1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-21 10:26:06 +03:00
esp8266/cores/esp8266/HardwareSerial.cpp
2015-01-16 17:53:53 +03:00

353 lines
8.6 KiB
C++

/*
HardwareSerial.cpp - esp8266 UART support
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
#include "cbuf.h"
extern "C" {
#include "osapi.h"
#include "ets_sys.h"
#include "mem.h"
#include "uart_register.h"
#include "user_interface.h"
}
#include "HardwareSerial.h"
HardwareSerial Serial;
uart_t* uart0_init(int baud_rate);
void uart0_set_baudrate(uart_t* uart, int baud_rate);
int uart0_get_baudrate(uart_t* uart);
void uart0_uninit(uart_t* uart);
void uart0_transmit(uart_t* uart, const char* buf, size_t size); // may block on TX fifo
void uart0_wait_for_transmit(uart_t* uart);
void uart0_transmit_char(uart_t* uart, char c); // does not block, but character will be lost if FIFO is full
void uart_set_debug(bool enabled);
bool uart_get_debug();
struct uart_
{
int baud_rate;
};
#define UART_TX_FIFO_SIZE 0x80
void ICACHE_FLASH_ATTR uart0_interrupt_handler(uart_t* uart)
{
uint32_t status = READ_PERI_REG(UART_INT_ST(0));
if (status & UART_RXFIFO_FULL_INT_ST)
{
while(true)
{
int rx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if (!rx_count)
break;
while(rx_count--)
{
char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF;
Serial._rx_complete_irq(c);
}
}
WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR);
}
if (status & UART_TXFIFO_EMPTY_INT_ST)
{
WRITE_PERI_REG(UART_INT_CLR(0), UART_TXFIFO_EMPTY_INT_CLR);
Serial._tx_empty_irq();
}
}
void ICACHE_FLASH_ATTR uart0_wait_for_tx_fifo(size_t size_needed)
{
while (true)
{
size_t tx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT;
if (tx_count <= (UART_TX_FIFO_SIZE - size_needed))
break;
}
}
size_t ICACHE_FLASH_ATTR uart0_get_tx_fifo_room()
{
return UART_TX_FIFO_SIZE - ((READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT);
}
void ICACHE_FLASH_ATTR uart0_wait_for_transmit(uart_t* uart)
{
uart0_wait_for_tx_fifo(UART_TX_FIFO_SIZE);
}
void ICACHE_FLASH_ATTR uart0_transmit_char(uart_t* uart, char c)
{
WRITE_PERI_REG(UART_FIFO(0), c);
}
void ICACHE_FLASH_ATTR uart0_transmit(uart_t* uart, const char* buf, size_t size)
{
while (size)
{
size_t part_size = (size > UART_TX_FIFO_SIZE) ? UART_TX_FIFO_SIZE : size;
size -= part_size;
uart0_wait_for_tx_fifo(part_size);
for(;part_size;--part_size, ++buf)
WRITE_PERI_REG(UART_FIFO(0), *buf);
}
}
void ICACHE_FLASH_ATTR uart0_flush(uart_t* uart)
{
SET_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST);
CLEAR_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST);
}
void ICACHE_FLASH_ATTR uart0_interrupt_enable(uart_t* uart)
{
WRITE_PERI_REG(UART_INT_CLR(0), 0x1ff);
ETS_UART_INTR_ATTACH(&uart0_interrupt_handler, uart);
SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA);
ETS_UART_INTR_ENABLE();
}
void ICACHE_FLASH_ATTR uart0_interrupt_disable(uart_t* uart)
{
CLEAR_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA);
ETS_UART_INTR_DISABLE();
}
void ICACHE_FLASH_ATTR uart0_arm_tx_interrupt()
{
SET_PERI_REG_MASK(UART_INT_ENA(0), UART_TXFIFO_EMPTY_INT_ENA);
}
void ICACHE_FLASH_ATTR uart0_disarm_tx_interrupt()
{
CLEAR_PERI_REG_MASK(UART_INT_ENA(0), UART_TXFIFO_EMPTY_INT_ENA);
}
void ICACHE_FLASH_ATTR uart0_set_baudrate(uart_t* uart, int baud_rate)
{
uart->baud_rate = baud_rate;
uart_div_modify(0, UART_CLK_FREQ / (uart->baud_rate));
}
int ICACHE_FLASH_ATTR uart0_get_baudrate(uart_t* uart)
{
return uart->baud_rate;
}
uart_t* ICACHE_FLASH_ATTR uart0_init(int baudrate)
{
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
