1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-22 21:23:07 +03:00
Earle F. Philhower, III 56b98fd4df Move all PROGMEM to their own section (#5048)
According to the GCC man page, __section__ attributes should only be used
for global variables.  However, the PROGMEM and ICACHE_RODATA macros use
this variable decorator even for local variables.  Most of the time it works,
but when a static or inlined function tries to use a PROGMEM/PSTR/etc.
variable the compiler can throw an error like:
  error: XXX causes a section type conflict with YYY

Change the PROGMEM macro to emit a section name that is unique (a combo
of the file, line, and counter variables to ensure uniqueness).  The
standard linker script will place them properly in .IROM without
any changes.

Fixes #5036 and others.
2018-08-15 11:46:13 -03:00

790 lines
18 KiB
C

/*
uart.cpp - esp8266 UART HAL
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* UART GPIOs
*
* UART0 TX: 1 or 2
* UART0 RX: 3
*
* UART0 SWAP TX: 15
* UART0 SWAP RX: 13
*
*
* UART1 TX: 7 (NC) or 2
* UART1 RX: 8 (NC)
*
* UART1 SWAP TX: 11 (NC)
* UART1 SWAP RX: 6 (NC)
*
* NC = Not Connected to Module Pads --> No Access
*
*/
#include "Arduino.h"
#include <pgmspace.h>
#include "uart.h"
#include "esp8266_peri.h"
#include "user_interface.h"
#include "uart_register.h"
const char overrun_str [] PROGMEM STORE_ATTR = "uart input full!\r\n";
static int s_uart_debug_nr = UART0;
struct uart_rx_buffer_
{
size_t size;
size_t rpos;
size_t wpos;
uint8_t * buffer;
};
struct uart_
{
int uart_nr;
int baud_rate;
bool rx_enabled;
bool tx_enabled;
bool overrun;
uint8_t rx_pin;
uint8_t tx_pin;
struct uart_rx_buffer_ * rx_buffer;
};
/*
In the context of the naming conventions in this file, "_unsafe" means two things:
1. the input arguments are not checked. It is up to the caller to check argument sanity.
2. The function body is not interrupt-safe, i.e.: the isr could fire anywhen during the
body execution, leading to corruption of the data shared between the body and the isr
(parts of the rx_buffer).
The unsafe versions of the functions are private to this TU. There are "safe" versions that
wrap the unsafe ones with disabling/enabling of the uart interrupt for safe public use.
*/
inline size_t
uart_rx_fifo_available(const int uart_nr)
{
return (USS(uart_nr) >> USRXC) & 0xFF;
}
/**********************************************************/
/************ UNSAFE FUNCTIONS ****************************/
/**********************************************************/
inline size_t
uart_rx_buffer_available_unsafe(const struct uart_rx_buffer_ * rx_buffer)
{
if(rx_buffer->wpos < rx_buffer->rpos)
return (rx_buffer->wpos + rx_buffer->size) - rx_buffer->rpos;
return rx_buffer->wpos - rx_buffer->rpos;
}
inline size_t
uart_rx_available_unsafe(uart_t* uart)
{
return uart_rx_buffer_available_unsafe(uart->rx_buffer) + uart_rx_fifo_available(uart->uart_nr);
}
//#define UART_DISCARD_NEWEST
// Copy all the rx fifo bytes that fit into the rx buffer
inline void
uart_rx_copy_fifo_to_buffer_unsafe(uart_t* uart)
{
struct uart_rx_buffer_ *rx_buffer = uart->rx_buffer;
while(uart_rx_fifo_available(uart->uart_nr))
{
size_t nextPos = (rx_buffer->wpos + 1) % rx_buffer->size;
if(nextPos == rx_buffer->rpos)
{
if (!uart->overrun)
{
uart->overrun = true;
os_printf_plus(overrun_str);
}
// a choice has to be made here,
// do we discard newest or oldest data?
