mirror of
				https://github.com/esp8266/Arduino.git
				synced 2025-10-31 15:50:55 +03:00 
			
		
		
		
	* libraries/SPI: remove pointless abs(...) call SPI library code erroneously assumed that: - abs() is a C function, so include stdlib.h is required. what happens instead is Arduino.h shadows `abs()` with it's own macro - uint32_t() - int32_t() promotes to int32_t, thus needing abs() Fix both issues, leaving existing calculations as-is. * additional changes for freq and constants - restore abs call, cast freq to correctly display the intent - update magic numbers comments - move some spiclk_t magic numbers to func consts
		
			
				
	
	
		
			622 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			622 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* 
 | |
|  SPI.cpp - SPI library for esp8266
 | |
| 
 | |
|  Copyright (c) 2015 Hristo Gochkov. All rights reserved.
 | |
|  This file is part of the esp8266 core for Arduino environment.
 | |
|  
 | |
|  This library is free software; you can redistribute it and/or
 | |
|  modify it under the terms of the GNU Lesser General Public
 | |
|  License as published by the Free Software Foundation; either
 | |
|  version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|  This library is distributed in the hope that it will be useful,
 | |
|  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  Lesser General Public License for more details.
 | |
| 
 | |
|  You should have received a copy of the GNU Lesser General Public
 | |
|  License along with this library; if not, write to the Free Software
 | |
|  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| 
 | |
| #include "SPI.h"
 | |
| #include "HardwareSerial.h"
 | |
| 
 | |
| #define SPI_PINS_HSPI			0 // Normal HSPI mode (MISO = GPIO12, MOSI = GPIO13, SCLK = GPIO14);
 | |
| #define SPI_PINS_HSPI_OVERLAP	1 // HSPI Overllaped in spi0 pins (MISO = SD0, MOSI = SDD1, SCLK = CLK);
 | |
| 
 | |
| #define SPI_OVERLAP_SS 0
 | |
| 
 | |
| 
 | |
| typedef union {
 | |
|         uint32_t regValue;
 | |
|         struct {
 | |
|                 unsigned regL :6;
 | |
|                 unsigned regH :6;
 | |
|                 unsigned regN :6;
 | |
|                 unsigned regPre :13;
 | |
|                 unsigned regEQU :1;
 | |
|         };
 | |
| } spiClk_t;
 | |
| 
 | |
| SPIClass::SPIClass() {
 | |
|     useHwCs = false;
 | |
|     pinSet = SPI_PINS_HSPI;
 | |
| }
 | |
| 
 | |
| bool SPIClass::pins(int8_t sck, int8_t miso, int8_t mosi, int8_t ss)
 | |
| {
 | |
|     if (sck == 6 &&
 | |
|         miso == 7 &&
 | |
|         mosi == 8 &&
 | |
|         ss == 0) {
 | |
|         pinSet = SPI_PINS_HSPI_OVERLAP;
 | |
|     } else if (sck == 14 &&
 | |
| 	           miso == 12 &&
 | |
|                mosi == 13) {
 | |
|         pinSet = SPI_PINS_HSPI;
 | |
|     } else {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void SPIClass::begin() {
 | |
|     switch (pinSet) {
 | |
|     case SPI_PINS_HSPI_OVERLAP:
 | |
|         IOSWAP |= (1 << IOSWAP2CS);
 | |
|         //SPI0E3 |= 0x1; This is in the MP3_DECODER example, but makes the WD kick in here.
