1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-22 21:23:07 +03:00
esp8266/libraries/ESP8266WiFi/src/WiFiClientSecure.cpp
2015-12-09 22:17:50 -08:00

493 lines
12 KiB
C++

/*
WiFiClientSecure.cpp - Variant of WiFiClient with TLS support
Copyright (c) 2015 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define LWIP_INTERNAL
extern "C"
{
#include "osapi.h"
#include "ets_sys.h"
}
#include <errno.h>
#include "debug.h"
#include "ESP8266WiFi.h"
#include "WiFiClientSecure.h"
#include "WiFiClient.h"
#include "lwip/opt.h"
#include "lwip/ip.h"
#include "lwip/tcp.h"
#include "lwip/inet.h"
#include "lwip/netif.h"
#include "cbuf.h"
#include "include/ClientContext.h"
#include "c_types.h"
//#define DEBUG_SSL
#ifdef DEBUG_SSL
#define SSL_DEBUG_OPTS SSL_DISPLAY_STATES
#else
#define SSL_DEBUG_OPTS 0
#endif
uint8_t* default_private_key = 0;
uint32_t default_private_key_len = 0;
static bool default_private_key_dynamic = false;
static int s_pk_refcnt = 0;
uint8_t* default_certificate = 0;
uint32_t default_certificate_len = 0;
static bool default_certificate_dynamic = false;
static void clear_private_key();
static void clear_certificate();
class SSLContext {
public:
SSLContext() {
if (_ssl_ctx_refcnt == 0) {
_ssl_ctx = ssl_ctx_new(SSL_SERVER_VERIFY_LATER | SSL_DEBUG_OPTS, 0);
}
++_ssl_ctx_refcnt;
}
~SSLContext() {
if (_ssl) {
ssl_free(_ssl);
_ssl = nullptr;
}
--_ssl_ctx_refcnt;
if (_ssl_ctx_refcnt == 0) {
ssl_ctx_free(_ssl_ctx);
}
}
void ref() {
++_refcnt;
}
void unref() {
if (--_refcnt == 0) {
delete this;
}
}
void connect(ClientContext* ctx) {
_ssl = ssl_client_new(_ssl_ctx, reinterpret_cast<int>(ctx), nullptr, 0);
}
int read(uint8_t* dst, size_t size) {
if (!_available) {
if (!_readAll())
return 0;
}
size_t will_copy = (_available < size) ? _available : size;
memcpy(dst, _read_ptr, will_copy);
_read_ptr += will_copy;
_available -= will_copy;
if (_available == 0) {
_read_ptr = nullptr;
}
return will_copy;
}
int read() {
if (!_available) {
if (!_readAll())
return -1;
}
int result = _read_ptr[0];
++_read_ptr;
--_available;
if (_available == 0) {
_read_ptr = nullptr;
}
return result;
}
int peek() {
if (!_available) {
if (!_readAll())
return -1;
}
return _read_ptr[0];
}
int available() {
auto cb = _available;
if (cb == 0) {
cb = _readAll();
} else {
optimistic_yield(100);
}
return cb;
}
operator SSL*() {
return _ssl;
}
protected:
int _readAll() {
if (!_ssl)
return 0;
optimistic_yield(100);
uint8_t* data;
int rc = ssl_read(_ssl, &data);
if (rc <= 0) {
if (rc < SSL_OK && rc != SSL_CLOSE_NOTIFY && rc != SSL_ERROR_CONN_LOST) {
ssl_free(_ssl);
_ssl = nullptr;
}
return 0;
}
DEBUGV(":wcs ra %d", rc);
_read_ptr = data;
_available = rc;
return _available;
}
static SSL_CTX* _ssl_ctx;
static int _ssl_ctx_refcnt;
SSL* _ssl = nullptr;
int _refcnt = 0;
const uint8_t* _read_ptr = nullptr;
size_t _available = 0;
};
SSL_CTX* SSLContext::_ssl_ctx = nullptr;
int SSLContext::_ssl_ctx_refcnt = 0;
WiFiClientSecure::WiFiClientSecure() {
++s_pk_refcnt;
}
WiFiClientSecure::~WiFiClientSecure() {
if (_ssl) {
_ssl->unref();
}
if (--s_pk_refcnt == 0) {
clear_private_key();
clear_certificate();