#ifdef UART_DISCARD_NEWEST
// discard newest data
// Stop copying if rx buffer is full
USF(uart->uart_nr);
break;
#else
// discard oldest data
if (++rx_buffer->rpos == rx_buffer->size)
rx_buffer->rpos = 0;
#endif
}
uint8_t data = USF(uart->uart_nr);
rx_buffer->buffer[rx_buffer->wpos] = data;
rx_buffer->wpos = nextPos;
}
}
inline int
uart_peek_char_unsafe(uart_t* uart)
{
if (!uart_rx_available_unsafe(uart))
return -1;
//without the following if statement and body, there is a good chance of a fifo overrun
if (uart_rx_buffer_available_unsafe(uart->rx_buffer) == 0)
uart_rx_copy_fifo_to_buffer_unsafe(uart);
return uart->rx_buffer->buffer[uart->rx_buffer->rpos];
}
inline int
uart_read_char_unsafe(uart_t* uart)
{
int data = uart_peek_char_unsafe(uart);
if(data != -1)
uart->rx_buffer->rpos = (uart->rx_buffer->rpos + 1) % uart->rx_buffer->size;
return data;
}
/**********************************************************/
size_t
uart_rx_available(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return 0;
ETS_UART_INTR_DISABLE();
int uartrxbufferavailable = uart_rx_buffer_available_unsafe(uart->rx_buffer);
ETS_UART_INTR_ENABLE();
return uartrxbufferavailable + uart_rx_fifo_available(uart->uart_nr);
}
int
uart_peek_char(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return -1;
ETS_UART_INTR_DISABLE(); //access to rx_buffer can be interrupted by the isr (similar to a critical section), so disable interrupts here
int ret = uart_peek_char_unsafe(uart);
ETS_UART_INTR_ENABLE();
return ret;
}
int
uart_read_char(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return -1;
ETS_UART_INTR_DISABLE();
int data = uart_read_char_unsafe(uart);
ETS_UART_INTR_ENABLE();
return data;
}
size_t
uart_resize_rx_buffer(uart_t* uart, size_t new_size)
{
if(uart == NULL || !uart->rx_enabled)
return 0;
if(uart->rx_buffer->size == new_size)
return uart->rx_buffer->size;
uint8_t * new_buf = (uint8_t*)malloc(new_size);
if(!new_buf)
return uart->rx_buffer->size;
size_t new_wpos = 0;
ETS_UART_INTR_DISABLE();
while(uart_rx_available_unsafe(uart) && new_wpos < new_size)
new_buf[new_wpos++] = uart_read_char_unsafe(uart); //if uart_rx_available_unsafe() returns non-0, uart_read_char_unsafe() can't return -1
uint8_t * old_buf = uart->rx_buffer->buffer;
uart->rx_buffer->rpos = 0;
uart->rx_buffer->wpos = new_wpos;
uart->rx_buffer->size = new_size;
uart->rx_buffer->buffer = new_buf;
ETS_UART_INTR_ENABLE();
free(old_buf);
return uart->rx_buffer->size;
}
void ICACHE_RAM_ATTR
uart_isr(void * arg)
{
uart_t* uart = (uart_t*)arg;
if(uart == NULL || !uart->rx_enabled)
{
USIC(uart->uart_nr) = USIS(uart->uart_nr);
ETS_UART_INTR_DISABLE();
return;
}
if(USIS(uart->uart_nr) & ((1 << UIFF) | (1 << UITO)))
uart_rx_copy_fifo_to_buffer_unsafe(uart);
USIC(uart->uart_nr) = USIS(uart->uart_nr);
}
static void
uart_start_isr(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return;
// UCFFT value is when the RX fifo full interrupt triggers. A value of 1
// triggers the IRS very often. A value of 127 would not leave much time
// for ISR to clear fifo before the next byte is dropped. So pick a value
// in the middle.
USC1(uart->uart_nr) = (100 << UCFFT) | (0x02 << UCTOT) | (1 <<UCTOE );
USIC(uart->uart_nr) = 0xffff;
USIE(uart->uart_nr) = (1 << UIFF) | (1 << UIFR) | (1 << UITO);
ETS_UART_INTR_ATTACH(uart_isr, (void *)uart);
ETS_UART_INTR_ENABLE();
}
static void
uart_stop_isr(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return;
ETS_UART_INTR_DISABLE();
USC1(uart->uart_nr) = 0;
USIC(uart->uart_nr) = 0xffff;
USIE(uart->uart_nr) = 0;
ETS_UART_INTR_ATTACH(NULL, NULL);
}
/*
Reference for uart_tx_fifo_available() and uart_tx_fifo_full():
-Espressif Techinical Reference doc, chapter 11.3.7
-tools/sdk/uart_register.h
-cores/esp8266/esp8266_peri.h
*/
inline size_t
uart_tx_fifo_available(const int uart_nr)
{
return (USS(uart_nr) >> USTXC) & 0xff;
}
inline bool
uart_tx_fifo_full(const int uart_nr)
{