 | |
|         SPI1E3 |= 0x3;
 | |
| 
 | |
|         setHwCs(true);
 | |
|         break;
 | |
|     case SPI_PINS_HSPI:
 | |
|     default:
 | |
|         pinMode(SCK, SPECIAL);  ///< GPIO14
 | |
|         pinMode(MISO, SPECIAL); ///< GPIO12
 | |
|         pinMode(MOSI, SPECIAL); ///< GPIO13
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     SPI1C = 0;
 | |
|     setFrequency(1000000); ///< 1MHz
 | |
|     SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE;
 | |
|     SPI1U1 = (7 << SPILMOSI) | (7 << SPILMISO);
 | |
|     SPI1C1 = 0;
 | |
| }
 | |
| 
 | |
| void SPIClass::end() {
 | |
|     switch (pinSet) {
 | |
|     case SPI_PINS_HSPI:
 | |
|         pinMode(SCK, INPUT);
 | |
|         pinMode(MISO, INPUT);
 | |
|         pinMode(MOSI, INPUT);
 | |
|         if (useHwCs) {
 | |
|             pinMode(SS, INPUT);
 | |
|         }
 | |
|         break;
 | |
|     case SPI_PINS_HSPI_OVERLAP:
 | |
|         IOSWAP &= ~(1 << IOSWAP2CS);
 | |
|         if (useHwCs) {
 | |
|             SPI1P |= SPIPCS1DIS | SPIPCS0DIS | SPIPCS2DIS;
 | |
|             pinMode(SPI_OVERLAP_SS, INPUT);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SPIClass::setHwCs(bool use) {
 | |
|     switch (pinSet) {
 | |
|     case SPI_PINS_HSPI:
 | |
|         if (use) {
 | |
|             pinMode(SS, SPECIAL); ///< GPIO15
 | |
|             SPI1U |= (SPIUCSSETUP | SPIUCSHOLD);
 | |
|     } else {
 | |
|             if (useHwCs) {
 | |
|                 pinMode(SS, INPUT);
 | |
|             SPI1U &= ~(SPIUCSSETUP | SPIUCSHOLD);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case SPI_PINS_HSPI_OVERLAP:
 | |
|         if (use) {
 | |
|             pinMode(SPI_OVERLAP_SS, FUNCTION_1); // GPI0 to SPICS2 mode
 | |
|             SPI1P &= ~SPIPCS2DIS;
 | |
|             SPI1P |= SPIPCS1DIS | SPIPCS0DIS;
 | |
|             SPI1U |= (SPIUCSSETUP | SPIUCSHOLD);
 | |
|         }
 | |
|         else {
 | |
|             if (useHwCs) {
 | |
|                 pinMode(SPI_OVERLAP_SS, INPUT);
 | |
|                 SPI1P |= SPIPCS1DIS | SPIPCS0DIS | SPIPCS2DIS;
 | |
|                 SPI1U &= ~(SPIUCSSETUP | SPIUCSHOLD);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     useHwCs = use;
 | |
| }
 | |
| 
 | |
| void SPIClass::beginTransaction(SPISettings settings) {
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
|     setFrequency(settings._clock);
 | |
|     setBitOrder(settings._bitOrder);
 | |
|     setDataMode(settings._dataMode);
 | |
| }
 | |
| 
 | |
| void SPIClass::endTransaction() {
 | |
| }
 | |
| 
 | |
| void SPIClass::setDataMode(uint8_t dataMode) {
 | |
| 
 | |
|     /**
 | |
|      SPI_MODE0 0x00 - CPOL: 0  CPHA: 0
 | |
|      SPI_MODE1 0x01 - CPOL: 0  CPHA: 1
 | |
|      SPI_MODE2 0x10 - CPOL: 1  CPHA: 0
 | |
|      SPI_MODE3 0x11 - CPOL: 1  CPHA: 1
 | |
|      */
 | |
| 
 | |
|     bool CPOL = (dataMode & 0x10); ///< CPOL (Clock Polarity)
 | |
|     bool CPHA = (dataMode & 0x01); ///< CPHA (Clock Phase)
 | |
| 
 | |
|     // https://github.com/esp8266/Arduino/issues/2416
 | |
|     // https://github.com/esp8266/Arduino/pull/2418
 | |
|     if(CPOL)          // Ensure same behavior as
 | |
|         CPHA ^= 1;    // SAM, AVR and Intel Boards
 | |
| 
 | |
|     if(CPHA) {
 | |
|         SPI1U |= (SPIUSME);
 | |
|     } else {
 | |
|         SPI1U &= ~(SPIUSME);
 | |
|     }
 | |
| 
 | |
|     if(CPOL) {
 | |
|         SPI1P |= 1<<29;
 | |
|     } else {
 | |
|         SPI1P &= ~(1<<29);
 | |
|         //todo test whether it is correct to set CPOL like this.
