1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-27 21:16:50 +03:00
esp8266/libraries/SDFS/src/SDFSFormatter.h
Earle F. Philhower, III b1da9eda46
SD Filesystem compatible with 8266 File, using latest SdFat (#5525)
* Add a FAT filesystem for SD cards to Arduino FS

Arduino forked a copy of SD lib several years ago, put their own wrapper
around it, and it's been languishing in our ESP8266 libraries ever since
as SD. It doesn't support long file names, has class names which
conflict with the ESP8266 internal names, and hasn't been updated in
ages.

The original author of the SD library has continued work in the
meantime, and produced a very feature rich implementation of SdFat. It
unfortunately also conflicts with the class names we use in ESP8266
Arduino and has a different API than the internal SPIFFS or proposed
LittleFS filesystem objects.

This PR puts a wrapper around the latest and greatest SdFat library,
by forking it and wrapping its classes in a private namespace "sdfat,"
and making as thin a wrapper as possible around it to conform to
the ESP8266 FS, File, and Dir classes.

This PR also removes the Arduino SD.h class library and rewrites it
using the new SDFS filesystem to make everything in the ESP8266
Arduino core compatible with each other.

By doing so it lets us use a single interface for anything needing a
file instead of multiple ones (see SDWebServer and how a different
object is needed vs. one serving from SPIFFS even though the logic is
all the same). Same for BearSSL's CertStores and probably a few others
I've missed, cleaning up our code base significantly.

Like LittleFS, silently create directories when a file is created with
a subdirectory specifier ("/path/to/file.txt") if they do not yet exist.

Adds a blacklist of sketches to skip in the CI process (because SdFat
has many examples which do not build properly on the ESP8266).

Now that LittleFS and SDFS have directory support, the FS needs to be
able to communicate whether a name is one or the other.  Add a simple
bool FS::isDirectory() and bool FS::isFile() method.  SPIFFS doesn't
have directories, so if it's valid it's a file and reported as such.

Add ::mkdir/::rmdir to the FS class to allow users to make and destroy
subdirectories.  SPIFFS directory operations will, of course, fail
and return false.

Emulate a 16MB SD card and allow test runner to exercise it by using
a custom SdFat HOST_MOCK-enabled object.

Throw out the original Arduino SD.h class and rewrite from scratch using
only the ESP8266 native SDFS calls.  This makes "SD" based applications
compatible with normal ESP8266 "File" and "FS" and "SPIFFS" operations.

The only major visible change for users is that long filenames now are
fully supported and work without any code changes.  If there are static
arrays of 11 bytes for old 8.3 names in code, they will need to be
adjusted.

While it is recommended to use the more powerful SDFS class to access SD
cards, this SD.h wrapper allows for use of existing Arduino libraries
which are built to only with with that SD class.

Additional helper functions added to ESP8266 native Filesystem:: classes
to help support this portability.

The rewrite is good enough to run the original SDWebServer and SD
example code without any changes.

* Add a FSConfig and SDFSConfig param to FS.begin()

Allows for configuration values to be passed into a filesystem via the
begin method.  By default, a FS will receive a nullptr and should so
whatever is appropriate.

The base FSConfig class has one parameter, _autoFormat, set by the
default constructor to true.

For SPIFFS, you can now disable auto formatting on mount failure by
passing in a FSConfig(false) object.

For SDFS a SDFSConfig parameter can be passed into config specifying the
chip select and SPI configuration.  If nothing is passed in, the begin
will fail since there are no safe default values here.

* Add FS::setConfig to set FS-specific options

Add a new call, FS::setConfig(const {SDFS,SPIFFS}Config *cfg), which
takes a FS-specific configuration object and copies any special settings
on a per-FS basis.  The call is only valid on unmounted filesystems, and
checks the type of object passed in matches the FS being configured.

Updates the docs and tests to utilize this new configuration method.

* Add ::truncate to File interface

Fixes #3846

* Use polledTimeout for formatting yields, cleanup

Use the new polledTimeout class to ensure a yield every 5ms while
formatting.

Add in default case handling and some debug messages when invalid inputs
specified.

* Make setConfig take const& ref, cleaner code

setConfig now can take a parameter defined directly in the call by using
a const &ref to it, leading to one less line of code to write and
cleaner reading of the code.

