1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-22 21:23:07 +03:00
esp8266/cores/esp8266/HardwareSerial.cpp
Christopher Pascoe cc0a8ead55 Always arm the "TX FIFO Empty" interrupt after we write into _tx_buffer.
This avoids a race where the interrupt handler detects an empty _tx_buffer
just before we write data into it.

Note that commit d6f62943d4b511e7d5fe6147096c8979890416f5 works around
this race when data is continually added to _tx_buffer in the hung state.
We revert that change here as the race should no longer occur.

Testing performed:
 - set UART_CONF1.txfifo_empty_thrhd=0x70 (which exacerbates the issue)
 - generate a ~240 byte burst of data, sent in back-to-back Serial1.write(, 4)
   calls, optionally followed by a Serial1.flush()
Test results:
 - before this change, observe occasional unsent data and hang in flush()
   (if used).
 - after this change, data is sent as expected.
2015-12-06 21:03:05 -08:00

659 lines
17 KiB
C++

/*
HardwareSerial.cpp - esp8266 UART support
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 31 March 2015 by Markus Sattler (rewrite the code for UART0 + UART1 support in ESP8266)
Modified 25 April 2015 by Thomas Flayols (add configuration different from 8N1 in ESP8266)
Modified 3 May 2015 by Hristo Gochkov (change register access methods)
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
#include "cbuf.h"
extern "C" {
#include "osapi.h"
#include "ets_sys.h"
#include "mem.h"
#include "user_interface.h"
}
#include "HardwareSerial.h"
#define UART_TX_FIFO_SIZE 0x80
struct uart_ {
int uart_nr;
int baud_rate;
bool rxEnabled;
bool txEnabled;
uint8_t rxPin;
uint8_t txPin;
};
static const int UART0 = 0;
static const int UART1 = 1;
static const int UART_NO = -1;
/**
* UART GPIOs
*
* UART0 TX: 1 or 2
* UART0 RX: 3
*
* UART0 SWAP TX: 15
* UART0 SWAP RX: 13
*
*
* UART1 TX: 7 (NC) or 2
* UART1 RX: 8 (NC)
*
* UART1 SWAP TX: 11 (NC)
* UART1 SWAP RX: 6 (NC)
*
* NC = Not Connected to Module Pads --> No Access
*
*/
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
HardwareSerial Serial(UART0);
HardwareSerial Serial1(UART1);
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void uart_interrupt_handler(uart_t* uart);
void uart_wait_for_tx_fifo(uart_t* uart, size_t size_needed);
size_t uart_get_tx_fifo_room(uart_t* uart);
void uart_wait_for_transmit(uart_t* uart);
void uart_transmit_char(uart_t* uart, char c);
void uart_transmit(uart_t* uart, const char* buf, size_t size);
void uart_flush(uart_t* uart);
void uart_interrupt_enable(uart_t* uart);
void uart_interrupt_disable(uart_t* uart);
void uart_arm_tx_interrupt(uart_t* uart);
void uart_disarm_tx_interrupt(uart_t* uart);
void uart_set_baudrate(uart_t* uart, int baud_rate);
int uart_get_baudrate(uart_t* uart);
uart_t* uart_init(int uart_nr, int baudrate, byte config);
void uart_uninit(uart_t* uart);
void uart_swap(uart_t* uart);
void uart_ignore_char(char c);
void uart0_write_char(char c);
void uart1_write_char(char c);
void uart_set_debug(int uart_nr);
int uart_get_debug();
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void ICACHE_RAM_ATTR uart_interrupt_handler(uart_t* uart) {
// -------------- UART 0 --------------
if(Serial.isRxEnabled()) {
while(U0IS & (1 << UIFF)) {
Serial._rx_complete_irq((char) (U0F & 0xff));
U0IC = (1 << UIFF);
}
}
if(Serial.isTxEnabled()) {
if(U0IS & (1 << UIFE)) {
U0IC = (1 << UIFE);
Serial._tx_empty_irq();
}
}
// -------------- UART 1 --------------