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| void SPIClass::setBitOrder(uint8_t bitOrder) {
 | |
|     if(bitOrder == MSBFIRST) {
 | |
|         SPI1C &= ~(SPICWBO | SPICRBO);
 | |
|     } else {
 | |
|         SPI1C |= (SPICWBO | SPICRBO);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * calculate the Frequency based on the register value
 | |
|  * @param reg
 | |
|  * @return
 | |
|  */
 | |
| static uint32_t ClkRegToFreq(spiClk_t * reg) {
 | |
|     return (ESP8266_CLOCK / ((reg->regPre + 1) * (reg->regN + 1)));
 | |
| }
 | |
| 
 | |
| void SPIClass::setFrequency(uint32_t freq) {
 | |
|     static uint32_t lastSetFrequency = 0;
 | |
|     static uint32_t lastSetRegister = 0;
 | |
| 
 | |
|     if(freq >= ESP8266_CLOCK) {
 | |
|         // magic number to set spi sysclock bit (see below.)
 | |
|         setClockDivider(0x80000000);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if(lastSetFrequency == freq && lastSetRegister == SPI1CLK) {
 | |
|         // do nothing (speed optimization)
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const spiClk_t minFreqReg = { 0x7FFFF020 };
 | |
|     uint32_t minFreq = ClkRegToFreq((spiClk_t*) &minFreqReg);
 | |
|     if(freq < minFreq) {
 | |
|         // use minimum possible clock regardless
 | |
|         setClockDivider(minFreqReg.regValue);
 | |
|         lastSetRegister = SPI1CLK;
 | |
|         lastSetFrequency = freq;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     uint8_t calN = 1;
 | |
| 
 | |
|     spiClk_t bestReg = { 0 };
 | |
|     int32_t bestFreq = 0;
 | |
| 
 | |
|     // aka 0x3F, aka 63, max for regN:6
 | |
|     const uint8_t regNMax = (1 << 6) - 1;
 | |
| 
 | |
|     // aka 0x1fff, aka 8191, max for regPre:13
 | |
|     const int32_t regPreMax = (1 << 13) - 1;
 | |
| 
 | |
|     // find the best match for the next 63 iterations
 | |
|     while(calN <= regNMax) {
 | |
| 
 | |
|         spiClk_t reg = { 0 };
 | |
|         int32_t calFreq;
 | |
|         int32_t calPre;
 | |
|         int8_t calPreVari = -2;
 | |
| 
 | |
|         reg.regN = calN;
 | |
| 
 | |
|         while(calPreVari++ <= 1) { // test different variants for Pre (we calculate in int so we miss the decimals, testing is the easyest and fastest way)
 | |
|             calPre = (((ESP8266_CLOCK / (reg.regN + 1)) / freq) - 1) + calPreVari;
 | |
|             if(calPre > regPreMax) {
 | |
|                 reg.regPre = regPreMax;
 | |
|             } else if(calPre <= 0) {
 | |
|                 reg.regPre = 0;
 | |
|             } else {
 | |
|                 reg.regPre = calPre;
 | |
|             }
 | |
| 
 | |
|             reg.regL = ((reg.regN + 1) / 2);
 | |
|             // reg.regH = (reg.regN - reg.regL);
 | |
| 
 | |
|             // test calculation
 | |
|             calFreq = ClkRegToFreq(®);
 | |
|             //os_printf("-----[0x%08X][%d]\t EQU: %d\t Pre: %d\t N: %d\t H: %d\t L: %d = %d\n", reg.regValue, freq, reg.regEQU, reg.regPre, reg.regN, reg.regH, reg.regL, calFreq);
 | |
| 
 | |
|             if(calFreq == static_cast<int32_t>(freq)) {
 | |
|                 // accurate match use it!
 | |
|                 memcpy(&bestReg, ®, sizeof(bestReg));
 | |
|                 break;
 | |
|             } else if(calFreq < static_cast<int32_t>(freq)) {
 | |
|                 // never go over the requested frequency
 | |
|                 auto cal = std::abs(static_cast<int32_t>(freq) - calFreq);
 | |
|                 auto best = std::abs(static_cast<int32_t>(freq) - bestFreq);
 | |
|                 if(cal < best) {
 | |
|                     bestFreq = calFreq;
 | |
|                     memcpy(&bestReg, ®, sizeof(bestReg));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if(calFreq == static_cast<int32_t>(freq)) {
 | |
|             // accurate match use it!
