1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-06-06 05:21:22 +03:00
esp8266/libraries/ESP8266WiFiMesh/src/EspnowTransmitter.cpp
Anders 40e1f02ffb - Split most of the EspnowMeshBackend code into utility files and the new ConditionalPrinter, EspnowDatabase, EspnowConnectionManager, EspnowTransmitter and EspnowEncryptionBroker classes.
- Improve mutex handling.

- Move verifyEncryptionRequestHmac function from JsonTranslator to EspnowEncryptionBroker.

- Remove UtilityMethods.cpp.
2020-05-15 20:33:08 +02:00

427 lines
19 KiB
C++

/*
Copyright (C) 2020 Anders Löfgren
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <ESP8266WiFi.h>
extern "C" {
#include <espnow.h>
}
#include "EspnowTransmitter.h"
#include "EspnowMeshBackend.h"
#include "TypeConversionFunctions.h"
#include "UtilityFunctions.h"
#include "MeshCryptoInterface.h"
#include "JsonTranslator.h"
namespace
{
namespace TypeCast = MeshTypeConversionFunctions;
double _transmissionsTotal = 0;
double _transmissionsFailed = 0;
std::shared_ptr<bool> _espnowTransmissionMutex = std::make_shared<bool>(false);
std::shared_ptr<bool> _espnowSendToNodeMutex = std::make_shared<bool>(false);
bool _useEncryptedMessages = false;
uint8_t _espnowMessageEncryptionKey[CryptoInterface::ENCRYPTION_KEY_LENGTH] = { 0 };
uint8_t _transmissionTargetBSSID[6] = {0};
bool _espnowSendConfirmed = false;
uint8_t _maxTransmissionsPerMessage = 3;
uint32_t _espnowTransmissionTimeoutMs = 40;
uint32_t _espnowRetransmissionIntervalMs = 15;
}
EspnowTransmitter::EspnowTransmitter(ConditionalPrinter &conditionalPrinterInstance, EspnowDatabase &databaseInstance, EspnowConnectionManager &connectionManagerInstance)
: _conditionalPrinter(conditionalPrinterInstance), _database(databaseInstance), _connectionManager(connectionManagerInstance)
{
}
void EspnowTransmitter::espnowSendCallback(uint8_t* mac, uint8_t sendStatus)
{
if(_espnowSendConfirmed)
return;
else if(!sendStatus && MeshUtilityFunctions::macEqual(mac, _transmissionTargetBSSID)) // sendStatus == 0 when send was OK.
_espnowSendConfirmed = true; // We do not want to reset this to false. That only happens before transmissions. Otherwise subsequent failed send attempts may obscure an initial successful one.
}
void EspnowTransmitter::setUseEncryptedMessages(const bool useEncryptedMessages)
{
MutexTracker mutexTracker(_espnowSendToNodeMutex);
if(!mutexTracker.mutexCaptured())
{
assert(false && String(F("ERROR! espnowSendToNode in progress. Don't call setUseEncryptedMessages from non-hook callbacks since this may modify the ESP-NOW transmission parameters during ongoing transmissions! Aborting.")));
}
_useEncryptedMessages = useEncryptedMessages;
}
bool EspnowTransmitter::useEncryptedMessages() { return _useEncryptedMessages; }
void EspnowTransmitter::setEspnowMessageEncryptionKey(const uint8_t espnowMessageEncryptionKey[CryptoInterface::ENCRYPTION_KEY_LENGTH])
{
assert(espnowMessageEncryptionKey != nullptr);
for(int i = 0; i < CryptoInterface::ENCRYPTION_KEY_LENGTH; ++i)
{
_espnowMessageEncryptionKey[i] = espnowMessageEncryptionKey[i];
}
}
void EspnowTransmitter::setEspnowMessageEncryptionKey(const String &espnowMessageEncryptionKeySeed)
{
MeshCryptoInterface::initializeKey(_espnowMessageEncryptionKey, CryptoInterface::ENCRYPTION_KEY_LENGTH, espnowMessageEncryptionKeySeed);
}
const uint8_t *EspnowTransmitter::getEspnowMessageEncryptionKey()
{
return _espnowMessageEncryptionKey;
}
void EspnowTransmitter::setBroadcastTransmissionRedundancy(const uint8_t redundancy) { _broadcastTransmissionRedundancy = redundancy; }
uint8_t EspnowTransmitter::getBroadcastTransmissionRedundancy() const { return _broadcastTransmissionRedundancy; }
void EspnowTransmitter::setResponseTransmittedHook(const responseTransmittedHookType responseTransmittedHook) { _responseTransmittedHook = responseTransmittedHook; }
EspnowTransmitter::responseTransmittedHookType EspnowTransmitter::getResponseTransmittedHook() const { return _responseTransmittedHook; }
void EspnowTransmitter::setMaxTransmissionsPerMessage(const uint8_t maxTransmissionsPerMessage)
{
assert(1 <= maxTransmissionsPerMessage && maxTransmissionsPerMessage <= 128);
_maxTransmissionsPerMessage = maxTransmissionsPerMessage;
}
uint8_t EspnowTransmitter::getMaxTransmissionsPerMessage() {return _maxTransmissionsPerMessage;}