return uart_tx_fifo_available(uart_nr) >= 0x7f;
}
static void
uart_do_write_char(const int uart_nr, char c)
{
while(uart_tx_fifo_full(uart_nr));
USF(uart_nr) = c;
}
size_t
uart_write_char(uart_t* uart, char c)
{
if(uart == NULL || !uart->tx_enabled)
return 0;
uart_do_write_char(uart->uart_nr, c);
return 1;
}
size_t
uart_write(uart_t* uart, const char* buf, size_t size)
{
if(uart == NULL || !uart->tx_enabled)
return 0;
size_t ret = size;
const int uart_nr = uart->uart_nr;
while (size--)
uart_do_write_char(uart_nr, *buf++);
return ret;
}
size_t
uart_tx_free(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled)
return 0;
return UART_TX_FIFO_SIZE - uart_tx_fifo_available(uart->uart_nr);
}
void
uart_wait_tx_empty(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled)
return;
while(uart_tx_fifo_available(uart->uart_nr) > 0)
delay(0);
}
void
uart_flush(uart_t* uart)
{
if(uart == NULL)
return;
uint32_t tmp = 0x00000000;
if(uart->rx_enabled)
{
tmp |= (1 << UCRXRST);
ETS_UART_INTR_DISABLE();
uart->rx_buffer->rpos = 0;
uart->rx_buffer->wpos = 0;
ETS_UART_INTR_ENABLE();
}
if(uart->tx_enabled)
tmp |= (1 << UCTXRST);
USC0(uart->uart_nr) |= (tmp);
USC0(uart->uart_nr) &= ~(tmp);
}
void
uart_set_baudrate(uart_t* uart, int baud_rate)
{
if(uart == NULL)
return;
uart->baud_rate = baud_rate;
USD(uart->uart_nr) = (ESP8266_CLOCK / uart->baud_rate);
}
int
uart_get_baudrate(uart_t* uart)
{
if(uart == NULL)
return 0;
return uart->baud_rate;
}
uart_t*
uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin, size_t rx_size)
{
uart_t* uart = (uart_t*) malloc(sizeof(uart_t));
if(uart == NULL)
return NULL;
uart->uart_nr = uart_nr;
uart->overrun = false;
switch(uart->uart_nr)
{
case UART0:
ETS_UART_INTR_DISABLE();
ETS_UART_INTR_ATTACH(NULL, NULL);
uart->rx_enabled = (mode != UART_TX_ONLY);
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = (uart->rx_enabled)?3:255;
if(uart->rx_enabled)
{
struct uart_rx_buffer_ * rx_buffer = (struct uart_rx_buffer_ *)malloc(sizeof(struct uart_rx_buffer_));
if(rx_buffer == NULL)
{
free(uart);
return NULL;
}
rx_buffer->size = rx_size;//var this
rx_buffer->rpos = 0;
rx_buffer->wpos = 0;
rx_buffer->buffer = (uint8_t *)malloc(rx_buffer->size);
if(rx_buffer->buffer == NULL)
{
free(rx_buffer);
free(uart);
return NULL;
}
uart->rx_buffer = rx_buffer;
pinMode(uart->rx_pin, SPECIAL);
}
if(uart->tx_enabled)
{
if (tx_pin == 2)
{
uart->tx_pin = 2;
pinMode(uart->tx_pin, FUNCTION_4);
}
else
{
uart->tx_pin = 1;
pinMode(uart->tx_pin, FUNCTION_0);
}
}
else
{
uart->tx_pin = 255;
}
IOSWAP &= ~(1 << IOSWAPU0);
break;
case UART1:
// Note: uart_interrupt_handler does not support RX on UART 1.
uart->rx_enabled = false;
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = 255;
uart->tx_pin = (uart->tx_enabled)?2:255; // GPIO7 as TX not possible! See GPIO pins used by UART
if(uart->tx_enabled)
pinMode(uart->tx_pin, SPECIAL);
break;
case UART_NO:
default:
// big fail!
free(uart);
return NULL;
}
uart_set_baudrate(uart, baudrate);
USC0(uart->uart_nr) = config;
uart_flush(uart);
USC1(uart->uart_nr) = 0;
USIC(uart->uart_nr) = 0xffff;
USIE(uart->uart_nr) = 0;
if(uart->uart_nr == UART0 && uart->rx_enabled)
uart_start_isr(uart);
return uart;
}
void
uart_uninit(uart_t* uart)
{
if(uart == NULL)
return;
uart_stop_isr(uart);
switch(uart->rx_pin)
{
case 3:
pinMode(3, INPUT);
break;
case 13:
pinMode(13, INPUT);
break;
}
switch(uart->tx_pin)
{
case 1:
pinMode(1, INPUT);
break;
case 2:
pinMode(2, INPUT);
break;
case 15:
pinMode(15, INPUT);
break;
}
if(uart->rx_enabled)
{
uart_stop_isr(uart);
free(uart->rx_buffer->buffer);
free(uart->rx_buffer);
}
free(uart);
}
void
uart_swap(uart_t* uart, int tx_pin)
{
if(uart == NULL)
return;
switch(uart->uart_nr)
{
case UART0:
if(((uart->tx_pin == 1 || uart->tx_pin == 2) && uart->tx_enabled) || (uart->rx_pin == 3 && uart->rx_enabled))
{
if(uart->tx_enabled) //TX
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 15;
}
if(uart->rx_enabled) //RX