}
}
WiFiClientSecure::WiFiClientSecure(const WiFiClientSecure& other)
: WiFiClient(static_cast<const WiFiClient&>(other))
{
_ssl = other._ssl;
if (_ssl) {
_ssl->ref();
}
}
WiFiClientSecure& WiFiClientSecure::operator=(const WiFiClientSecure& rhs) {
(WiFiClient&) *this = rhs;
_ssl = rhs._ssl;
if (_ssl) {
_ssl->ref();
}
return *this;
}
int WiFiClientSecure::connect(IPAddress ip, uint16_t port) {
if (!WiFiClient::connect(ip, port))
return 0;
return _connectSSL();
}
int WiFiClientSecure::connect(const char* name, uint16_t port) {
if (!WiFiClient::connect(name, port))
return 0;
return 1;
}
int WiFiClientSecure::_connectSSL() {
if (_ssl) {
_ssl->unref();
_ssl = nullptr;
}
_ssl = new SSLContext;
_ssl->ref();
_ssl->connect(_client);
auto status = ssl_handshake_status(*_ssl);
if (status != SSL_OK) {
_ssl->unref();
_ssl = nullptr;
return 0;
}
return 1;
}
size_t WiFiClientSecure::write(const uint8_t *buf, size_t size) {
if (!_ssl)
return 0;
int rc = ssl_write(*_ssl, buf, size);
if (rc >= 0)
return rc;
return 0;
}
int WiFiClientSecure::read(uint8_t *buf, size_t size) {
if (!_ssl)
return 0;
return _ssl->read(buf, size);
}
int WiFiClientSecure::read() {
if (!_ssl)
return -1;
return _ssl->read();
}
int WiFiClientSecure::peek() {
if (!_ssl)
return -1;
return _ssl->peek();
}
int WiFiClientSecure::available() {
if (!_ssl)
return 0;
return _ssl->available();
}
uint8_t WiFiClientSecure::connected() {
if (!_client)
return 0;
if (_client->state() == ESTABLISHED)
return 1;
if (!_ssl)
return 0;
return _ssl->available() > 0;
}
void WiFiClientSecure::stop() {
if (_ssl) {
_ssl->unref();
_ssl = nullptr;
}
return WiFiClient::stop();
}
static bool parseHexNibble(char pb, uint8_t* res) {
if (pb >= '0' && pb <= '9') {
*res = (uint8_t) (pb - '0'); return true;
}
else if (pb >= 'a' && pb <= 'f') {
*res = (uint8_t) (pb - 'a' + 10); return true;
}
else if (pb >= 'A' && pb <= 'F') {
*res = (uint8_t) (pb - 'A' + 10); return true;
}
return false;
}
bool WiFiClientSecure::verify(const char* fp, const char* url) {
if (!_ssl)
return false;
uint8_t sha1[20];
int len = strlen(fp);
int pos = 0;
for (size_t i = 0; i < sizeof(sha1); ++i) {
while (pos < len && fp[pos] == ' ') {
++pos;
}
if (pos > len - 2) {
DEBUGV("pos:%d len:%d fingerprint too short\r\n", pos, len);
return false;
}
uint8_t high, low;
if (!parseHexNibble(fp[pos], &high) || !parseHexNibble(fp[pos+1], &low)) {
DEBUGV("pos:%d len:%d invalid hex sequence: %c%c\r\n", pos, len, fp[pos], fp[pos+1]);
return false;
}
pos += 2;
sha1[i] = low | (high << 4);
}
if (ssl_match_fingerprint(*_ssl, sha1) != 0) {
DEBUGV("fingerprint doesn't match\r\n");
return false;
}
//TODO: check URL against certificate
return true;
}
void WiFiClientSecure::setCertificate(const uint8_t* cert_data, size_t size) {
clear_certificate();
default_certificate = (uint8_t*) cert_data;
default_certificate_len = size;
}
void WiFiClientSecure::setPrivateKey(const uint8_t* pk, size_t size) {
clear_private_key();
default_private_key = (uint8_t*) pk;
default_private_key_len = size;
}
bool WiFiClientSecure::loadCertificate(Stream& stream, size_t size) {