 | |
|             break;
 | |
|         }
 | |
|         calN++;
 | |
|     }
 | |
| 
 | |
|     // os_printf("[0x%08X][%d]\t EQU: %d\t Pre: %d\t N: %d\t H: %d\t L: %d\t - Real Frequency: %d\n", bestReg.regValue, freq, bestReg.regEQU, bestReg.regPre, bestReg.regN, bestReg.regH, bestReg.regL, ClkRegToFreq(&bestReg));
 | |
| 
 | |
|     setClockDivider(bestReg.regValue);
 | |
|     lastSetRegister = SPI1CLK;
 | |
|     lastSetFrequency = freq;
 | |
| 
 | |
| }
 | |
| 
 | |
| void SPIClass::setClockDivider(uint32_t clockDiv) {
 | |
|     if(clockDiv == 0x80000000) {
 | |
|         GPMUX |= (1 << 9); // Set bit 9 if sysclock required
 | |
|     } else {
 | |
|         GPMUX &= ~(1 << 9);
 | |
|     }
 | |
|     SPI1CLK = clockDiv;
 | |
| }
 | |
| 
 | |
| inline void SPIClass::setDataBits(uint16_t bits) {
 | |
|     const uint32_t mask = ~((SPIMMOSI << SPILMOSI) | (SPIMMISO << SPILMISO));
 | |
|     bits--;
 | |
|     SPI1U1 = ((SPI1U1 & mask) | ((bits << SPILMOSI) | (bits << SPILMISO)));
 | |
| }
 | |
| 
 | |
| uint8_t SPIClass::transfer(uint8_t data) {
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
|     // reset to 8Bit mode
 | |
|     setDataBits(8);
 | |
|     SPI1W0 = data;
 | |
|     SPI1CMD |= SPIBUSY;
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
|     return (uint8_t) (SPI1W0 & 0xff);
 | |
| }
 | |
| 
 | |
| uint16_t SPIClass::transfer16(uint16_t data) {
 | |
|     union {
 | |
|             uint16_t val;
 | |
|             struct {
 | |
|                     uint8_t lsb;
 | |
|                     uint8_t msb;
 | |
|             };
 | |
|     } in, out;
 | |
|     in.val = data;
 | |
| 
 | |
|     if((SPI1C & (SPICWBO | SPICRBO))) {
 | |
|         //LSBFIRST
 | |
|         out.lsb = transfer(in.lsb);
 | |
|         out.msb = transfer(in.msb);
 | |
|     } else {
 | |
|         //MSBFIRST
 | |
|         out.msb = transfer(in.msb);
 | |
|         out.lsb = transfer(in.lsb);
 | |
|     }
 | |
|     return out.val;
 | |
| }
 | |
| 
 | |
| void SPIClass::transfer(void *buf, uint16_t count) {
 | |
|     uint8_t *cbuf = reinterpret_cast<uint8_t*>(buf);
 | |
| 
 | |
|     // cbuf may not be 32bits-aligned
 | |
|     for (; (((unsigned long)cbuf) & 3) && count; cbuf++, count--)
 | |
|         *cbuf = transfer(*cbuf);
 | |
| 
 | |
|     // cbuf is now aligned
 | |
|     // count may not be a multiple of 4
 | |
|     uint16_t count4 = count & ~3;
 | |
|     transferBytes(cbuf, cbuf, count4);
 | |
| 
 | |
|     // finish the last <4 bytes
 | |
|     cbuf += count4;
 | |
|     count -= count4;
 | |
|     for (; count; cbuf++, count--)
 | |
|         *cbuf = transfer(*cbuf);
 | |
| }
 | |
| 
 | |
| void SPIClass::write(uint8_t data) {
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
|     // reset to 8Bit mode
 | |
|     setDataBits(8);
 | |
|     SPI1W0 = data;
 | |
|     SPI1CMD |= SPIBUSY;
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
| }
 | |
| 
 | |
| void SPIClass::write16(uint16_t data) {
 | |
|     write16(data, !(SPI1C & (SPICWBO | SPICRBO)));
 | |
| }
 | |
| 
 | |
| void SPIClass::write16(uint16_t data, bool msb) {
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
|     // Set to 16Bits transfer
 | |
|     setDataBits(16);
 | |
|     if(msb) {
 | |
|         // MSBFIRST Byte first
 | |
|         SPI1W0 = (data >> 8) | (data << 8);
 | |
|     } else {
 | |
|         // LSBFIRST Byte first
 | |
|         SPI1W0 = data;
 | |
|     }
 | |
|     SPI1CMD |= SPIBUSY;
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
| }
 | |
| 
 | |
| void SPIClass::write32(uint32_t data) {
 | |
|     write32(data, !(SPI1C & (SPICWBO | SPICRBO)));
 | |
| }
 | |
| 
 | |
| void SPIClass::write32(uint32_t data, bool msb) {
