1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-21 10:26:06 +03:00
esp8266/cores/esp8266/HardwareSerial.cpp
Me No Dev e255f25cfd Bufferless and Interruptless HardwareSerial
Let's use the onboard buffers :)
2016-01-26 22:57:59 +03:00

478 lines
12 KiB
C++

/*
HardwareSerial.cpp - esp8266 UART support
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 31 March 2015 by Markus Sattler (rewrite the code for UART0 + UART1 support in ESP8266)
Modified 25 April 2015 by Thomas Flayols (add configuration different from 8N1 in ESP8266)
Modified 3 May 2015 by Hristo Gochkov (change register access methods)
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
#include "cbuf.h"
#include "interrupts.h"
extern "C" {
#include "osapi.h"
#include "ets_sys.h"
#include "mem.h"
#include "user_interface.h"
}
#include "HardwareSerial.h"
#define UART_TX_FIFO_SIZE 0x80
struct uart_ {
int uart_nr;
int baud_rate;
bool rxEnabled;
bool txEnabled;
uint8_t rxPin;
uint8_t txPin;
};
static const int UART0 = 0;
static const int UART1 = 1;
static const int UART_NO = -1;
/**
* UART GPIOs
*
* UART0 TX: 1 or 2
* UART0 RX: 3
*
* UART0 SWAP TX: 15
* UART0 SWAP RX: 13
*
*
* UART1 TX: 7 (NC) or 2
* UART1 RX: 8 (NC)
*
* UART1 SWAP TX: 11 (NC)
* UART1 SWAP RX: 6 (NC)
*
* NC = Not Connected to Module Pads --> No Access
*
*/
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
HardwareSerial Serial(UART0);
HardwareSerial Serial1(UART1);
void uart_write_char(uart_t* uart, char c) {
if(uart == 0 || !uart->txEnabled)
return;
while((USS(uart->uart_nr) >> USTXC) >= 0x7f);
USF(uart->uart_nr) = c;
}
void uart_write(uart_t* uart, const char* buf, size_t size) {
if(uart == 0 || !uart->txEnabled)
return;
while(size--)
uart_write_char(uart, *buf++);
}
uint8_t uart_read_char(uart_t* uart){
if(uart == 0 || !uart->rxEnabled)
return 0;
return USF(uart->uart_nr) & 0xff;
}
uint8_t uart_rx_available(uart_t* uart){
if(uart == 0 || !uart->rxEnabled)
return 0;
return (USS(uart->uart_nr) >> USRXC) & 0xff;
}
uint8_t uart_tx_free(uart_t* uart){
if(uart == 0 || !uart->txEnabled)
return 0;
return UART_TX_FIFO_SIZE - ((USS(uart->uart_nr) >> USTXC) & 0xff);
}
void uart_wait_tx_empty(uart_t* uart){
if(uart == 0 || !uart->txEnabled)
return;
while(((USS(uart->uart_nr) >> USTXC) & 0xff) > 0) delay(0);
}
void uart_flush(uart_t* uart) {
if(uart == 0)
return;
uint32_t tmp = 0x00000000;
if(uart->rxEnabled) {
tmp |= (1 << UCRXRST);
}
if(uart->txEnabled) {
tmp |= (1 << UCTXRST);
}
USC0(uart->uart_nr) |= (tmp);
USC0(uart->uart_nr) &= ~(tmp);
}
void uart_set_baudrate(uart_t* uart, int baud_rate) {
if(uart == 0)
return;
uart->baud_rate = baud_rate;
USD(uart->uart_nr) = (ESP8266_CLOCK / uart->baud_rate);
}
int uart_get_baudrate(uart_t* uart) {
if(uart == 0)
return 0;
return uart->baud_rate;
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
uart_t* uart_init(int uart_nr, int baudrate, byte config, byte mode, uint8_t use_tx) {
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
if(uart == 0) {
return 0;
}
uart->uart_nr = uart_nr;
switch(uart->uart_nr) {
case UART0:
uart->rxEnabled = (mode != SERIAL_TX_ONLY);
uart->txEnabled = (mode != SERIAL_RX_ONLY);
uart->rxPin = (uart->rxEnabled)?3:255;
if(uart->rxEnabled) {
if (use_tx == 2) {
uart->txPin = 2;
pinMode(uart->rxPin, FUNCTION_4);
} else {
uart->txPin = 1;
pinMode(uart->rxPin, SPECIAL);
}
} else uart->txPin = 255;
if(uart->txEnabled) pinMode(uart->txPin, SPECIAL);
IOSWAP &= ~(1 << IOSWAPU0);
break;
case UART1:
// Note: uart_interrupt_handler does not support RX on UART 1.
