1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00

469 lines
12 KiB
C++

/*
Esp.cpp - ESP8266-specific APIs
Copyright (c) 2015 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Arduino.h"
#include "flash_utils.h"
#include "eboot_command.h"
#include <memory>
#include "interrupts.h"
extern "C" {
#include "user_interface.h"
extern struct rst_info resetInfo;
}
//#define DEBUG_SERIAL Serial
/**
* User-defined Literals
* usage:
*
* uint32_t = test = 10_MHz; // --> 10000000
*/
unsigned long long operator"" _kHz(unsigned long long x) {
return x * 1000;
}
unsigned long long operator"" _MHz(unsigned long long x) {
return x * 1000 * 1000;
}
unsigned long long operator"" _GHz(unsigned long long x) {
return x * 1000 * 1000 * 1000;
}
unsigned long long operator"" _kBit(unsigned long long x) {
return x * 1024;
}
unsigned long long operator"" _MBit(unsigned long long x) {
return x * 1024 * 1024;
}
unsigned long long operator"" _GBit(unsigned long long x) {
return x * 1024 * 1024 * 1024;
}
unsigned long long operator"" _kB(unsigned long long x) {
return x * 1024;
}
unsigned long long operator"" _MB(unsigned long long x) {
return x * 1024 * 1024;
}
unsigned long long operator"" _GB(unsigned long long x) {
return x * 1024 * 1024 * 1024;
}
EspClass ESP;
void EspClass::wdtEnable(uint32_t timeout_ms)
{
/// This API can only be called if software watchdog is stopped
system_soft_wdt_restart();
}
void EspClass::wdtEnable(WDTO_t timeout_ms)
{
wdtEnable((uint32_t) timeout_ms);
}
void EspClass::wdtDisable(void)
{
/// Please don't stop software watchdog too long (less than 6 seconds),
/// otherwise it will trigger hardware watchdog reset.
system_soft_wdt_stop();
}
void EspClass::wdtFeed(void)
{
system_soft_wdt_feed();
}
extern "C" void esp_yield();
void EspClass::deepSleep(uint32_t time_us, WakeMode mode)
{
system_deep_sleep_set_option(static_cast<int>(mode));
system_deep_sleep(time_us);
esp_yield();
}
extern "C" void __real_system_restart_local();
void EspClass::reset(void)
{
__real_system_restart_local();
}
void EspClass::restart(void)
{
system_restart();
esp_yield();
}
uint16_t EspClass::getVcc(void)
{
InterruptLock lock;
return system_get_vdd33();
}
uint32_t EspClass::getFreeHeap(void)
{
return system_get_free_heap_size();
}
uint32_t EspClass::getChipId(void)
{
return system_get_chip_id();
}
const char * EspClass::getSdkVersion(void)
{
return system_get_sdk_version();
}
uint8_t EspClass::getBootVersion(void)
{
return system_get_boot_version();
}
uint8_t EspClass::getBootMode(void)
{
return system_get_boot_mode();
}
uint8_t EspClass::getCpuFreqMHz(void)
{
return system_get_cpu_freq();
}
uint32_t EspClass::getFlashChipId(void)
{
return spi_flash_get_id();
}
uint32_t EspClass::getFlashChipRealSize(void)
{
return (1 << ((spi_flash_get_id() >> 16) & 0xFF));
}
uint32_t EspClass::getFlashChipSize(void)
{
uint32_t data;
uint8_t * bytes = (uint8_t *) &data;
// read first 4 byte (magic byte + flash config)
if(spi_flash_read(0x0000, &data, 4) == SPI_FLASH_RESULT_OK) {
return magicFlashChipSize((bytes[3] & 0xf0) >> 4);
}
return 0;
}
uint32_t EspClass::getFlashChipSpeed(void)
{
uint32_t data;
uint8_t * bytes = (uint8_t *) &data;
// read first 4 byte (magic byte + flash config)
if(spi_flash_read(0x0000, &data, 4) == SPI_FLASH_RESULT_OK) {
return magicFlashChipSpeed(bytes[3] & 0x0F);
}
return 0;
}
FlashMode_t EspClass::getFlashChipMode(void)
{
FlashMode_t mode = FM_UNKNOWN;
uint32_t data;
uint8_t * bytes = (uint8_t *) &data;
// read first 4 byte (magic byte + flash config)
if(spi_flash_read(0x0000, &data, 4) == SPI_FLASH_RESULT_OK) {
mode = magicFlashChipMode(bytes[2]);
}
return mode;
}
uint32_t EspClass::magicFlashChipSize(uint8_t byte) {
switch(byte & 0x0F) {
case 0x0: // 4 Mbit (512KB)
return (512_kB);
case 0x1: // 2 MBit (256KB)
return (256_kB);
case 0x2: // 8 MBit (1MB)
return (1_MB);
case 0x3: // 16 MBit (2MB)
return (2_MB);
case 0x4: // 32 MBit (4MB)
return (4_MB);
case 0x5: // 64 MBit (8MB)
return (8_MB);
case 0x6: // 128 MBit (16MB)
return (16_MB);
case 0x7: // 256 MBit (32MB)
return (32_MB);
default: // fail?