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
|     // Set to 32Bits transfer
 | |
|     setDataBits(32);
 | |
|     if(msb) {
 | |
|         union {
 | |
|                 uint32_t l;
 | |
|                 uint8_t b[4];
 | |
|         } data_;
 | |
|         data_.l = data;
 | |
|         // MSBFIRST Byte first
 | |
|         data = (data_.b[3] | (data_.b[2] << 8) | (data_.b[1] << 16) | (data_.b[0] << 24));
 | |
|     }
 | |
|     SPI1W0 = data;
 | |
|     SPI1CMD |= SPIBUSY;
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Note:
 | |
|  *  data need to be aligned to 32Bit
 | |
|  *  or you get an Fatal exception (9)
 | |
|  * @param data uint8_t *
 | |
|  * @param size uint32_t
 | |
|  */
 | |
| void SPIClass::writeBytes(const uint8_t * data, uint32_t size) {
 | |
|     while(size) {
 | |
|         if(size > 64) {
 | |
|             writeBytes_(data, 64);
 | |
|             size -= 64;
 | |
|             data += 64;
 | |
|         } else {
 | |
|             writeBytes_(data, size);
 | |
|             size = 0;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SPIClass::writeBytes_(const uint8_t * data, uint8_t size) {
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
|     // Set Bits to transfer
 | |
|     setDataBits(size * 8);
 | |
| 
 | |
|     uint32_t * fifoPtr = (uint32_t*)&SPI1W0;
 | |
|     const uint32_t * dataPtr = (uint32_t*) data;
 | |
|     uint32_t dataSize = ((size + 3) / 4);
 | |
| 
 | |
|     while(dataSize--) {
 | |
|         *fifoPtr = *dataPtr;
 | |
|         dataPtr++;
 | |
|         fifoPtr++;
 | |
|     }
 | |
| 
 | |
|     __sync_synchronize();
 | |
|     SPI1CMD |= SPIBUSY;
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @param data uint8_t *
 | |
|  * @param size uint8_t  max for size is 64Byte
 | |
|  * @param repeat uint32_t
 | |
|  */
 | |
| void SPIClass::writePattern(const uint8_t * data, uint8_t size, uint32_t repeat) {
 | |
|     if(size > 64) return; //max Hardware FIFO
 | |
| 
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
| 
 | |
|     uint32_t buffer[16];
 | |
|     uint8_t *bufferPtr=(uint8_t *)&buffer;
 | |
|     const uint8_t *dataPtr = data;
 | |
|     volatile uint32_t * fifoPtr = &SPI1W0;
 | |
|     uint8_t r;
 | |
|     uint32_t repeatRem;
 | |
|     uint8_t i;
 | |
| 
 | |
|     if((repeat * size) <= 64){
 | |
|         repeatRem = repeat * size;
 | |
|         r = repeat;
 | |
|         while(r--){
 | |
|             dataPtr = data;
 | |
|             for(i=0; i<size; i++){
 | |
|                 *bufferPtr = *dataPtr;
 | |
|                 bufferPtr++;
 | |
|                 dataPtr++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         r = repeatRem;
 | |
|         if(r & 3) r = r / 4 + 1;
 | |
|         else r = r / 4;
 | |
|         for(i=0; i<r; i++){
 | |
|             *fifoPtr = buffer[i];
 | |
|             fifoPtr++;
 | |
|         }
 | |
|         SPI1U = SPIUMOSI | SPIUSSE;
 | |
|     } else {
 | |
|         //Orig
 | |
|         r = 64 / size;
 | |
|         repeatRem = repeat % r * size;
 | |
|         repeat = repeat / r;
 | |
| 
 | |
|         while(r--){
 | |
|             dataPtr = data;
 | |
|             for(i=0; i<size; i++){
 | |
|                 *bufferPtr = *dataPtr;
 | |
|                 bufferPtr++;
 | |
|                 dataPtr++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         //Fill fifo with data
 | |
|         for(i=0; i<16; i++){
 | |
|             *fifoPtr = buffer[i];
 | |
|             fifoPtr++;
 | |
|         }
 | |
| 
 | |
|         r = 64 / size;
 | |
| 
 | |
|         SPI1U = SPIUMOSI | SPIUSSE;
 | |
|         setDataBits(r * size * 8);
 | |
|         while(repeat--){
 | |
|             SPI1CMD |= SPIBUSY;
 | |
|             while(SPI1CMD & SPIBUSY) {}
