1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00
Earle F. Philhower, III 07b4c09b90
eboot: .RODATA, upstream uzlib, move CRC, save 112 bytes (#7844)
RODATA can be copied automatically by the bootrom, so no reason not to
allow its use for strings and constants in eboot.c

Revert to pfalcon's original uzlib since the single patch to remove
RODATA is not required.

Rationalize eboot.ld linker script, clean up BSS and init it in code.

Saves 112 bytes of space in the bootloader sector by removing the
extra code associated with literal loads.

* Move CRC out of bootload sector

We added protection to only erase the bootload sector when flashing an
image when the new sector != the old sector.  This was intended to
minimize the chance of bricking (i.e. if there was a powerfail during
flashing of the boot sector the chip would be dead).

Unfortunately, by placing the CRC inside the eboot sector *every*
application will have a unique eboot sector (due to the crc/len), so
this protection doesn't work.

Move the CRC into the first 8 bytes of IROM itself.  This frees up extra
space in the boot sector and ensures that eboot won't be reflashed
unless there really is an eboot change.
2021-02-07 16:32:56 -08:00

287 lines
8.2 KiB
C

/* Copyright (c) 2015-2016 Ivan Grokhotkov. All rights reserved.
* This file is part of eboot bootloader.
*
* Redistribution and use is permitted according to the conditions of the
* 3-clause BSD license to be found in the LICENSE file.
*/
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "flash.h"
#include "eboot_command.h"
#include <uzlib.h>
#define SWRST do { (*((volatile uint32_t*) 0x60000700)) |= 0x80000000; } while(0);
extern void ets_wdt_enable(void);
extern void ets_wdt_disable(void);
int print_version(const uint32_t flash_addr)
{
uint32_t ver;
if (SPIRead(flash_addr + APP_START_OFFSET + sizeof(image_header_t) + sizeof(section_header_t), &ver, sizeof(ver))) {
return 1;
}
ets_printf("v%08x\n", ver);
return 0;
}
int load_app_from_flash_raw(const uint32_t flash_addr)
{
image_header_t image_header;
uint32_t pos = flash_addr + APP_START_OFFSET;
if (SPIRead(pos, &image_header, sizeof(image_header))) {
return 1;
}
pos += sizeof(image_header);
for (uint32_t section_index = 0;
section_index < image_header.num_segments;
++section_index)
{
section_header_t section_header = {0};
if (SPIRead(pos, &section_header, sizeof(section_header))) {
return 2;
}
pos += sizeof(section_header);
const uint32_t address = section_header.address;
bool load = false;
if (address < 0x40000000) {
load = true;
}
// The final IRAM size, once boot has completed, can be either 32K or 48K.
// Allow for the higher in range testing.
if (address >= 0x40100000 && address < 0x4010C000) {
load = true;
}
if (address >= 0x60000000) {
load = true;
}
if (!load) {
pos += section_header.size;
continue;
}
if (SPIRead(pos, (void*)address, section_header.size))
return 3;
pos += section_header.size;
}
asm volatile("" ::: "memory");
asm volatile ("mov.n a1, %0\n"
"mov.n a3, %1\n"
"jx a3\n" : : "r" (0x3ffffff0), "r" (image_header.entry) );
__builtin_unreachable(); // Save a few bytes by letting GCC know no need to pop regs/return
return 0;
}
uint8_t read_flash_byte(const uint32_t addr)
{
uint8_t __attribute__((aligned(4))) buff[4];
SPIRead(addr & ~3, buff, 4);
return buff[addr & 3];
}
unsigned char __attribute__((aligned(4))) uzlib_flash_read_cb_buff[4096];
uint32_t uzlib_flash_read_cb_addr;
int uzlib_flash_read_cb(struct uzlib_uncomp *m)
{
m->source = uzlib_flash_read_cb_buff;
m->source_limit = uzlib_flash_read_cb_buff + sizeof(uzlib_flash_read_cb_buff);
SPIRead(uzlib_flash_read_cb_addr, uzlib_flash_read_cb_buff, sizeof(uzlib_flash_read_cb_buff));
uzlib_flash_read_cb_addr += sizeof(uzlib_flash_read_cb_buff);
return *(m->source++);
}
unsigned char gzip_dict[32768];
uint8_t buffer2[FLASH_SECTOR_SIZE]; // no room for this on the stack
int copy_raw(const uint32_t src_addr,
const uint32_t dst_addr,