clear_certificate();
default_certificate = new uint8_t[size];
if (!default_certificate) {
return false;
}
if (stream.readBytes(default_certificate, size) != size) {
delete[] default_certificate;
return false;
}
default_certificate_dynamic = true;
default_certificate_len = size;
return true;
}
bool WiFiClientSecure::loadPrivateKey(Stream& stream, size_t size) {
clear_private_key();
default_private_key = new uint8_t[size];
if (!default_private_key) {
return false;
}
if (stream.readBytes(default_private_key, size) != size) {
delete[] default_private_key;
return false;
}
default_private_key_dynamic = true;
default_private_key_len = size;
return true;
}
static void clear_private_key() {
if (default_private_key && default_private_key_dynamic) {
delete[] default_private_key;
default_private_key_dynamic = false;
}
default_private_key = 0;
default_private_key_len = 0;
}
static void clear_certificate() {
if (default_certificate && default_certificate_dynamic) {
delete[] default_certificate;
default_certificate_dynamic = false;
}
default_certificate = 0;
default_certificate_len = 0;
}
extern "C" int ax_port_read(int fd, uint8_t* buffer, size_t count) {
ClientContext* _client = reinterpret_cast<ClientContext*>(fd);
if (_client->state() != ESTABLISHED && !_client->getSize()) {
return -1;
errno = EIO;
}
size_t cb = _client->read((char*) buffer, count);
if (cb != count) {
errno = EAGAIN;
}
if (cb == 0) {
optimistic_yield(100);
return -1;
}
return cb;
}
extern "C" int ax_port_write(int fd, uint8_t* buffer, size_t count) {
ClientContext* _client = reinterpret_cast<ClientContext*>(fd);
if (_client->state() != ESTABLISHED) {
errno = EIO;
return -1;
}
size_t cb = _client->write((const char*) buffer, count);
if (cb != count) {
errno = EAGAIN;
}
return cb;
}
extern "C" int ax_get_file(const char *filename, uint8_t **buf) {
*buf = 0;
return 0;
}
#ifdef DEBUG_TLS_MEM
#define DEBUG_TLS_MEM_PRINT(...) DEBUGV(__VA_ARGS__)
#else
#define DEBUG_TLS_MEM_PRINT(...)
#endif
extern "C" void* ax_port_malloc(size_t size, const char* file, int line) {
void* result = malloc(size);
if (result == nullptr) {
DEBUG_TLS_MEM_PRINT("%s:%d malloc %d failed, left %d\r\n", file, line, size, ESP.getFreeHeap());
panic();
}
if (size >= 1024)
DEBUG_TLS_MEM_PRINT("%s:%d malloc %d, left %d\r\n", file, line, size, ESP.getFreeHeap());
return result;
}
extern "C" void* ax_port_calloc(size_t size, size_t count, const char* file, int line) {
void* result = ax_port_malloc(size * count, file, line);
memset(result, 0, size * count);
return result;
}
extern "C" void* ax_port_realloc(void* ptr, size_t size, const char* file, int line) {
void* result = realloc(ptr, size);
if (result == nullptr) {
DEBUG_TLS_MEM_PRINT("%s:%d realloc %d failed, left %d\r\n", file, line, size, ESP.getFreeHeap());
panic();
}
if (size >= 1024)
DEBUG_TLS_MEM_PRINT("%s:%d realloc %d, left %d\r\n", file, line, size, ESP.getFreeHeap());
return result;
}
extern "C" void ax_port_free(void* ptr) {
free(ptr);
uint32_t *p = (uint32_t*) ptr;
size_t size = p[-3];
if (size >= 1024)
DEBUG_TLS_MEM_PRINT("free %d, left %d\r\n", p[-3], ESP.getFreeHeap());
}