uart->rxEnabled = false;
uart->txEnabled = (mode != SERIAL_RX_ONLY);
uart->rxPin = 255;
uart->txPin = (uart->txEnabled)?2:255; // GPIO7 as TX not possible! See GPIO pins used by UART
if(uart->txEnabled) pinMode(uart->txPin, SPECIAL);
break;
case UART_NO:
default:
// big fail!
os_free(uart);
return 0;
}
uart_set_baudrate(uart, baudrate);
USC0(uart->uart_nr) = config;
uart_flush(uart);
USC1(uart->uart_nr) = 0;
return uart;
}
void uart_uninit(uart_t* uart) {
if(uart == 0)
return;
switch(uart->rxPin) {
case 3:
pinMode(3, INPUT);
break;
case 13:
pinMode(13, INPUT);
break;
}
switch(uart->txPin) {
case 1:
pinMode(1, INPUT);
break;
case 2:
pinMode(2, INPUT);
break;
case 15:
pinMode(15, INPUT);
break;
}
os_free(uart);
}
void uart_swap(uart_t* uart, uint8_t use_tx) {
if(uart == 0)
return;
switch(uart->uart_nr) {
case UART0:
if(((uart->txPin == 1 || uart->txPin == 2) && uart->txEnabled) || (uart->rxPin == 3 && uart->rxEnabled)) {
if(uart->txEnabled){ //TX
pinMode(uart->txPin, INPUT);
uart->txPin = 15;
}
if(uart->rxEnabled){ //RX
pinMode(uart->rxPin, INPUT);
uart->rxPin = 13;
}
if(uart->txEnabled) pinMode(uart->txPin, FUNCTION_4); //TX
if(uart->rxEnabled) pinMode(uart->rxPin, FUNCTION_4); //RX
IOSWAP |= (1 << IOSWAPU0);
} else {
if(uart->txEnabled){ //TX
pinMode(uart->txPin, INPUT);
uart->txPin = (use_tx == 2)?2:1;
}
if(uart->rxEnabled){ //RX
pinMode(uart->rxPin, INPUT);
uart->rxPin = 3;
}
if(uart->txEnabled) pinMode(uart->txPin, (use_tx == 2)?FUNCTION_4:SPECIAL); //TX
if(uart->rxEnabled) pinMode(3, SPECIAL); //RX
IOSWAP &= ~(1 << IOSWAPU0);
}
break;
case UART1:
// Currently no swap possible! See GPIO pins used by UART
break;
default:
break;
}
}
void uart_set_tx(uart_t* uart, uint8_t use_tx) {
if(uart == 0)
return;
switch(uart->uart_nr) {
case UART0:
if(uart->txEnabled) {
if (uart->txPin == 1 && use_tx == 2) {
pinMode(uart->txPin, INPUT);
uart->txPin = 2;
pinMode(uart->txPin, FUNCTION_4);
} else if (uart->txPin == 2 && use_tx != 2) {
pinMode(uart->txPin, INPUT);
uart->txPin = 1;
pinMode(uart->txPin, SPECIAL);
}
}
break;
case UART1:
// GPIO7 as TX not possible! See GPIO pins used by UART
break;
default:
break;
}
}
void uart_set_pins(uart_t* uart, uint8_t tx, uint8_t rx) {
if(uart == 0)
return;
if(uart->uart_nr == UART0) { // Only UART0 allows pin changes
if(uart->txEnabled && uart->txPin != tx) {
if( rx == 13 && tx == 15) {
uart_swap(uart, 15);
} else if (rx == 3 && (tx == 1 || tx == 2)) {
if (uart->rxPin != rx) uart_swap(uart, tx);
else uart_set_tx(uart, tx);
}
}
if(uart->rxEnabled && uart->rxPin != rx && rx == 13 && tx == 15) {
uart_swap(uart, 15);
}
}
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void uart_ignore_char(char c) {}