PIN_PULLUP_EN(PERIPHS_IO_MUX_U0RXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD);
uart0_set_baudrate(uart, baudrate);
WRITE_PERI_REG(UART_CONF0(0), 0x3 << UART_BIT_NUM_S); // 8n1
uart0_flush(uart);
uart0_interrupt_enable(uart);
WRITE_PERI_REG(UART_CONF1(0), ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S) |
((0x20 & UART_TXFIFO_EMPTY_THRHD) << UART_TXFIFO_EMPTY_THRHD_S));
return uart;
}
void ICACHE_FLASH_ATTR uart0_uninit(uart_t* uart)
{
uart0_interrupt_disable(uart);
// TODO: revert pin functions
os_free(uart);
}
void ICACHE_FLASH_ATTR uart0_swap(uart_t* uart)
{
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_UART0_CTS);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_UART0_RTS);
//SWAP PIN : U0TXD<==>U0RTS(MTDO, GPIO15) , U0RXD<==>U0CTS(MTCK, GPIO13)
SET_PERI_REG_MASK(0x3ff00028 , BIT2);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_GPIO1);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_GPIO3);
}
void ICACHE_FLASH_ATTR
uart_ignore_char(char c)
{
}
void ICACHE_FLASH_ATTR
uart_write_char(char c)
{
if (c == '\n')
WRITE_PERI_REG(UART_FIFO(0), '\r');
WRITE_PERI_REG(UART_FIFO(0), c);
}
bool s_uart_debug_enabled = true;
void ICACHE_FLASH_ATTR uart_set_debug(bool enabled)
{
s_uart_debug_enabled = enabled;
if (enabled)
{
system_set_os_print(1);
ets_install_putc1((void *)&uart_write_char);
}
else
ets_install_putc1((void *)&uart_ignore_char);
}
bool ICACHE_FLASH_ATTR uart_get_debug()
{
return s_uart_debug_enabled;
}
ICACHE_FLASH_ATTR HardwareSerial::HardwareSerial() :
_uart(0), _rx_buffer(0), _tx_buffer(0)
{
}
void ICACHE_FLASH_ATTR HardwareSerial::begin(unsigned long baud, byte config)
{
_rx_buffer = new cbuf(SERIAL_RX_BUFFER_SIZE);
_tx_buffer = new cbuf(SERIAL_TX_BUFFER_SIZE);
uart_set_debug(false);
_uart = uart0_init(baud);
_written = false;
delay(1);
}
void ICACHE_FLASH_ATTR HardwareSerial::end()
{
uart0_uninit(_uart);
delete _rx_buffer;
delete _tx_buffer;
_uart = 0;
_rx_buffer = 0;
_tx_buffer = 0;
}
void ICACHE_FLASH_ATTR HardwareSerial::swap()
{
uart0_swap(_uart);
pinMode(1, INPUT);
pinMode(3, INPUT);
}
void ICACHE_FLASH_ATTR HardwareSerial::setDebugOutput(bool en)
{
uart_set_debug(en);
}
int ICACHE_FLASH_ATTR HardwareSerial::available(void)
{
return static_cast<int>(_rx_buffer->getSize());
}
int ICACHE_FLASH_ATTR HardwareSerial::peek(void)
{
return _rx_buffer->peek();
}
int ICACHE_FLASH_ATTR HardwareSerial::read(void)
{
return _rx_buffer->read();
}
int ICACHE_FLASH_ATTR HardwareSerial::availableForWrite(void)
{
return static_cast<int>(_tx_buffer->room());
}
void ICACHE_FLASH_ATTR HardwareSerial::flush()
{
if (!_written)
return;
while (_tx_buffer->getSize() || uart0_get_tx_fifo_room() < UART_TX_FIFO_SIZE)
yield();
_written = false;
}
size_t ICACHE_FLASH_ATTR HardwareSerial::write(uint8_t c)
{
_written = true;
size_t room = uart0_get_tx_fifo_room();
if (room > 0 && _tx_buffer->empty())
{
uart0_transmit_char(_uart, c);
if (room < 10)
{
uart0_arm_tx_interrupt();
}
return 1;
}
while (_tx_buffer->room() == 0)
{
yield();
}
_tx_buffer->write(c);
return 1;
}
ICACHE_FLASH_ATTR HardwareSerial::operator bool() const
{
return _uart != 0;
}
void ICACHE_FLASH_ATTR HardwareSerial::_rx_complete_irq(char c)
{
_rx_buffer->write(c);
}
void ICACHE_FLASH_ATTR HardwareSerial::_tx_empty_irq(void)
{
size_t queued = _tx_buffer->getSize();
if (!queued)
{
uart0_disarm_tx_interrupt();
return;
}
size_t room = uart0_get_tx_fifo_room();
int n = static_cast<int>((queued < room) ? queued : room);
while (n--)
{
uart0_transmit_char(_uart, _tx_buffer->read());
}
}