if(Serial1.isRxEnabled()) {
while(U1IS & (1 << UIFF)) {
Serial1._rx_complete_irq((char) (U1F & 0xff));
U1IC = (1 << UIFF);
}
}
if(Serial1.isTxEnabled()) {
if(U1IS & (1 << UIFE)) {
U1IC = (1 << UIFE);
Serial1._tx_empty_irq();
}
}
}
// ####################################################################################################
void uart_wait_for_tx_fifo(uart_t* uart, size_t size_needed) {
if(uart == 0)
return;
if(uart->txEnabled) {
while(true) {
size_t tx_count = (USS(uart->uart_nr) >> USTXC) & 0xff;
if(tx_count <= (UART_TX_FIFO_SIZE - size_needed))
break;
}
}
}
size_t uart_get_tx_fifo_room(uart_t* uart) {
if(uart == 0)
return 0;
if(uart->txEnabled) {
return UART_TX_FIFO_SIZE - ((USS(uart->uart_nr) >> USTXC) & 0xff);
}
return 0;
}
void uart_wait_for_transmit(uart_t* uart) {
if(uart == 0)
return;
if(uart->txEnabled) {
uart_wait_for_tx_fifo(uart, UART_TX_FIFO_SIZE);
}
}
void uart_transmit_char(uart_t* uart, char c) {
if(uart == 0)
return;
if(uart->txEnabled) {
USF(uart->uart_nr) = c;
}
}
void uart_transmit(uart_t* uart, const char* buf, size_t size) {
if(uart == 0)
return;
if(uart->txEnabled) {
while(size) {
size_t part_size = (size > UART_TX_FIFO_SIZE) ? UART_TX_FIFO_SIZE : size;
size -= part_size;
uart_wait_for_tx_fifo(uart, part_size);
for(; part_size; --part_size, ++buf)
USF(uart->uart_nr) = *buf;
}
}
}
void uart_flush(uart_t* uart) {
uint32_t tmp = 0x00000000;
if(uart == 0)
return;
if(uart->rxEnabled) {
tmp |= (1 << UCRXRST);
}
if(uart->txEnabled) {
tmp |= (1 << UCTXRST);
}
USC0(uart->uart_nr) |= (tmp);
USC0(uart->uart_nr) &= ~(tmp);
}
void uart_interrupt_enable(uart_t* uart) {
if(uart == 0)
return;
USIC(uart->uart_nr) = 0x1ff;
ETS_UART_INTR_ATTACH(&uart_interrupt_handler, uart); // uart parameter is not osed in irq function!
if(uart->rxEnabled) {
USIE(uart->uart_nr) |= (1 << UIFF);
}
ETS_UART_INTR_ENABLE();
}
void uart_interrupt_disable(uart_t* uart) {
if(uart == 0)
return;
if(uart->rxEnabled) {
USIE(uart->uart_nr) &= ~(1 << UIFF);
}
if(uart->txEnabled) {
USIE(uart->uart_nr) &= ~(1 << UIFE);
}
//ETS_UART_INTR_DISABLE(); // never disable irq complete may its needed by the other Serial Interface!
}
void uart_arm_tx_interrupt(uart_t* uart) {
if(uart == 0)
return;
if(uart->txEnabled) {
USIE(uart->uart_nr) |= (1 << UIFE);
}
}
void uart_disarm_tx_interrupt(uart_t* uart) {
if(uart == 0)
return;
if(uart->txEnabled) {
USIE(uart->uart_nr) &= ~(1 << UIFE);
}
}
void uart_set_baudrate(uart_t* uart, int baud_rate) {
if(uart == 0)
return;
uart->baud_rate = baud_rate;
USD(uart->uart_nr) = (ESP8266_CLOCK / uart->baud_rate);
}
int uart_get_baudrate(uart_t* uart) {
if(uart == 0)
return 0;
return uart->baud_rate;
}
uart_t* uart_init(int uart_nr, int baudrate, byte config, byte mode) {
uint32_t conf1 = 0x00000000;
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
if(uart == 0) {
return 0;
}
uart->uart_nr = uart_nr;
switch(uart->uart_nr) {
case UART0:
uart->rxEnabled = (mode != SERIAL_TX_ONLY);
uart->txEnabled = (mode != SERIAL_RX_ONLY);
uart->rxPin = (uart->rxEnabled)?3:255;
uart->txPin = (uart->txEnabled)?1:255;
if(uart->rxEnabled) pinMode(uart->rxPin, SPECIAL);
if(uart->txEnabled) pinMode(uart->txPin, SPECIAL);
IOSWAP &= ~(1 << IOSWAPU0);
break;
case UART1:
uart->rxEnabled = false;
uart->txEnabled = (mode != SERIAL_RX_ONLY);
uart->rxPin = 255;
uart->txPin = (uart->txEnabled)?2:255;
if(uart->txEnabled) pinMode(uart->txPin, SPECIAL);
break;
case UART_NO:
default:
// big fail!