return 0;
}
}
uint32_t EspClass::magicFlashChipSpeed(uint8_t byte) {
switch(byte & 0x0F) {
case 0x0: // 40 MHz
return (40_MHz);
case 0x1: // 26 MHz
return (26_MHz);
case 0x2: // 20 MHz
return (20_MHz);
case 0xf: // 80 MHz
return (80_MHz);
default: // fail?
return 0;
}
}
FlashMode_t EspClass::magicFlashChipMode(uint8_t byte) {
FlashMode_t mode = (FlashMode_t) byte;
if(mode > FM_DOUT) {
mode = FM_UNKNOWN;
}
return mode;
}
/**
* Infos from
* http://www.wlxmall.com/images/stock_item/att/A1010004.pdf
* http://www.gigadevice.com/product-series/5.html?locale=en_US
* http://www.elinux.org/images/f/f5/Winbond-w25q32.pdf
*/
uint32_t EspClass::getFlashChipSizeByChipId(void) {
uint32_t chipId = getFlashChipId();
/**
* Chip ID
* 00 - always 00 (Chip ID use only 3 byte)
* 17 - ? looks like 2^xx is size in Byte ? //todo: find docu to this
* 40 - ? may be Speed ? //todo: find docu to this
* C8 - manufacturer ID
*/
switch(chipId) {
// GigaDevice
case 0x1740C8: // GD25Q64B
return (8_MB);
case 0x1640C8: // GD25Q32B
return (4_MB);
case 0x1540C8: // GD25Q16B
return (2_MB);
case 0x1440C8: // GD25Q80
return (1_MB);
case 0x1340C8: // GD25Q40
return (512_kB);
case 0x1240C8: // GD25Q20
return (256_kB);
case 0x1140C8: // GD25Q10
return (128_kB);
case 0x1040C8: // GD25Q12
return (64_kB);
// Winbond
case 0x1640EF: // W25Q32
return (4_MB);
case 0x1540EF: // W25Q16
return (2_MB);
case 0x1440EF: // W25Q80
return (1_MB);
case 0x1340EF: // W25Q40
return (512_kB);
// BergMicro
case 0x1640E0: // BG25Q32
return (4_MB);
case 0x1540E0: // BG25Q16
return (2_MB);
case 0x1440E0: // BG25Q80
return (1_MB);
case 0x1340E0: // BG25Q40
return (512_kB);
default:
return 0;
}
}
/**
* check the Flash settings from IDE against the Real flash size
* @param needsEquals (return only true it equals)
* @return ok or not
*/
bool EspClass::checkFlashConfig(bool needsEquals) {
if(needsEquals) {
if(getFlashChipRealSize() == getFlashChipSize()) {
return true;
}
} else {
if(getFlashChipRealSize() >= getFlashChipSize()) {
return true;
}
}
return false;
}
String EspClass::getResetInfo(void) {
if(resetInfo.reason != 0) {
char buff[200];
sprintf(&buff[0], "Fatal exception:%d flag:%d (%s) epc1:0x%08x epc2:0x%08x epc3:0x%08x excvaddr:0x%08x depc:0x%08x", resetInfo.exccause, resetInfo.reason, (resetInfo.reason == 0 ? "DEFAULT" : resetInfo.reason == 1 ? "WDT" : resetInfo.reason == 2 ? "EXCEPTION" : resetInfo.reason == 3 ? "SOFT_WDT" : resetInfo.reason == 4 ? "SOFT_RESTART" : resetInfo.reason == 5 ? "DEEP_SLEEP_AWAKE" : resetInfo.reason == 6 ? "EXT_SYS_RST" : "???"), resetInfo.epc1, resetInfo.epc2, resetInfo.epc3, resetInfo.excvaddr, resetInfo.depc);
return String(buff);
}
return String("flag: 0");
}
struct rst_info * EspClass::getResetInfoPtr(void) {
return &resetInfo;
}
bool EspClass::eraseConfig(void) {
bool ret = true;
size_t cfgAddr = (ESP.getFlashChipSize() - 0x4000);
size_t cfgSize = (8*1024);
noInterrupts();
while(cfgSize) {
