1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00
esp8266/cores/esp8266/core_esp8266_main.cpp
Earle F. Philhower, III 6280e98b03 Enable exceptions, update to optimized newlib, migrate to new toolchain (#5376)
* Move to PROGMEM aware libc, allow PSTR in printf()

A Newlib (libc) patch is in progress to move the _P functions from inside
Arduino into first-class citizens in libc.  This Arduino patch cleans up
code that's been migrated there.  Binaries for the new libs are included
because it seems they're part of the Arduino git tree, and should be
replaced with @igrr built ones when/if the Newlib changes are accepted.

Notable changes/additions for Arduino:
Allow for use of PROGMEM based format and parameter strings in all
*printf functions.  No need for copying PSTR()s into RAM before printing
them out (transparently saves heap space when using _P functions) and
makes it easier to print out constant strings for applications.

Add "%S" (capital-S) format that I've been told, but cannot verify,
is used in Arduino to specify a PROGMEM string parameter in printfs,
as an alias for "%s" since plain "%s" can now handle PROGMEM.

Optimized the memcpy_P, strnlen_P, and strncpy_P functions to use 32-bit
direct reads whenver possible (source and dest alignment mediated), but
there is still room for improvement in others.

Finally, move several constant arrays from RODATA into PROGMEM and
update their accessors.  Among these are the ctype array, ~260 bytes,
mprec* arrays, ~300 bytes, and strings/daycounts in the time
formatting functions, ~200 bytes.  All told, sketches will see from
300 to 800 additional RAM heap free on startup (depending on their
use of these routines).

* Fix merge error in #ifdef/#endif

* Fix host test using the newlib generic pgmspace.h

Host tests now use the sys/pgmspace.h for compiles instead of the
ESP8266-specific version.

* Update with rebuilt libraries using latest newlib

* Include binaries built directly from @igrr repo

Rebuild the binaries using a git clone of
https://github.com/igrr/newlib-xtensa

Build commands for posterity:
````
rm -rf ./xtensa-lx106-elf/
./configure --prefix=<DIR>/esp8266/tools/sdk/libc --with-newlib \
            --enable-multilib --disable-newlib-io-c99-formats \
            --disable-newlib-supplied-syscalls \
            --enable-newlib-nano-formatted-io --enable-newlib-reent-small \
            --enable-target-optspace \
            --program-transform-name="s&^&xtensa-lx106-elf-&" \
            --disable-option-checking --with-target-subdir=xtensa-lx106-elf \
            --target=xtensa-lx106-elf
rm -f etc/config.cache
CROSS_CFLAGS="-fno-omit-frame-pointer -DSIGNAL_PROVIDED -DABORT_PROVIDED"\
             " -DMALLOC_PROVIDED" \
  PATH=<DIR>/esp8266/tools/xtensa-lx106-elf/bin/:$PATH \
  make all install
````

* Fix merge define conflict in c_types.h

* Fix strlen_P misaligned source error

Include fix from newlib-xtensa/fix-strlen branch cleaning up misaligned
access on a non-aligned source string.

* Fix strlen_P and strcpy_P edge cases

Ran the included test suite on ESP8266 tstring.c with the following defines:
 #define MAX_1 50
 #define memcmp memcmp_P
 #define memcpy memcpy_P
 #define memmem memmem_P
 #define memchr memchr_P
 #define strcat strcat_P
 #define strncat strncat_P
 #define strcpy strcpy_P
 #define strlen strlen_P
 #define strnlen strnlen_P
 #define strcmp strcmp_P
 #define strncmp strncmp_P

Uncovered edge case and return value problems in the optimized versions of
the strnlen_P and strncpy_P functions.  Corrected.

* Fix memcpy_P return value

memcpy-1.c test suite showed error in return value of memcpy_P.  Correct it.

* Fix strnlen_P/strlen_P off-by-4 error

Random crashes, often on String constructors using a PSTR, would occur due
to the accelerated strnlen_P going past the end of the string. Would make
debug builds fail, too (ESP.getVersionString() failure).

Fix to fall through to normal copy on a word that's got a 0 byte anywhere
in it.

* Add device tests for libc functional verification

Add test suite used to debug libc optimized _P functions to the device
tests.