 | |
|         }
 | |
|     }
 | |
|     //End orig
 | |
|     setDataBits(repeatRem * 8);
 | |
|     SPI1CMD |= SPIBUSY;
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
| 
 | |
|     SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @param out uint8_t *
 | |
|  * @param in  uint8_t *
 | |
|  * @param size uint32_t
 | |
|  */
 | |
| void SPIClass::transferBytes(const uint8_t * out, uint8_t * in, uint32_t size) {
 | |
|     while(size) {
 | |
|         if(size > 64) {
 | |
|             transferBytes_(out, in, 64);
 | |
|             size -= 64;
 | |
|             if(out) out += 64;
 | |
|             if(in) in += 64;
 | |
|         } else {
 | |
|             transferBytes_(out, in, size);
 | |
|             size = 0;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Note:
 | |
|  *  in and out need to be aligned to 32Bit
 | |
|  *  or you get an Fatal exception (9)
 | |
|  * @param out uint8_t *
 | |
|  * @param in  uint8_t *
 | |
|  * @param size uint8_t (max 64)
 | |
|  */
 | |
| 
 | |
| void SPIClass::transferBytesAligned_(const uint8_t * out, uint8_t * in, uint8_t size) {
 | |
|     if (!size)
 | |
|         return;
 | |
| 
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
|     // Set in/out Bits to transfer
 | |
| 
 | |
|     setDataBits(size * 8);
 | |
| 
 | |
|     volatile uint32_t *fifoPtr = &SPI1W0;
 | |
| 
 | |
|     if (out) {
 | |
|         uint8_t outSize = ((size + 3) / 4);
 | |
|         uint32_t *dataPtr = (uint32_t*) out;
 | |
|         while (outSize--) {
 | |
|             *(fifoPtr++) = *(dataPtr++);
 | |
|         }
 | |
|     } else {
 | |
|         uint8_t outSize = ((size + 3) / 4);
 | |
|         // no out data only read fill with dummy data!
 | |
|         while (outSize--) {
 | |
|             *(fifoPtr++) = 0xFFFFFFFF;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     SPI1CMD |= SPIBUSY;
 | |
|     while(SPI1CMD & SPIBUSY) {}
 | |
| 
 | |
|     if (in) {
 | |
|         uint32_t *dataPtr = (uint32_t*) in;
 | |
|         fifoPtr = &SPI1W0;
 | |
|         int inSize = size;
 | |
|         // Unlike outSize above, inSize tracks *bytes* since we must transfer only the requested bytes to the app to avoid overwriting other vars.
 | |
|         while (inSize >= 4) {
 | |
|             *(dataPtr++) = *(fifoPtr++);
 | |
|             inSize -= 4;
 | |
|             in += 4;
 | |
|         }
 | |
|         volatile uint8_t *fifoPtrB = (volatile uint8_t *)fifoPtr;
 | |
|         while (inSize--) {
 | |
|             *(in++) = *(fifoPtrB++);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SPIClass::transferBytes_(const uint8_t * out, uint8_t * in, uint8_t size) {
 | |
|     if (!((uint32_t)out & 3) && !((uint32_t)in & 3)) {
 | |
|         // Input and output are both 32b aligned or NULL
 | |
|         transferBytesAligned_(out, in, size);
 | |
|     } else {
 | |
|         // HW FIFO has 64b limit and ::transferBytes breaks up large xfers into 64byte chunks before calling this function
 | |
|         // We know at this point at least one direction is misaligned, so use temporary buffer to align everything
 | |
|         // No need for separate out and in aligned copies, we can overwrite our out copy with the input data safely
 | |
|         uint8_t aligned[64]; // Stack vars will be 32b aligned
 | |
|         if (out) {
 | |
|             memcpy(aligned, out, size);
 | |
|         }
 | |
|         transferBytesAligned_(out ? aligned : nullptr, in ? aligned : nullptr, size);
 | |
|         if (in) {
 | |
|             memcpy(in, aligned, size);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| #if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_SPI)
 | |
| SPIClass SPI;
 | |
| #endif
 |