if(spi_flash_erase_sector((cfgAddr / SPI_FLASH_SEC_SIZE)) != SPI_FLASH_RESULT_OK) {
ret = false;
}
cfgSize -= SPI_FLASH_SEC_SIZE;
cfgAddr += SPI_FLASH_SEC_SIZE;
}
interrupts();
return ret;
}
uint32_t EspClass::getSketchSize() {
static uint32_t result = 0;
if (result)
return result;
image_header_t image_header;
uint32_t pos = APP_START_OFFSET;
if (spi_flash_read(pos, (uint32_t*) &image_header, sizeof(image_header))) {
return 0;
}
pos += sizeof(image_header);
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.printf("num_segments=%u\r\n", image_header.num_segments);
#endif
for (uint32_t section_index = 0;
section_index < image_header.num_segments;
++section_index)
{
section_header_t section_header = {0};
if (spi_flash_read(pos, (uint32_t*) &section_header, sizeof(section_header))) {
return 0;
}
pos += sizeof(section_header);
pos += section_header.size;
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.printf("section=%u size=%u pos=%u\r\n", section_index, section_header.size, pos);
#endif
}
result = pos;
return result;
}
extern "C" uint32_t _SPIFFS_start;
uint32_t EspClass::getFreeSketchSpace() {
uint32_t usedSize = getSketchSize();
// round one sector up
uint32_t freeSpaceStart = (usedSize + FLASH_SECTOR_SIZE - 1) & (~(FLASH_SECTOR_SIZE - 1));
uint32_t freeSpaceEnd = (uint32_t)&_SPIFFS_start - 0x40200000;
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.printf("usedSize=%u freeSpaceStart=%u freeSpaceEnd=%u\r\n", usedSize, freeSpaceStart, freeSpaceEnd);
#endif
return freeSpaceEnd - freeSpaceStart;
}
bool EspClass::updateSketch(Stream& in, uint32_t size, bool restartOnFail, bool restartOnSuccess) {
if(!Update.begin(size)){
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.print("Update ");
Update.printError(DEBUG_SERIAL);
#endif
if(restartOnFail) ESP.restart();
return false;
}
if(Update.writeStream(in) != size){
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.print("Update ");
Update.printError(DEBUG_SERIAL);
#endif
if(restartOnFail) ESP.restart();
return false;
}
if(!Update.end()){
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.print("Update ");
Update.printError(DEBUG_SERIAL);
#endif
if(restartOnFail) ESP.restart();
return false;
}
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println("Update SUCCESS");
#endif
if(restartOnSuccess) ESP.restart();
return true;
}
static const int FLASH_INT_MASK = ((B10 << 8) | B00111010);
bool EspClass::flashEraseSector(uint32_t sector) {
ets_isr_mask(FLASH_INT_MASK);
int rc = spi_flash_erase_sector(sector);
ets_isr_unmask(FLASH_INT_MASK);
return rc == 0;
}
bool EspClass::flashWrite(uint32_t offset, uint32_t *data, size_t size) {
ets_isr_mask(FLASH_INT_MASK);
int rc = spi_flash_write(offset, (uint32_t*) data, size);
ets_isr_unmask(FLASH_INT_MASK);
return rc == 0;
}
bool EspClass::flashRead(uint32_t offset, uint32_t *data, size_t size) {
ets_isr_mask(FLASH_INT_MASK);
int rc = spi_flash_read(offset, (uint32_t*) data, size);
ets_isr_unmask(FLASH_INT_MASK);
return rc == 0;
}