* Rebuild from igrr's repo (same source as prior)

Rebuild .a from igrr's repo at 347260af117b4177389e69fd4d04169b11d87a97

* WIP - add exceptions

* Fix exception to have 0-terminator

* Move some exception constants to TEXT from RODATA

* Remove throw stubs

* Move more exception stuff to ROM

* Enable exceptions in platform.io

* Remove atexit, is duplicated in rebuilt lib

Need to look at the quick-toolchain options, there seems to be a definition
for atexit defined there (libgcc?) that needs to be excised.  For now,
remove our local do-nothing copy.

* Update libgcc to remove soft-fp functions

The esp-quick-toolchain generated libgcc.a needed to have the soft-FP routines
that are in ROM removed from it.  Remove them in the new esp-quick-toolchain
and update.

* Fix merge typos in Makefile

* Add unhandled exception handler to postmortem

* Return our atexit() handler

* Latest stdc++, minimize exception emercengy area

* Remove atexit from newlib

atexit was defined in newlib strongly, but we also define a noop atexit in core.
Since we never exit, use the core's noop and delete the atexit from libc.a

Updated in esp-quick-toolchain as well.

* Move __FUNCTION__ static strings to PROGMEM

__FUNCTION__ is unlikely to be a timing sensitive variable, so move it to
PROGMEM and not RODATA (RAM) using linker magic.

asserts() now should take no RAM for any strings.

* Clean up linker file, update to latest stdc++

* Update to latest stdc++ which doesn't call strerror

* Update to GCC5.1 exception emergency allocator

Using GCC 5.1's emergency memory allocator for exceptions, much less
space is required in programs which do not use exceptions and when
space is allocated it is managed more efficiently.

* Initial try with new compiler toolchain

* Include newlib built from esp-quick-toolchain

* Update JSON with all new esp-quick-toolchain builds

* Use 64bit Windows compiler on 64bit Windows

* Dump std::exception.what() when possible

When doing the panic on unhandled exceptions, try and grab the
.what() pointer and dump it as part of the termination info.
Makes it easy to see mem errors (std::bad_alloc) or std::runtime_error
strings.

* Use scripted install from esp-quick-toolchain

Makes sure proper libraries and includes are present by using a
scripted installation from esp-quick-install instead of a manual
one.

