1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-21 10:26:06 +03:00
Ivan Grokhotkov 788095c66e Remove implementations of WDT-related functions
which were not correct since 0.9.3 anyway
2015-06-25 00:13:06 +03:00

434 lines
11 KiB
C++

/*
Esp.cpp - ESP8266-specific APIs
Copyright (c) 2015 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Arduino.h"
#include "flash_utils.h"
#include "eboot_command.h"
#include <memory>
extern "C" {
#include "user_interface.h"
extern struct rst_info resetInfo;
}
// #define DEBUG_SERIAL Serial
/**
* User-defined Literals
* usage:
*
* uint32_t = test = 10_MHz; // --> 10000000
*/
unsigned long long operator"" _kHz(unsigned long long x) {
return x * 1000;
}
unsigned long long operator"" _MHz(unsigned long long x) {
return x * 1000 * 1000;
}
unsigned long long operator"" _GHz(unsigned long long x) {
return x * 1000 * 1000 * 1000;
}
unsigned long long operator"" _kBit(unsigned long long x) {
return x * 1024;
}
unsigned long long operator"" _MBit(unsigned long long x) {
return x * 1024 * 1024;
}
unsigned long long operator"" _GBit(unsigned long long x) {
return x * 1024 * 1024 * 1024;
}
unsigned long long operator"" _kB(unsigned long long x) {
return x * 1024;
}
unsigned long long operator"" _MB(unsigned long long x) {
return x * 1024 * 1024;
}
unsigned long long operator"" _GB(unsigned long long x) {
return x * 1024 * 1024 * 1024;
}
EspClass ESP;
void EspClass::wdtEnable(uint32_t timeout_ms)
{
}
void EspClass::wdtEnable(WDTO_t timeout_ms)
{
}
void EspClass::wdtDisable(void)
{
}
void EspClass::wdtFeed(void)
{
}
void EspClass::deepSleep(uint32_t time_us, WakeMode mode)
{
system_deep_sleep_set_option(static_cast<int>(mode));
system_deep_sleep(time_us);
}
extern "C" void esp_yield();
extern "C" void __real_system_restart_local();
void EspClass::reset(void)
{
__real_system_restart_local();
}
void EspClass::restart(void)
{
system_restart();
esp_yield();
// todo: provide an alternative code path if this was called
// from system context, not from continuation
// (implement esp_is_cont_ctx()?)
}
uint16_t EspClass::getVcc(void)
{
return system_get_vdd33();
}
uint32_t EspClass::getFreeHeap(void)
{
return system_get_free_heap_size();
}
uint32_t EspClass::getChipId(void)
{
return system_get_chip_id();
}
const char * EspClass::getSdkVersion(void)
{
return system_get_sdk_version();
}
uint8_t EspClass::getBootVersion(void)
{
return system_get_boot_version();
}
uint8_t EspClass::getBootMode(void)
{
return system_get_boot_mode();
}
uint8_t EspClass::getCpuFreqMHz(void)
{
return system_get_cpu_freq();
}
uint32_t EspClass::getFlashChipId(void)
{
return spi_flash_get_id();
}
uint32_t EspClass::getFlashChipRealSize(void)
{
return (1 << ((spi_flash_get_id() >> 16) & 0xFF));
}
uint32_t EspClass::getFlashChipSize(void)
{
uint32_t data;
uint8_t * bytes = (uint8_t *) &data;
// read first 4 byte (magic byte + flash config)
if(spi_flash_read(0x0000, &data, 4) == SPI_FLASH_RESULT_OK) {
switch((bytes[3] & 0xf0) >> 4) {
case 0x0: // 4 Mbit (512KB)
return (512_kB);
case 0x1: // 2 MBit (256KB)
return (256_kB);
case 0x2: // 8 MBit (1MB)
return (1_MB);
case 0x3: // 16 MBit (2MB)
return (2_MB);
case 0x4: // 32 MBit (4MB)
return (4_MB);
case 0x5: // 64 MBit (8MB)
return (8_MB);
case 0x6: // 128 MBit (16MB)
return (16_MB);
case 0x7: // 256 MBit (32MB)
return (32_MB);
default: // fail?
return 0;
}
}
return 0;
}
uint32_t EspClass::getFlashChipSpeed(void)
{
uint32_t data;
uint8_t * bytes = (uint8_t *) &data;
// read first 4 byte (magic byte + flash config)
if(spi_flash_read(0x0000, &data, 4) == SPI_FLASH_RESULT_OK) {
switch(bytes[3] & 0x0F) {
case 0x0: // 40 MHz
return (40_MHz);
case 0x1: // 26 MHz
return (26_MHz);
case 0x2: // 20 MHz
return (20_MHz);
case 0xf: // 80 MHz
return (80_MHz);
default: // fail?