Also clean up SDFS implementation pointer definition.
2019-03-06 02:14:44 +00:00

406 lines
13 KiB
C++

/*
SDFSFormatter.cpp - Formatter for SdFat SD cards
Copyright (c) 2019 Earle F. Philhower, III. All rights reserved.
A C++ implementation of the SdFat/examples/SdFormatter sketch:
| Copyright (c) 2011-2018 Bill Greiman
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _SDFSFORMATTER_H
#define _SDFSFORMATTER_H
#include "SDFS.h"
#include <FS.h>
#include <PolledTimeout.h>
namespace sdfs {
class SDFSFormatter {
private:
// Taken from main FS object
sdfat::Sd2Card *card;
sdfat::cache_t *cache;
uint32_t cardSizeBlocks;
uint32_t cardCapacityMB;
// MBR information
uint8_t partType;
uint32_t relSector;
uint32_t partSize;
// Fake disk geometry
uint8_t numberOfHeads;
uint8_t sectorsPerTrack;
// FAT parameters
uint16_t reservedSectors;
uint8_t sectorsPerCluster;
uint32_t fatStart;
uint32_t fatSize;
uint32_t dataStart;
uint8_t writeCache(uint32_t lbn) {
return card->writeBlock(lbn, cache->data);
}
void clearCache(uint8_t addSig) {
memset(cache, 0, sizeof(*cache));
if (addSig) {
cache->mbr.mbrSig0 = sdfat::BOOTSIG0;
cache->mbr.mbrSig1 = sdfat::BOOTSIG1;
}
}
bool clearFatDir(uint32_t bgn, uint32_t count) {
clearCache(false);
if (!card->writeStart(bgn, count)) {
DEBUGV("SDFS: Clear FAT/DIR writeStart failed");
return false;
}
esp8266::polledTimeout::periodic timeToYield(5); // Yield every 5ms of runtime
for (uint32_t i = 0; i < count; i++) {
if (timeToYield) {
delay(0); // WDT feed
}
if (!card->writeData(cache->data)) {
DEBUGV("SDFS: Clear FAT/DIR writeData failed");
return false;
}
}
if (!card->writeStop()) {
DEBUGV("SDFS: Clear FAT/DIR writeStop failed");
return false;
}
return true;
}
uint16_t lbnToCylinder(uint32_t lbn) {
return lbn / (numberOfHeads * sectorsPerTrack);
}
uint8_t lbnToHead(uint32_t lbn) {
return (lbn % (numberOfHeads * sectorsPerTrack)) / sectorsPerTrack;
}
uint8_t lbnToSector(uint32_t lbn) {
return (lbn % sectorsPerTrack) + 1;
}
bool writeMbr() {
clearCache(true);
sdfat::part_t* p = cache->mbr.part;
p->boot = 0;
uint16_t c = lbnToCylinder(relSector);
if (c > 1023) {
DEBUGV("SDFS: MBR CHS");
return false;
}
p->beginCylinderHigh = c >> 8;
p->beginCylinderLow = c & 0XFF;
p->beginHead = lbnToHead(relSector);
p->beginSector = lbnToSector(relSector);
p->type = partType;
uint32_t endLbn = relSector + partSize - 1;
c = lbnToCylinder(endLbn);
if (c <= 1023) {
p->endCylinderHigh = c >> 8;
p->endCylinderLow = c & 0XFF;
p->endHead = lbnToHead(endLbn);
p->endSector = lbnToSector(endLbn);
} else {
// Too big flag, c = 1023, h = 254, s = 63
p->endCylinderHigh = 3;
p->endCylinderLow = 255;
p->endHead = 254;
p->endSector = 63;
}
p->firstSector = relSector;
p->totalSectors = partSize;
if (!writeCache(0)) {
DEBUGV("SDFS: write MBR");
return false;
}
return true;
}
uint32_t volSerialNumber() {
return (cardSizeBlocks << 8) + micros();
}
bool makeFat16() {
uint16_t const BU16 = 128;
uint32_t nc;
for (dataStart = 2 * BU16;; dataStart += BU16) {
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster;
fatSize = (nc + 2 + 255)/256;
uint32_t r = BU16 + 1 + 2 * fatSize + 32;
if (dataStart < r) {
continue;
}
relSector = dataStart - r + BU16;
break;
}