* Update eqk to remove atexit, fix packaging diff
2018-12-03 03:37:14 -03:00

264 lines
7.4 KiB
C++

/*
main.cpp - platform initialization and context switching
emulation
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
//This may be used to change user task stack size:
//#define CONT_STACKSIZE 4096
#include <Arduino.h>
#include "Schedule.h"
extern "C" {
#include "ets_sys.h"
#include "os_type.h"
#include "osapi.h"
#include "mem.h"
#include "user_interface.h"
#include "cont.h"
}
#include <core_version.h>
#include "gdb_hooks.h"
#define LOOP_TASK_PRIORITY 1
#define LOOP_QUEUE_SIZE 1
#define OPTIMISTIC_YIELD_TIME_US 16000
extern "C" void call_user_start();
extern void loop();
extern void setup();
extern void (*__init_array_start)(void);
extern void (*__init_array_end)(void);
/* Not static, used in Esp.cpp */
struct rst_info resetInfo;
/* Not static, used in core_esp8266_postmortem.c and other places.
* Placed into noinit section because we assign value to this variable
* before .bss is zero-filled, and need to preserve the value.
*/
cont_t* g_pcont __attribute__((section(".noinit")));
/* Event queue used by the main (arduino) task */
static os_event_t s_loop_queue[LOOP_QUEUE_SIZE];
/* Used to implement optimistic_yield */
static uint32_t s_micros_at_task_start;
extern "C" {
extern const uint32_t __attribute__((section(".ver_number"))) core_version = ARDUINO_ESP8266_GIT_VER;
const char* core_release =
#ifdef ARDUINO_ESP8266_RELEASE
ARDUINO_ESP8266_RELEASE;
#else
NULL;
#endif
} // extern "C"
void initVariant() __attribute__((weak));
void initVariant() {
}
void preloop_update_frequency() __attribute__((weak));
void preloop_update_frequency() {
#if defined(F_CPU) && (F_CPU == 160000000L)
REG_SET_BIT(0x3ff00014, BIT(0));
ets_update_cpu_frequency(160);
#endif
}
extern "C" void esp_yield() {
if (cont_can_yield(g_pcont)) {
cont_yield(g_pcont);
}
}
extern "C" void esp_schedule() {
ets_post(LOOP_TASK_PRIORITY, 0, 0);
}
extern "C" void __yield() {
if (cont_can_yield(g_pcont)) {
esp_schedule();
esp_yield();
}
else {
panic();
}
}
extern "C" void yield(void) __attribute__ ((weak, alias("__yield")));
extern "C" void optimistic_yield(uint32_t interval_us) {
if (cont_can_yield(g_pcont) &&
(system_get_time() - s_micros_at_task_start) > interval_us)
{
yield();
}
}
static void loop_wrapper() {
static bool setup_done = false;
preloop_update_frequency();
if(!setup_done) {
setup();
setup_done = true;
}
loop();
run_scheduled_functions();
esp_schedule();
}
static void loop_task(os_event_t *events) {
(void) events;
s_micros_at_task_start = system_get_time();
cont_run(g_pcont, &loop_wrapper);
if (cont_check(g_pcont) != 0) {
panic();
}
}
extern "C" {
struct object { long placeholder[ 10 ]; };
void __register_frame_info (const void *begin, struct object *ob);
extern char __eh_frame[];
}
static void do_global_ctors(void) {
static struct object ob;
__register_frame_info( __eh_frame, &ob );
void (**p)(void) = &__init_array_end;
while (p != &__init_array_start)
(*--p)();
}
extern "C" {
extern void __unhandled_exception(const char *str);
static void __unhandled_exception_cpp()
{
static bool terminating;
if (terminating)
abort();
terminating = true;
/* Use a trick from vterminate.cc to get any std::exception what() */
try {
__throw_exception_again;
} catch (const std::exception& e) {
__unhandled_exception( e.what() );
} catch (...) {
__unhandled_exception( "" );
}
}
}
void init_done() {
system_set_os_print(1);
gdb_init();
std::set_terminate(__unhandled_exception_cpp);
do_global_ctors();
esp_schedule();
}
/* This is the entry point of the application.
* It gets called on the default stack, which grows down from the top
* of DRAM area.
* .bss has not been zeroed out yet, but .data and .rodata are in place.
* Cache is not enabled, so only ROM and IRAM functions can be called.
* Peripherals (except for SPI0 and UART0) are not initialized.
* This function does not return.
*/
/*
A bit of explanation for this entry point:
SYS is the SDK task/context used by the upperlying system to run its
administrative tasks (at least WLAN and lwip's receive callbacks and
Ticker). NONOS-SDK is designed to run user's non-threaded code in
another specific task/context with its own stack in BSS.
Some clever fellows found that the SYS stack was a large and quite unused
piece of ram that we could use for the user's stack instead of using user's
main memory, thus saving around 4KB on ram/heap.
A problem arose later, which is that this stack can heavily be used by
the SDK for some features. One of these features is WPS. We still don't
know if other features are using this, or if this memory is going to be
used in future SDK releases.
WPS beeing flawed by its poor security, or not beeing used by lots of
users, it has been decided that we are still going to use that memory for
user's stack and disable the use of WPS.
app_entry() jumps to app_entry_custom() defined as "weakref" calling
itself a weak customizable function, allowing to use another one when
this is required (see core_esp8266_app_entry_noextra4k.cpp, used by WPS).
(note: setting app_entry() itself as "weak" is not sufficient and always
ends up with the other "noextra4k" one linked, maybe because it has a
default ENTRY(app_entry) value in linker scripts).
References:
https://github.com/esp8266/Arduino/pull/4553
https://github.com/esp8266/Arduino/pull/4622
https://github.com/esp8266/Arduino/issues/4779
https://github.com/esp8266/Arduino/pull/4889
*/
extern "C" void ICACHE_RAM_ATTR app_entry_redefinable(void) __attribute__((weak));
extern "C" void ICACHE_RAM_ATTR app_entry_redefinable(void)
{
/* Allocate continuation context on this SYS stack,
and save pointer to it. */
cont_t s_cont __attribute__((aligned(16)));
g_pcont = &s_cont;
/* Call the entry point of the SDK code. */
call_user_start();
}
static void ICACHE_RAM_ATTR app_entry_custom (void) __attribute__((weakref("app_entry_redefinable")));
extern "C" void ICACHE_RAM_ATTR app_entry (void)
{
return app_entry_custom();
}
extern "C" void user_init(void) {
struct rst_info *rtc_info_ptr = system_get_rst_info();
memcpy((void *) &resetInfo, (void *) rtc_info_ptr, sizeof(resetInfo));
uart_div_modify(0, UART_CLK_FREQ / (115200));
init();
initVariant();
cont_init(g_pcont);
ets_task(loop_task,
LOOP_TASK_PRIORITY, s_loop_queue,
LOOP_QUEUE_SIZE);
system_init_done_cb(&init_done);
}