mirror of
https://github.com/esp8266/Arduino.git
synced 2025-04-21 10:26:06 +03:00
* Deprecate SPIFFS, move examples to LittleFS SPIFFS has been a great filesystem, but it has significant problems in many cases (and it's also pretty slow). Development seems to have slowed/stopped on the upstream version, and we're not able to provide support or fix the known issues with it as-is. Deprecate SPIFFS variable. Update all examples to use LittleFS instead of SPIFFS. Also, minor cleanup on very old examples which has obsolete delays waiting for the Serial port to come up, or which were stuck at 9600 baud because of their ancient AVR heritage. Fixes #7095 * Remove leftover debug code * Clean up comments in some examples * Update documentation on SPIFFS deprecation * Fix host tests to avoid deprecation warnings * Fix cut-n-paste error * Restore SpeedTest.ino, adjust to allow custom FSes Co-authored-by: Develo <deveyes@gmail.com>
494 lines
9.5 KiB
C++
494 lines
9.5 KiB
C++
/*
|
|
MockUART.cpp - esp8266 UART HAL EMULATION
|
|
|
|
Copyright (c) 2019 Clemens Kirchgatterer. All rights reserved.
|
|
This file is part of the esp8266 core for Arduino environment.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/*
|
|
This UART driver is directly derived from the ESP8266 UART HAL driver
|
|
Copyright (c) 2014 Ivan Grokhotkov. It provides the same API as the
|
|
original driver and was striped from all HW dependent interfaces.
|
|
|
|
UART0 writes got to stdout, while UART1 writes got to stderr. The user
|
|
is responsible for feeding the RX FIFO new data by calling uart_new_data().
|
|
*/
|
|
|
|
#include <unistd.h> // write
|
|
#include <sys/time.h> // gettimeofday
|
|
#include <time.h> // localtime
|
|
|
|
#include "Arduino.h"
|
|
#include "uart.h"
|
|
|
|
//#define UART_DISCARD_NEWEST
|
|
|
|
extern "C" {
|
|
|
|
bool blocking_uart = true; // system default
|
|
|
|
static int s_uart_debug_nr = UART1;
|
|
|
|
static uart_t *UART[2] = { NULL, NULL };
|
|
|
|
struct uart_rx_buffer_
|
|
{
|
|
size_t size;
|
|
size_t rpos;
|
|
size_t wpos;
|
|
uint8_t * buffer;
|
|
};
|
|
|
|
struct uart_
|
|
{
|
|
int uart_nr;
|
|
int baud_rate;
|
|
bool rx_enabled;
|
|
bool tx_enabled;
|
|
bool rx_overrun;
|
|
struct uart_rx_buffer_ * rx_buffer;
|
|
};
|
|
|
|
bool serial_timestamp = false;
|
|
|
|
// write one byte to the emulated UART
|
|
static void
|
|
uart_do_write_char(const int uart_nr, char c)
|
|
{
|
|
static bool w = false;
|
|
|
|
if (uart_nr >= UART0 && uart_nr <= UART1)
|
|
{
|
|
if (serial_timestamp && (c == '\n' || c == '\r'))
|
|
{
|
|
if (w)
|
|
{
|
|
FILE* out = uart_nr == UART0? stdout: stderr;
|
|
timeval tv;
|
|
gettimeofday(&tv, nullptr);
|
|
const tm* tm = localtime(&tv.tv_sec);
|
|
fprintf(out, "\r\n%d:%02d:%02d.%06d: ", tm->tm_hour, tm->tm_min, tm->tm_sec, (int)tv.tv_usec);
|
|
fflush(out);
|
|
w = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-result"
|