os_free(uart);
return 0;
}
uart_set_baudrate(uart, baudrate);
USC0(uart->uart_nr) = config;
uart_flush(uart);
uart_interrupt_enable(uart);
if(uart->rxEnabled) {
conf1 |= (0x01 << UCFFT);
}
if(uart->txEnabled) {
conf1 |= (0x20 << UCFET);
}
USC1(uart->uart_nr) = conf1;
return uart;
}
void uart_uninit(uart_t* uart) {
if(uart == 0)
return;
uart_interrupt_disable(uart);
switch(uart->rxPin) {
case 3:
pinMode(3, INPUT);
break;
case 13:
pinMode(13, INPUT);
break;
}
switch(uart->txPin) {
case 1:
pinMode(1, INPUT);
break;
case 2:
pinMode(2, INPUT);
break;
case 15:
pinMode(15, INPUT);
break;
}
os_free(uart);
}
void uart_swap(uart_t* uart) {
if(uart == 0)
return;
switch(uart->uart_nr) {
case UART0:
if((uart->txPin == 1 && uart->txEnabled) || (uart->rxPin == 3 && uart->rxEnabled)) {
if(uart->txEnabled) pinMode(15, FUNCTION_4); //TX
if(uart->rxEnabled) pinMode(13, FUNCTION_4); //RX
IOSWAP |= (1 << IOSWAPU0);
if(uart->txEnabled){ //TX
pinMode(1, INPUT);
uart->txPin = 15;
}
if(uart->rxEnabled){ //RX
pinMode(3, INPUT);
uart->rxPin = 13;
}
} else {
if(uart->txEnabled) pinMode(1, SPECIAL); //TX
if(uart->rxEnabled) pinMode(3, SPECIAL); //RX
IOSWAP &= ~(1 << IOSWAPU0);
if(uart->txEnabled){ //TX
pinMode(15, INPUT);
uart->txPin = 1;
}
if(uart->rxEnabled){ //RX
pinMode(13, INPUT); //RX
uart->rxPin = 3;
}
}
break;
case UART1:
// current no swap possible! see GPIO pins used by UART
break;
default:
break;
}
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void uart_ignore_char(char c) {
}
void uart0_write_char(char c) {
if(&Serial != NULL && Serial.isTxEnabled()) {
if(Serial.availableForWrite() > 0) {
if(c == '\n') {
Serial.write('\r');
}
Serial.write(c);
return;
}
}
// wait for the Hardware FIFO
while(true) {
if(((USS(0) >> USTXC) & 0xff) <= (UART_TX_FIFO_SIZE - 2)) {
break;
}
}
if(c == '\n') {
USF(0) = '\r';
}
USF(0) = c;
}
void uart1_write_char(char c) {
if(&Serial1 != NULL && Serial1.isTxEnabled()) {
if(Serial1.availableForWrite() > 0) {
if(c == '\n') {
Serial1.write('\r');
}
Serial1.write(c);
return;
}
}
// wait for the Hardware FIFO
while(true) {
if(((USS(1) >> USTXC) & 0xff) <= (UART_TX_FIFO_SIZE - 2)) {
break;
}
}
if(c == '\n') {
USF(1) = '\r';
}
USF(1) = c;
}
static int s_uart_debug_nr = UART0;
void uart_set_debug(int uart_nr) {
s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr) {
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
break;
case UART1:
system_set_os_print(1);
ets_install_putc1((void *) &uart1_write_char);
break;
case UART_NO:
default:
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
break;
}
}
int uart_get_debug() {
return s_uart_debug_nr;
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
HardwareSerial::HardwareSerial(int uart_nr) :
_uart_nr(uart_nr), _uart(0), _tx_buffer(0), _rx_buffer(0), _written(false) {
}
void HardwareSerial::begin(unsigned long baud, byte config, byte mode) {