void uart0_write_char(char c) {
while(((USS(0) >> USTXC) & 0xff) >= 0x7F) delay(0);
USF(0) = c;
}
void uart1_write_char(char c) {
while(((USS(1) >> USTXC) & 0xff) >= 0x7F) delay(0);
USF(1) = c;
}
static int s_uart_debug_nr = UART0;
void uart_set_debug(int uart_nr) {
s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr) {
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
break;
case UART1:
system_set_os_print(1);
ets_install_putc1((void *) &uart1_write_char);
break;
case UART_NO:
default:
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
break;
}
}
int uart_get_debug() {
return s_uart_debug_nr;
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
HardwareSerial::HardwareSerial(int uart_nr)
: _uart_nr(uart_nr)
, _uart(0)
{}
void HardwareSerial::begin(unsigned long baud, byte config, byte mode, uint8_t use_tx) {
if(uart_get_debug() == _uart_nr)
uart_set_debug(UART_NO);
if (_uart)
os_free(_uart);
_uart = uart_init(_uart_nr, baud, config, mode, use_tx);
}
void HardwareSerial::end() {
if(uart_get_debug() == _uart_nr)
uart_set_debug(UART_NO);
uart_uninit(_uart);
}
void HardwareSerial::swap(uint8_t use_tx) {
if(_uart == 0)
return;
uart_swap(_uart, use_tx);
}
void HardwareSerial::set_tx(uint8_t use_tx) {
if(_uart == 0)
return;
uart_set_tx(_uart, use_tx);
}
void HardwareSerial::pins(uint8_t tx, uint8_t rx) {
if(_uart == 0)
return;
uart_set_pins(_uart, tx, rx);
}
void HardwareSerial::setDebugOutput(bool en) {
if(_uart == 0)
return;
if(en) {
if(_uart->txEnabled)
uart_set_debug(_uart->uart_nr);
else
uart_set_debug(UART_NO);
} else {
// disable debug for this interface
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO);
}
}
}
bool ICACHE_RAM_ATTR HardwareSerial::isTxEnabled(void) {
return _uart != 0 && _uart->txEnabled;
}
bool ICACHE_RAM_ATTR HardwareSerial::isRxEnabled(void) {
return _uart != 0 && _uart->rxEnabled;
}
int HardwareSerial::available(void) {
if(_uart == 0 || !_uart->rxEnabled)
return 0;
int result = static_cast<int>(uart_rx_available(_uart));
if (!result) {
optimistic_yield(USD(_uart->uart_nr) / 128);
}
return result;
}
int HardwareSerial::peek(void) {
return -1;
}
int HardwareSerial::read(void) {
if(_uart == 0 || !_uart->rxEnabled)
return -1;
return static_cast<int>(uart_read_char(_uart));
}
int HardwareSerial::availableForWrite(void) {
if(_uart == 0 || !_uart->txEnabled)
return 0;
return static_cast<int>(uart_tx_free(_uart));
}
void HardwareSerial::flush() {
if(_uart == 0 || !_uart->txEnabled)
return;
uart_wait_tx_empty(_uart);
}
size_t HardwareSerial::write(uint8_t c) {
if(_uart == 0 || !_uart->txEnabled)
return 0;
uart_write_char(_uart, c);
return 1;
}
HardwareSerial::operator bool() const {
return _uart != 0;
}