|
write(uart_nr + 1, &c, 1);
|
|
#pragma GCC diagnostic pop
|
|
w = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// write a new byte into the RX FIFO buffer
|
|
static void
|
|
uart_handle_data(uart_t* uart, uint8_t data)
|
|
{
|
|
struct uart_rx_buffer_ *rx_buffer = uart->rx_buffer;
|
|
|
|
size_t nextPos = (rx_buffer->wpos + 1) % rx_buffer->size;
|
|
if(nextPos == rx_buffer->rpos)
|
|
{
|
|
uart->rx_overrun = true;
|
|
#ifdef UART_DISCARD_NEWEST
|
|
return;
|
|
#else
|
|
if (++rx_buffer->rpos == rx_buffer->size)
|
|
rx_buffer->rpos = 0;
|
|
#endif
|
|
}
|
|
rx_buffer->buffer[rx_buffer->wpos] = data;
|
|
rx_buffer->wpos = nextPos;
|
|
}
|
|
|
|
// insert a new byte into the RX FIFO nuffer
|
|
void
|
|
uart_new_data(const int uart_nr, uint8_t data)
|
|
{
|
|
uart_t* uart = UART[uart_nr];
|
|
|
|
if(uart == NULL || !uart->rx_enabled) {
|
|
return;
|
|
}
|
|
|
|
uart_handle_data(uart, data);
|
|
}
|
|
|
|
static size_t
|
|
uart_rx_available_unsafe(const struct uart_rx_buffer_ * rx_buffer)
|
|
{
|
|
size_t ret = rx_buffer->wpos - rx_buffer->rpos;
|
|
|
|
if(rx_buffer->wpos < rx_buffer->rpos)
|
|
ret = (rx_buffer->wpos + rx_buffer->size) - rx_buffer->rpos;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// taking data straight from fifo, only needed in uart_resize_rx_buffer()
|
|
static int
|
|
uart_read_char_unsafe(uart_t* uart)
|
|
{
|
|
if (uart_rx_available_unsafe(uart->rx_buffer))
|
|
{
|
|
// take oldest sw data
|
|
int ret = uart->rx_buffer->buffer[uart->rx_buffer->rpos];
|
|
uart->rx_buffer->rpos = (uart->rx_buffer->rpos + 1) % uart->rx_buffer->size;
|
|
return ret;
|
|
}
|
|
// unavailable
|
|
return -1;
|
|
}
|
|
|
|
/**********************************************************/
|
|
/************ UART API FUNCTIONS **************************/
|
|
/**********************************************************/
|
|
|
|
size_t
|
|
uart_rx_available(uart_t* uart)
|
|
{
|
|
if(uart == NULL || !uart->rx_enabled)
|
|
return 0;
|
|
|
|
return uart_rx_available_unsafe(uart->rx_buffer);
|
|
}
|
|
|
|
int
|
|
uart_peek_char(uart_t* uart)
|
|
{
|
|
if(uart == NULL || !uart->rx_enabled)
|
|
return -1;
|
|
|
|
if (!uart_rx_available_unsafe(uart->rx_buffer))
|
|
return -1;
|
|
|
|
return uart->rx_buffer->buffer[uart->rx_buffer->rpos];
|
|
}
|
|
|
|
int
|
|
uart_read_char(uart_t* uart)
|
|
{
|
|
uint8_t ret;
|
|
return uart_read(uart, (char*)&ret, 1) ? ret : -1;
|
|
}
|
|
|
|
size_t
|
|
uart_read(uart_t* uart, char* userbuffer, size_t usersize)
|
|
{
|
|
if(uart == NULL || !uart->rx_enabled)
|
|
return 0;
|
|
|
|
if (!blocking_uart)
|
|
{
|
|
char c;
|
|
if (read(0, &c, 1) == 1)
|
|
uart_new_data(0, c);
|
|
}
|
|
|
|
size_t ret = 0;
|
|
while (ret < usersize && uart_rx_available_unsafe(uart->rx_buffer))
|
|
{
|
|
// pour sw buffer to user's buffer
|
|
// get largest linear length from sw buffer
|
|
size_t chunk = uart->rx_buffer->rpos < uart->rx_buffer->wpos ?