// disable debug for this interface
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO);
}
_uart = uart_init(_uart_nr, baud, config, mode);
if(_uart == 0) {
return;
}
if(_uart->rxEnabled) {
if(!_rx_buffer)
_rx_buffer = new cbuf(SERIAL_RX_BUFFER_SIZE);
}
if(_uart->txEnabled) {
if(!_tx_buffer)
_tx_buffer = new cbuf(SERIAL_TX_BUFFER_SIZE);
}
_written = false;
delay(1);
}
void HardwareSerial::end() {
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO);
}
uart_uninit(_uart);
delete _rx_buffer;
delete _tx_buffer;
_uart = 0;
_rx_buffer = 0;
_tx_buffer = 0;
}
void HardwareSerial::swap() {
if(_uart == 0)
return;
uart_swap(_uart);
}
void HardwareSerial::setDebugOutput(bool en) {
if(_uart == 0)
return;
if(en) {
if(_uart->txEnabled)
uart_set_debug(_uart->uart_nr);
else
uart_set_debug(UART_NO);
} else {
// disable debug for this interface
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO);
}
}
}
bool HardwareSerial::isTxEnabled(void) {
if(_uart == 0)
return false;
return _uart->txEnabled;
}
bool HardwareSerial::isRxEnabled(void) {
if(_uart == 0)
return false;
return _uart->rxEnabled;
}
int HardwareSerial::available(void) {
int result = 0;
if (_uart != NULL && _uart->rxEnabled) {
result = static_cast<int>(_rx_buffer->getSize());
}
if (!result) {
optimistic_yield(USD(_uart->uart_nr) / 128);
}
return result;
}
int HardwareSerial::peek(void) {
if(_uart == 0)
return -1;
if(_uart->rxEnabled) {
return _rx_buffer->peek();
} else {
return -1;
}
}
int HardwareSerial::read(void) {
if(_uart == 0)
return -1;
if(_uart->rxEnabled) {
return _rx_buffer->read();
} else {
return -1;
}
}
int HardwareSerial::availableForWrite(void) {
if(_uart == 0)
return 0;
if(_uart->txEnabled) {
return static_cast<int>(_tx_buffer->room());
} else {
return 0;
}
}
void HardwareSerial::flush() {
if(_uart == 0)
return;
if(!_uart->txEnabled)
return;
if(!_written)
return;
while(_tx_buffer->getSize() || uart_get_tx_fifo_room(_uart) < UART_TX_FIFO_SIZE)
yield();
_written = false;
}
size_t HardwareSerial::write(uint8_t c) {
if(_uart == 0 || !_uart->txEnabled)
return 0;
_written = true;
size_t room = uart_get_tx_fifo_room(_uart);
if(room > 0 && _tx_buffer->empty()) {
uart_transmit_char(_uart, c);
return 1;
}
while(_tx_buffer->room() == 0) {
yield();
}
_tx_buffer->write(c);
uart_arm_tx_interrupt(_uart);
return 1;
}
HardwareSerial::operator bool() const {
return _uart != 0;
}
void HardwareSerial::_rx_complete_irq(char c) {
if(_rx_buffer) {
_rx_buffer->write(c);
}
}
void HardwareSerial::_tx_empty_irq(void) {
if(_uart == 0)
return;
if(_tx_buffer == 0)
return;
size_t queued = _tx_buffer->getSize();
if(!queued) {
uart_disarm_tx_interrupt(_uart);
return;
}
size_t room = uart_get_tx_fifo_room(_uart);
int n = static_cast<int>((queued < room) ? queued : room);
while(n--) {
uart_transmit_char(_uart, _tx_buffer->read());
}
}