{
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 13;
}
if(uart->tx_enabled)
pinMode(uart->tx_pin, FUNCTION_4); //TX
if(uart->rx_enabled)
pinMode(uart->rx_pin, FUNCTION_4); //RX
IOSWAP |= (1 << IOSWAPU0);
}
else
{
if(uart->tx_enabled) //TX
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = (tx_pin == 2)?2:1;
}
if(uart->rx_enabled) //RX
{
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 3;
}
if(uart->tx_enabled)
pinMode(uart->tx_pin, (tx_pin == 2)?FUNCTION_4:SPECIAL); //TX
if(uart->rx_enabled)
pinMode(3, SPECIAL); //RX
IOSWAP &= ~(1 << IOSWAPU0);
}
break;
case UART1:
// Currently no swap possible! See GPIO pins used by UART
break;
default:
break;
}
}
void
uart_set_tx(uart_t* uart, int tx_pin)
{
if(uart == NULL)
return;
switch(uart->uart_nr)
{
case UART0:
if(uart->tx_enabled)
{
if (uart->tx_pin == 1 && tx_pin == 2)
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 2;
pinMode(uart->tx_pin, FUNCTION_4);
}
else if (uart->tx_pin == 2 && tx_pin != 2)
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 1;
pinMode(uart->tx_pin, SPECIAL);
}
}
break;
case UART1:
// GPIO7 as TX not possible! See GPIO pins used by UART
break;
default:
break;
}
}
void
uart_set_pins(uart_t* uart, int tx, int rx)
{
if(uart == NULL)
return;
if(uart->uart_nr == UART0) // Only UART0 allows pin changes
{
if(uart->tx_enabled && uart->tx_pin != tx)
{
if( rx == 13 && tx == 15)
{
uart_swap(uart, 15);
}
else if (rx == 3 && (tx == 1 || tx == 2))
{
if (uart->rx_pin != rx)
uart_swap(uart, tx);
else
uart_set_tx(uart, tx);
}
}
if(uart->rx_enabled && uart->rx_pin != rx && rx == 13 && tx == 15)
uart_swap(uart, 15);
}
}
bool
uart_tx_enabled(uart_t* uart)
{
if(uart == NULL)
return false;
return uart->tx_enabled;
}
bool
uart_rx_enabled(uart_t* uart)
{
if(uart == NULL)
return false;
return uart->rx_enabled;
}
bool
uart_has_overrun (uart_t* uart)
{
if (uart == NULL || !uart->overrun)
return false;
// clear flag
uart->overrun = false;
return true;
}
static void
uart_ignore_char(char c)
{
(void) c;
}
inline void
uart_write_char_delay(const int uart_nr, char c)
{
while(uart_tx_fifo_full(uart_nr))
delay(0);
USF(uart_nr) = c;
}
static void
uart0_write_char(char c)
{
uart_write_char_delay(0, c);
}
static void
uart1_write_char(char c)
{
uart_write_char_delay(1, c);
}
void
uart_set_debug(int uart_nr)
{
s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr)
{
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
break;
case UART1:
system_set_os_print(1);
ets_install_putc1((void *) &uart1_write_char);
break;
case UART_NO:
default:
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
break;
}
}
int
uart_get_debug()
{
return s_uart_debug_nr;
}
/*
To start detection of baud rate with the UART the UART_AUTOBAUD_EN bit needs to be cleared and set. The ROM function uart_baudrate_detect() does this only once, so on a next call the UartDev.rcv_state is not equal to BAUD_RATE_DET. Instead of poking around in the UartDev struct with unknown effect, the UART_AUTOBAUD_EN bit is directly triggered by the function uart_detect_baudrate().
*/
void
uart_start_detect_baudrate(int uart_nr)
{
USA(uart_nr) &= ~(UART_GLITCH_FILT << UART_GLITCH_FILT_S | UART_AUTOBAUD_EN);
USA(uart_nr) = 0x08 << UART_GLITCH_FILT_S | UART_AUTOBAUD_EN;
}
int
uart_detect_baudrate(int uart_nr)
{
static bool doTrigger = true;
if (doTrigger)
{
uart_start_detect_baudrate(uart_nr);
doTrigger = false;
}
int32_t divisor = uart_baudrate_detect(uart_nr, 1);
if (!divisor) {
return 0;
}
doTrigger = true; // Initialize for a next round
int32_t baudrate = UART_CLK_FREQ / divisor;
static const int default_rates[] = {300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400};
size_t i;
for (i = 1; i < sizeof(default_rates) / sizeof(default_rates[0]) - 1; i++) // find the nearest real baudrate
{
if (baudrate <= default_rates[i])
{
if (baudrate - default_rates[i - 1] < default_rates[i] - baudrate) {
i--;
}
break;
}
}
return default_rates[i];
}