return 0;
}
}
return 0;
}
FlashMode_t EspClass::getFlashChipMode(void)
{
FlashMode_t mode = FM_UNKNOWN;
uint32_t data;
uint8_t * bytes = (uint8_t *) &data;
// read first 4 byte (magic byte + flash config)
if(spi_flash_read(0x0000, &data, 4) == SPI_FLASH_RESULT_OK) {
mode = (FlashMode_t) bytes[2];
if(mode > FM_DOUT) {
mode = FM_UNKNOWN;
}
}
return mode;
}
/**
* Infos from
* http://www.wlxmall.com/images/stock_item/att/A1010004.pdf
* http://www.gigadevice.com/product-series/5.html?locale=en_US
* http://www.elinux.org/images/f/f5/Winbond-w25q32.pdf
*/
uint32_t EspClass::getFlashChipSizeByChipId(void) {
uint32_t chipId = getFlashChipId();
/**
* Chip ID
* 00 - always 00 (Chip ID use only 3 byte)
* 17 - ? looks like 2^xx is size in Byte ? //todo: find docu to this
* 40 - ? may be Speed ? //todo: find docu to this
* C8 - manufacturer ID
*/
switch(chipId) {
// GigaDevice
case 0x1740C8: // GD25Q64B
return (8_MB);
case 0x1640C8: // GD25Q32B
return (4_MB);
case 0x1540C8: // GD25Q16B
return (2_MB);
case 0x1440C8: // GD25Q80
return (1_MB);
case 0x1340C8: // GD25Q40
return (512_kB);
case 0x1240C8: // GD25Q20
return (256_kB);
case 0x1140C8: // GD25Q10
return (128_kB);
case 0x1040C8: // GD25Q12
return (64_kB);
// Winbond
case 0x1640EF: // W25Q32
return (4_MB);
case 0x1540EF: // W25Q16
return (2_MB);
case 0x1440EF: // W25Q80
return (1_MB);
default:
return 0;
}
}
String EspClass::getResetInfo(void) {
if(resetInfo.reason != 0) {
char buff[150];
sprintf(&buff[0], "Fatal exception:%d flag:%d epc1:0x%08x epc2:0x%08x epc3:0x%08x excvaddr:0x%08x depc:0x%08x", resetInfo.exccause, resetInfo.reason, resetInfo.epc1, resetInfo.epc2, resetInfo.epc3, resetInfo.excvaddr, resetInfo.depc);
return String(buff);
}
return String("flag: 0");
}
struct rst_info * EspClass::getResetInfoPtr(void) {
return &resetInfo;
}
bool EspClass::eraseConfig(void) {
bool ret = true;
size_t cfgAddr = (ESP.getFlashChipSize() - 0x4000);
size_t cfgSize = (8*1024);
noInterrupts();
while(cfgSize) {
if(spi_flash_erase_sector((cfgAddr / SPI_FLASH_SEC_SIZE)) != SPI_FLASH_RESULT_OK) {
ret = false;
}
cfgSize -= SPI_FLASH_SEC_SIZE;
cfgAddr += SPI_FLASH_SEC_SIZE;
}
interrupts();
return ret;
}
uint32_t EspClass::getSketchSize() {
static uint32_t result = 0;
if (result)
return result;
image_header_t image_header;
uint32_t pos = APP_START_OFFSET;
if (spi_flash_read(pos, (uint32_t*) &image_header, sizeof(image_header))) {
return 0;
}
pos += sizeof(image_header);
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.printf("num_segments=%u\r\n", image_header.num_segments);
#endif
for (uint32_t section_index = 0;
section_index < image_header.num_segments;
++section_index)
{
section_header_t section_header = {0};
if (spi_flash_read(pos, (uint32_t*) &section_header, sizeof(section_header))) {
return 0;
}
pos += sizeof(section_header);
pos += section_header.size;
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.printf("section=%u size=%u pos=%u\r\n", section_index, section_header.size, pos);
#endif
}
result = pos;
return result;
}
extern "C" uint32_t _SPIFFS_start;
uint32_t EspClass::getFreeSketchSpace() {
uint32_t usedSize = getSketchSize();
// round one sector up
uint32_t freeSpaceStart = (usedSize + FLASH_SECTOR_SIZE - 1) & (~(FLASH_SECTOR_SIZE - 1));
uint32_t freeSpaceEnd = (uint32_t)&_SPIFFS_start - 0x40200000;
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.printf("usedSize=%u freeSpaceStart=%u freeSpaceEnd=%u\r\n", usedSize, freeSpaceStart, freeSpaceEnd);
#endif
return freeSpaceEnd - freeSpaceStart;
}
bool EspClass::updateSketch(Stream& in, uint32_t size) {
if (size > getFreeSketchSpace())
return false;
uint32_t usedSize = getSketchSize();
uint32_t freeSpaceStart = (usedSize + FLASH_SECTOR_SIZE - 1) & (~(FLASH_SECTOR_SIZE - 1));
uint32_t roundedSize = (size + FLASH_SECTOR_SIZE - 1) & (~(FLASH_SECTOR_SIZE - 1));
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.printf("erase @0x%x size=0x%x\r\n", freeSpaceStart, roundedSize);
#endif
noInterrupts();
int rc = SPIEraseAreaEx(freeSpaceStart, roundedSize);
interrupts();
if (rc)
return false;
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println("erase done");
#endif
uint32_t addr = freeSpaceStart;
uint32_t left = size;
const uint32_t bufferSize = FLASH_SECTOR_SIZE;
std::unique_ptr<uint8_t> buffer(new uint8_t[bufferSize]);
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println("writing");
#endif
while (left > 0) {
size_t willRead = (left < bufferSize) ? left : bufferSize;
size_t rd = in.readBytes(buffer.get(), willRead);
if (rd != willRead) {
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println("stream read failed");
#endif
return false;
}
noInterrupts();
rc = SPIWrite(addr, buffer.get(), willRead);
interrupts();
if (rc) {
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println("write failed");
#endif
return false;
}
addr += willRead;
left -= willRead;
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.print(".");
#endif
}
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println("\r\nrestarting");
#endif
eboot_command ebcmd;
ebcmd.action = ACTION_COPY_RAW;
ebcmd.args[0] = freeSpaceStart;
ebcmd.args[1] = 0x00000;
ebcmd.args[2] = size;
eboot_command_write(&ebcmd);
ESP.restart();
return true; // never happens
}