|
|
uart->rx_buffer->wpos - uart->rx_buffer->rpos :
|
|
uart->rx_buffer->size - uart->rx_buffer->rpos;
|
|
if (ret + chunk > usersize)
|
|
chunk = usersize - ret;
|
|
memcpy(userbuffer + ret, uart->rx_buffer->buffer + uart->rx_buffer->rpos, chunk);
|
|
uart->rx_buffer->rpos = (uart->rx_buffer->rpos + chunk) % uart->rx_buffer->size;
|
|
ret += chunk;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
size_t
|
|
uart_resize_rx_buffer(uart_t* uart, size_t new_size)
|
|
{
|
|
if(uart == NULL || !uart->rx_enabled)
|
|
return 0;
|
|
|
|
if(uart->rx_buffer->size == new_size)
|
|
return uart->rx_buffer->size;
|
|
|
|
uint8_t * new_buf = (uint8_t*)malloc(new_size);
|
|
if(!new_buf)
|
|
return uart->rx_buffer->size;
|
|
|
|
size_t new_wpos = 0;
|
|
// if uart_rx_available_unsafe() returns non-0, uart_read_char_unsafe() can't return -1
|
|
while(uart_rx_available_unsafe(uart->rx_buffer) && new_wpos < new_size)
|
|
new_buf[new_wpos++] = uart_read_char_unsafe(uart);
|
|
if (new_wpos == new_size)
|
|
new_wpos = 0;
|
|
|
|
uint8_t * old_buf = uart->rx_buffer->buffer;
|
|
uart->rx_buffer->rpos = 0;
|
|
uart->rx_buffer->wpos = new_wpos;
|
|
uart->rx_buffer->size = new_size;
|
|
uart->rx_buffer->buffer = new_buf;
|
|
free(old_buf);
|
|
return uart->rx_buffer->size;
|
|
}
|
|
|
|
size_t
|
|
uart_get_rx_buffer_size(uart_t* uart)
|
|
{
|
|
return uart && uart->rx_enabled ? uart->rx_buffer->size : 0;
|
|
}
|
|
|
|
size_t
|
|
uart_write_char(uart_t* uart, char c)
|
|
{
|
|
if(uart == NULL || !uart->tx_enabled)
|
|
return 0;
|
|
|
|
uart_do_write_char(uart->uart_nr, c);
|
|
|
|
return 1;
|
|
}
|
|
|
|
size_t
|
|
uart_write(uart_t* uart, const char* buf, size_t size)
|
|
{
|
|
if(uart == NULL || !uart->tx_enabled)
|
|
return 0;
|
|
|
|
size_t ret = size;
|
|
const int uart_nr = uart->uart_nr;
|
|
while (size--)
|
|
uart_do_write_char(uart_nr, *buf++);
|
|
|
|
return ret;
|
|
}
|
|
|
|
size_t
|
|
uart_tx_free(uart_t* uart)
|
|
{
|
|
if(uart == NULL || !uart->tx_enabled)
|
|
return 0;
|
|
|
|
return UART_TX_FIFO_SIZE;
|
|
}
|
|
|
|
void
|
|
uart_wait_tx_empty(uart_t* uart)
|
|
{
|
|
(void) uart;
|
|
}
|
|
|
|
void
|
|
uart_flush(uart_t* uart)
|
|
{
|
|
if(uart == NULL)
|
|
return;
|
|
|
|
if(uart->rx_enabled)
|
|
{
|
|
uart->rx_buffer->rpos = 0;
|
|
uart->rx_buffer->wpos = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
uart_set_baudrate(uart_t* uart, int baud_rate)
|
|
{
|
|
if(uart == NULL)
|
|
return;
|
|
|
|
uart->baud_rate = baud_rate;
|
|
}
|
|
|
|
int
|
|
uart_get_baudrate(uart_t* uart)
|
|
{
|
|
if(uart == NULL)
|
|
return 0;
|
|
|
|
return uart->baud_rate;
|
|
}
|
|
|
|
uint8_t
|
|
uart_get_bit_length(const int uart_nr)
|
|
{
|
|
uint8_t width = ((uart_nr % 16) >> 2) + 5;
|
|
uint8_t parity = (uart_nr >> 5) + 1;
|
|
uint8_t stop = uart_nr % 4;
|
|
return (width + parity + stop + 1);
