collections and file data page movements, the map array will be
* automatically updated. Do not tamper with the map array, as this contains
* the references to the data pages. Modifying it from outside will corrupt any
* future readings using this file descriptor.
* The map will no longer be used when the file descriptor closed or the file
* is unmapped.
* This can be useful to get faster and more deterministic timing when reading
* large files, or when seeking and reading a lot within a file.
* @param fs the file system struct
* @param fh the file handle of the file to map
* @param map a spiffs_ix_map struct, describing the index map
* @param offset absolute file offset where to start the index map
* @param len length of the mapping in actual file bytes
* @param map_buf the array buffer for the look up data - number of required
* elements in the array can be derived from function
* SPIFFS_bytes_to_ix_map_entries given the length
*/
s32_t SPIFFS_ix_map(spiffs *fs, spiffs_file fh, spiffs_ix_map *map,
u32_t offset, u32_t len, spiffs_page_ix *map_buf);
/**
* Unmaps the index lookup from this filehandle. All future readings will
* proceed as normal, requiring reading of the first level indices from
* physical media.
* The map and map buffer given in function SPIFFS_ix_map will no longer be
* referenced by spiffs.
* It is not strictly necessary to unmap a file before closing it, as closing
* a file will automatically unmap it.
* @param fs the file system struct
* @param fh the file handle of the file to unmap
*/
s32_t SPIFFS_ix_unmap(spiffs *fs, spiffs_file fh);
/**
* Moves the offset for the index map given in function SPIFFS_ix_map. Parts or
* all of the map buffer will repopulated.
* @param fs the file system struct
* @param fh the mapped file handle of the file to remap
* @param offset new absolute file offset where to start the index map
*/
s32_t SPIFFS_ix_remap(spiffs *fs, spiffs_file fh, u32_t offs);
/**
* Utility function to get number of spiffs_page_ix entries a map buffer must
* contain on order to map given amount of file data in bytes.
* See function SPIFFS_ix_map and SPIFFS_ix_map_entries_to_bytes.
* @param fs the file system struct
* @param bytes number of file data bytes to map
* @return needed number of elements in a spiffs_page_ix array needed to
* map given amount of bytes in a file
*/
s32_t SPIFFS_bytes_to_ix_map_entries(spiffs *fs, u32_t bytes);
/**
* Utility function to amount of file data bytes that can be mapped when
* mapping a file with buffer having given number of spiffs_page_ix entries.
* See function SPIFFS_ix_map and SPIFFS_bytes_to_ix_map_entries.
* @param fs the file system struct
* @param map_page_ix_entries number of entries in a spiffs_page_ix array
* @return amount of file data in bytes that can be mapped given a map
* buffer having given amount of spiffs_page_ix entries
*/
s32_t SPIFFS_ix_map_entries_to_bytes(spiffs *fs, u32_t map_page_ix_entries);
#endif // SPIFFS_IX_MAP
#if SPIFFS_TEST_VISUALISATION
/**
* Prints out a visualization of the filesystem.
* @param fs the file system struct
*/
s32_t SPIFFS_vis(spiffs *fs);
#endif
#if SPIFFS_BUFFER_HELP
/**
* Returns number of bytes needed for the filedescriptor buffer given
* amount of file descriptors.
*/
u32_t SPIFFS_buffer_bytes_for_filedescs(spiffs *fs, u32_t num_descs);
#if SPIFFS_CACHE
/**
* Returns number of bytes needed for the cache buffer given
* amount of cache pages.
*/
u32_t SPIFFS_buffer_bytes_for_cache(spiffs *fs, u32_t num_pages);
#endif
#endif
#if SPIFFS_CACHE
#endif
#if defined(__cplusplus)
}
#endif
#endif /* SPIFFS_H_ */