// check valid cluster count for FAT16 volume
if (nc < 4085 || nc >= 65525) {
DEBUGV("SDFS: Bad cluster count");
}
reservedSectors = 1;
fatStart = relSector + reservedSectors;
partSize = nc * sectorsPerCluster + 2 * fatSize + reservedSectors + 32;
if (partSize < 32680) {
partType = 0X01;
} else if (partSize < 65536) {
partType = 0X04;
} else {
partType = 0X06;
}
// write MBR
if (!writeMbr()) {
DEBUGV("SDFS: writembr failed");
return false;
}
clearCache(true);
sdfat::fat_boot_t* pb = &cache->fbs;
pb->jump[0] = 0XEB;
pb->jump[1] = 0X00;
pb->jump[2] = 0X90;
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) {
pb->oemId[i] = ' ';
}
pb->bytesPerSector = 512;
pb->sectorsPerCluster = sectorsPerCluster;
pb->reservedSectorCount = reservedSectors;
pb->fatCount = 2;
pb->rootDirEntryCount = 512;
pb->mediaType = 0XF8;
pb->sectorsPerFat16 = fatSize;
pb->sectorsPerTrack = sectorsPerTrack;
pb->headCount = numberOfHeads;
pb->hidddenSectors = relSector;
pb->totalSectors32 = partSize;
pb->driveNumber = 0X80;
pb->bootSignature = sdfat::EXTENDED_BOOT_SIG;
pb->volumeSerialNumber = volSerialNumber();
memcpy_P(pb->volumeLabel, PSTR("NO NAME "), sizeof(pb->volumeLabel));
memcpy_P(pb->fileSystemType, PSTR("FAT16 "), sizeof(pb->fileSystemType));
// write partition boot sector
if (!writeCache(relSector)) {
DEBUGV("SDFS: FAT16 write PBS failed");
return false;
}
// clear FAT and root directory
if (!clearFatDir(fatStart, dataStart - fatStart)) {
DEBUGV("SDFS: FAT16 clear root failed\n");
return false;
}
clearCache(false);
cache->fat16[0] = 0XFFF8;
cache->fat16[1] = 0XFFFF;
// write first block of FAT and backup for reserved clusters
if (!writeCache(fatStart) || !writeCache(fatStart + fatSize)) {
DEBUGV("FAT16 reserve failed");
return false;
}
return true;
}
bool makeFat32() {
uint16_t const BU32 = 8192;
uint32_t nc;
relSector = BU32;
for (dataStart = 2 * BU32;; dataStart += BU32) {
nc = (cardSizeBlocks - dataStart)/sectorsPerCluster;
fatSize = (nc + 2 + 127)/128;
uint32_t r = relSector + 9 + 2 * fatSize;
if (dataStart >= r) {
break;
}
}
// error if too few clusters in FAT32 volume
if (nc < 65525) {
DEBUGV("SDFS: Bad cluster count");
return false;
}
reservedSectors = dataStart - relSector - 2 * fatSize;
fatStart = relSector + reservedSectors;
partSize = nc * sectorsPerCluster + dataStart - relSector;
// type depends on address of end sector
// max CHS has lbn = 16450560 = 1024*255*63
if ((relSector + partSize) <= 16450560) {
// FAT32
partType = 0X0B;
} else {
// FAT32 with INT 13
partType = 0X0C;
}
if (!writeMbr()) {
DEBUGV("SDFS: writembr failed");
return false;
}
clearCache(true);
sdfat::fat32_boot_t* pb = &cache->fbs32;
pb->jump[0] = 0XEB;
pb->jump[1] = 0X00;
pb->jump[2] = 0X90;
for (uint8_t i = 0; i < sizeof(pb->oemId); i++) {
pb->oemId[i] = ' ';
}
pb->bytesPerSector = 512;
pb->sectorsPerCluster = sectorsPerCluster;
pb->reservedSectorCount = reservedSectors;
pb->fatCount = 2;
pb->mediaType = 0XF8;
pb->sectorsPerTrack = sectorsPerTrack;
pb->headCount = numberOfHeads;
pb->hidddenSectors = relSector;
pb->totalSectors32 = partSize;
pb->sectorsPerFat32 = fatSize;
pb->fat32RootCluster = 2;
pb->fat32FSInfo = 1;
pb->fat32BackBootBlock = 6;
pb->driveNumber = 0X80;