|
|
}
|
|
|
|
uart_t*
|
|
uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin, size_t rx_size, bool invert)
|
|
{
|
|
(void) config;
|
|
(void) tx_pin;
|
|
(void) invert;
|
|
uart_t* uart = (uart_t*) malloc(sizeof(uart_t));
|
|
if(uart == NULL)
|
|
return NULL;
|
|
|
|
uart->uart_nr = uart_nr;
|
|
uart->rx_overrun = false;
|
|
|
|
switch(uart->uart_nr)
|
|
{
|
|
case UART0:
|
|
uart->rx_enabled = (mode != UART_TX_ONLY);
|
|
uart->tx_enabled = (mode != UART_RX_ONLY);
|
|
if(uart->rx_enabled)
|
|
{
|
|
struct uart_rx_buffer_ * rx_buffer = (struct uart_rx_buffer_ *)malloc(sizeof(struct uart_rx_buffer_));
|
|
if(rx_buffer == NULL)
|
|
{
|
|
free(uart);
|
|
return NULL;
|
|
}
|
|
rx_buffer->size = rx_size;//var this
|
|
rx_buffer->rpos = 0;
|
|
rx_buffer->wpos = 0;
|
|
rx_buffer->buffer = (uint8_t *)malloc(rx_buffer->size);
|
|
if(rx_buffer->buffer == NULL)
|
|
{
|
|
free(rx_buffer);
|
|
free(uart);
|
|
return NULL;
|
|
}
|
|
uart->rx_buffer = rx_buffer;
|
|
}
|
|
break;
|
|
|
|
case UART1:
|
|
// Note: uart_interrupt_handler does not support RX on UART 1.
|
|
uart->rx_enabled = false;
|
|
uart->tx_enabled = (mode != UART_RX_ONLY);
|
|
break;
|
|
|
|
case UART_NO:
|
|
default:
|
|
// big fail!
|
|
free(uart);
|
|
return NULL;
|
|
}
|
|
|
|
uart_set_baudrate(uart, baudrate);
|
|
|
|
UART[uart_nr] = uart;
|
|
|
|
return uart;
|
|
}
|
|
|
|
void
|
|
uart_uninit(uart_t* uart)
|
|
{
|
|
if(uart == NULL)
|
|
return;
|
|
|
|
if(uart->rx_enabled) {
|
|
free(uart->rx_buffer->buffer);
|
|
free(uart->rx_buffer);
|
|
}
|
|
free(uart);
|
|
}
|
|
|
|
void
|
|
uart_swap(uart_t* uart, int tx_pin)
|
|
{
|
|
(void) uart;
|
|
(void) tx_pin;
|
|
}
|
|
|
|
void
|
|
uart_set_tx(uart_t* uart, int tx_pin)
|
|
{
|
|
(void) uart;
|
|
(void) tx_pin;
|
|
}
|
|
|
|
void
|
|
uart_set_pins(uart_t* uart, int tx, int rx)
|
|
{
|
|
(void) uart;
|
|
(void) tx;
|
|
(void) rx;
|
|
}
|
|
|
|
bool
|
|
uart_tx_enabled(uart_t* uart)
|
|
{
|
|
if(uart == NULL)
|
|
return false;
|
|
|
|
return uart->tx_enabled;
|
|
}
|
|
|
|
bool
|
|
uart_rx_enabled(uart_t* uart)
|
|
{
|
|
if(uart == NULL)
|
|
return false;
|
|
|
|
return uart->rx_enabled;
|
|
}
|
|
|
|
bool
|
|
uart_has_overrun(uart_t* uart)
|
|
{
|
|
if(uart == NULL || !uart->rx_overrun)
|
|
return false;
|
|
|
|
// clear flag
|
|
uart->rx_overrun = false;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
uart_has_rx_error(uart_t* uart)
|
|
{
|
|
(void) uart;
|
|
return false;
|
|
}
|
|
|
|
void
|
|
uart_set_debug(int uart_nr)
|
|
{
|
|
(void)uart_nr;
|
|
}
|
|
|
|
int
|
|
uart_get_debug()
|
|
{
|
|
return s_uart_debug_nr;
|
|
}
|
|
|
|
void
|
|
uart_start_detect_baudrate(int uart_nr)
|
|
{
|
|
(void) uart_nr;
|
|
}
|
|
|
|
int
|
|
uart_detect_baudrate(int uart_nr)
|
|
{
|
|
(void) uart_nr;
|
|
return 115200;
|
|
}
|
|
|
|
};
|