const uint32_t size,
const bool verify)
{
// require regions to be aligned
if ((src_addr & 0xfff) != 0 ||
(dst_addr & 0xfff) != 0) {
return 1;
}
const uint32_t buffer_size = FLASH_SECTOR_SIZE;
uint8_t buffer[buffer_size];
int32_t left = ((size+buffer_size-1) & ~(buffer_size-1));
uint32_t saddr = src_addr;
uint32_t daddr = dst_addr;
struct uzlib_uncomp m_uncomp;
bool gzip = false;
// Check if we are uncompressing a GZIP upload or not
if ((read_flash_byte(saddr) == 0x1f) && (read_flash_byte(saddr + 1) == 0x8b)) {
// GZIP signature matched. Find real size as encoded at the end
left = read_flash_byte(saddr + size - 4);
left += read_flash_byte(saddr + size - 3)<<8;
left += read_flash_byte(saddr + size - 2)<<16;
left += read_flash_byte(saddr + size - 1)<<24;
uzlib_init();
/* all 3 fields below must be initialized by user */
m_uncomp.source = NULL;
m_uncomp.source_limit = NULL;
uzlib_flash_read_cb_addr = src_addr;
m_uncomp.source_read_cb = uzlib_flash_read_cb;
uzlib_uncompress_init(&m_uncomp, gzip_dict, sizeof(gzip_dict));
int res = uzlib_gzip_parse_header(&m_uncomp);
if (res != TINF_OK) {
return 5; // Error uncompress header read
}
gzip = true;
}
while (left > 0) {
if (!gzip) {
if (SPIRead(saddr, buffer, buffer_size)) {
return 3;
}
} else {
m_uncomp.dest_start = buffer;
m_uncomp.dest = buffer;
int to_read = (left > buffer_size) ? buffer_size : left;
m_uncomp.dest_limit = buffer + to_read;
int res = uzlib_uncompress(&m_uncomp);
if ((res != TINF_DONE) && (res != TINF_OK)) {
return 6;
}
// Fill any remaining with 0xff
for (int i = to_read; i < buffer_size; i++) {
buffer[i] = 0xff;
}
}
if (verify) {
if (SPIRead(daddr, buffer2, buffer_size)) {
return 4;
}
if (memcmp(buffer, buffer2, buffer_size)) {
return 9;
}
} else {
// Special treatment for address 0 (bootloader). Only erase and
// rewrite if the data is different (i.e. very rarely).
bool skip = false;
if (daddr == 0) {
if (SPIRead(daddr, buffer2, buffer_size)) {
return 4;
}
if (!memcmp(buffer2, buffer, buffer_size)) {
ets_putc('B'); // Note we skipped the bootloader in output
skip = true; // And skip erase/write
}
}
if (!skip) {
if (SPIEraseSector(daddr/buffer_size)) {
return 2;
}
if (SPIWrite(daddr, buffer, buffer_size)) {
return 4;
}
}
}
saddr += buffer_size;
daddr += buffer_size;
left -= buffer_size;
}
return 0;
}
int main()
{
int res = 9;
bool clear_cmd = false;
struct eboot_command cmd;
// BSS init commented out for now to save space. If any static variables set
// to 0 are used, need to uncomment it or else the BSS will not be cleared and
// the static vars will power on with random values.
#if 0
// Clear BSS ourselves, we don't have handy C runtime
extern char _bss_start;
extern char _bss_end;
ets_bzero(&_bss_start, &_bss_end - &_bss_start);
#endif
print_version(0);
if (eboot_command_read(&cmd) == 0) {
// valid command was passed via RTC_MEM
clear_cmd = true;
ets_putc('@');
} else {
// no valid command found
cmd.action = ACTION_LOAD_APP;
cmd.args[0] = 0;
ets_putc('~');
}
if (cmd.action == ACTION_COPY_RAW) {
ets_printf("cp:");
ets_wdt_disable();
res = copy_raw(cmd.args[0], cmd.args[1], cmd.args[2], false);
ets_wdt_enable();
ets_printf("%d\n", res);
#if 0
//devyte: this verify step below (cmp:) only works when the end of copy operation above does not overwrite the
//beginning of the image in the empty area, see #7458. Disabling for now.
//TODO: replace the below verify with hash type, crc, or similar.
// Verify the copy
ets_printf("cmp:");
if (res == 0) {
ets_wdt_disable();
res = copy_raw(cmd.args[0], cmd.args[1], cmd.args[2], true);
ets_wdt_enable();
}
ets_printf("%d\n", res);
#endif
if (res == 0) {
cmd.action = ACTION_LOAD_APP;
cmd.args[0] = cmd.args[1];
}
}
if (clear_cmd) {
eboot_command_clear();
}
if (cmd.action == ACTION_LOAD_APP) {
ets_printf("ld\n");
res = load_app_from_flash_raw(cmd.args[0]);
// We will get to this only on load fail
ets_printf("e:%d\n", res);
}
if (res) {
SWRST;
}
while(true){}
__builtin_unreachable();
return 0;
}