pb->bootSignature = sdfat::EXTENDED_BOOT_SIG;
pb->volumeSerialNumber = volSerialNumber();
memcpy_P(pb->volumeLabel, PSTR("NO NAME "), sizeof(pb->volumeLabel));
memcpy_P(pb->fileSystemType, PSTR("FAT32 "), sizeof(pb->fileSystemType));
// write partition boot sector and backup
if (!writeCache(relSector) || !writeCache(relSector + 6)) {
DEBUGV("SDFS: FAT32 write PBS failed");
return false;
}
clearCache(true);
// write extra boot area and backup
if (!writeCache(relSector + 2) || !writeCache(relSector + 8)) {
DEBUGV("SDFS: FAT32 PBS ext failed");
return false;
}
sdfat::fat32_fsinfo_t* pf = &cache->fsinfo;
pf->leadSignature = sdfat::FSINFO_LEAD_SIG;
pf->structSignature = sdfat::FSINFO_STRUCT_SIG;
pf->freeCount = 0XFFFFFFFF;
pf->nextFree = 0XFFFFFFFF;
// write FSINFO sector and backup
if (!writeCache(relSector + 1) || !writeCache(relSector + 7)) {
DEBUGV("SDFS: FAT32 FSINFO failed");
return false;
}
clearFatDir(fatStart, 2 * fatSize + sectorsPerCluster);
clearCache(false);
cache->fat32[0] = 0x0FFFFFF8;
cache->fat32[1] = 0x0FFFFFFF;
cache->fat32[2] = 0x0FFFFFFF;
// write first block of FAT and backup for reserved clusters
if (!writeCache(fatStart) || !writeCache(fatStart + fatSize)) {
DEBUGV("SDFS: FAT32 reserve failed");
return false;
}
return true;
}
public:
bool format(sdfat::SdFat *_fs, int8_t _csPin, SPISettings _spiSettings) {
card = static_cast<sdfat::Sd2Card*>(_fs->card());
cache = _fs->cacheClear();
if (!card->begin(_csPin, _spiSettings)) {
return false;
}
cardSizeBlocks = card->cardSize();
if (cardSizeBlocks == 0) {
return false;
}
cardCapacityMB = (cardSizeBlocks + 2047)/2048;
if (cardCapacityMB <= 6) {
return false; // Card is too small
} else if (cardCapacityMB <= 16) {
sectorsPerCluster = 2;
} else if (cardCapacityMB <= 32) {
sectorsPerCluster = 4;
} else if (cardCapacityMB <= 64) {
sectorsPerCluster = 8;
} else if (cardCapacityMB <= 128) {
sectorsPerCluster = 16;
} else if (cardCapacityMB <= 1024) {
sectorsPerCluster = 32;
} else if (cardCapacityMB <= 32768) {
sectorsPerCluster = 64;
} else {
// SDXC cards
sectorsPerCluster = 128;
}
// set fake disk geometry
sectorsPerTrack = cardCapacityMB <= 256 ? 32 : 63;
if (cardCapacityMB <= 16) {
numberOfHeads = 2;
} else if (cardCapacityMB <= 32) {
numberOfHeads = 4;
} else if (cardCapacityMB <= 128) {
numberOfHeads = 8;
} else if (cardCapacityMB <= 504) {
numberOfHeads = 16;
} else if (cardCapacityMB <= 1008) {
numberOfHeads = 32;
} else if (cardCapacityMB <= 2016) {
numberOfHeads = 64;
} else if (cardCapacityMB <= 4032) {
numberOfHeads = 128;
} else {
numberOfHeads = 255;
}
// Erase all data on card (TRIM)
uint32_t const ERASE_SIZE = 262144L;
uint32_t firstBlock = 0;
uint32_t lastBlock;
do {
lastBlock = firstBlock + ERASE_SIZE - 1;
if (lastBlock >= cardSizeBlocks) {
lastBlock = cardSizeBlocks - 1;
}
if (!card->erase(firstBlock, lastBlock)) {
return false; // Erase fail
}
delay(0); // yield to the OS to avoid WDT
firstBlock += ERASE_SIZE;
} while (firstBlock < cardSizeBlocks);
if (!card->readBlock(0, cache->data)) {
return false;
}
if (card->type() != sdfat::SD_CARD_TYPE_SDHC) {
return makeFat16();
} else {
return makeFat32();
}
}
}; // class SDFSFormatter
}; // namespace sdfs
#endif // _SDFSFORMATTER_H