uint32_t EspnowTransmitter::getMaxMessageLength()
{
return getMaxTransmissionsPerMessage() * EspnowProtocolInterpreter::getMaxMessageBytesPerTransmission();
}
void EspnowTransmitter::setEspnowTransmissionTimeout(const uint32_t timeoutMs)
{
_espnowTransmissionTimeoutMs = timeoutMs;
}
uint32_t EspnowTransmitter::getEspnowTransmissionTimeout() {return _espnowTransmissionTimeoutMs;}
void EspnowTransmitter::setEspnowRetransmissionInterval(const uint32_t intervalMs)
{
_espnowRetransmissionIntervalMs = intervalMs;
}
uint32_t EspnowTransmitter::getEspnowRetransmissionInterval() {return _espnowRetransmissionIntervalMs;}
double EspnowTransmitter::getTransmissionFailRate()
{
if(_transmissionsTotal == 0)
return 0;
return _transmissionsFailed/_transmissionsTotal;
}
void EspnowTransmitter::resetTransmissionFailRate()
{
_transmissionsFailed = 0;
_transmissionsTotal = 0;
}
void EspnowTransmitter::sendEspnowResponses(const ExpiringTimeTracker *estimatedMaxDurationTracker)
{
uint32_t bufferedCriticalHeapLevel = EspnowDatabase::criticalHeapLevel() + EspnowDatabase::criticalHeapLevelBuffer(); // We preferably want to start clearing the logs a bit before things get critical.
MutexTracker responsesToSendMutexTracker(EspnowDatabase::captureResponsesToSendMutex());
if(!responsesToSendMutexTracker.mutexCaptured())
{
assert(false && String(F("ERROR! responsesToSend locked. Don't call sendEspnowResponses from callbacks as this may corrupt program state! Aborting.")));
}
uint32_t responseIndex = 0;
for(std::list<ResponseData>::iterator responseIterator = EspnowDatabase::responsesToSend().begin(); responseIterator != EspnowDatabase::responsesToSend().end(); ++responseIndex)
{
if(responseIterator->getTimeTracker().timeSinceCreation() > EspnowDatabase::logEntryLifetimeMs())
{
// If the response is older than logEntryLifetimeMs(), the corresponding request log entry has been deleted at the request sender,
// so the request sender will not accept our response any more.
// This probably happens because we have a high transmission activity and more requests coming in than we can handle.
++responseIterator;
continue;
}
bool hookOutcome = true;
// Note that callbacks can be called during delay time, so it is possible to receive a transmission during espnowSendToNode
// (which may add an element to the responsesToSend list).
if(espnowSendToNodeUnsynchronized(responseIterator->getMessage(), responseIterator->getRecipientMac(), 'A', responseIterator->getRequestID())
== TransmissionStatusType::TRANSMISSION_COMPLETE)
{
if(EspnowMeshBackend *currentEspnowRequestManager = EspnowMeshBackend::getEspnowRequestManager())
hookOutcome = currentEspnowRequestManager->getResponseTransmittedHook()(responseIterator->getMessage(), responseIterator->getRecipientMac(), responseIndex, *currentEspnowRequestManager);
responseIterator = EspnowDatabase::responsesToSend().erase(responseIterator);
--responseIndex;
}
else
{
++responseIterator;
}
if(ESP.getFreeHeap() <= bufferedCriticalHeapLevel)
{
// Heap is getting very low, which probably means we are receiving a lot of transmissions while trying to transmit responses.
// Clear all old data to try to avoid running out of memory.
ConditionalPrinter::warningPrint("WARNING! Free heap below chosen minimum. Performing emergency log clearing.");
EspnowDatabase::clearOldLogEntries(true);
return; // responseIterator may be invalid now. Also, we should give the main loop a chance to respond to the situation.
}
if(!hookOutcome || (estimatedMaxDurationTracker && estimatedMaxDurationTracker->expired()))
return;
}
}
MutexTracker EspnowTransmitter::captureEspnowTransmissionMutex()
{
// Syntax like this will move the resulting value into its new position (similar to NRVO): https://stackoverflow.com/a/11540204
return MutexTracker(_espnowTransmissionMutex);
}
MutexTracker EspnowTransmitter::captureEspnowTransmissionMutex(const std::function<void()> destructorHook) { return MutexTracker(_espnowTransmissionMutex, destructorHook); }
bool EspnowTransmitter::transmissionInProgress(){return *_espnowTransmissionMutex;}
TransmissionStatusType EspnowTransmitter::espnowSendToNode(const String &message, const uint8_t *targetBSSID, const char messageType, EspnowMeshBackend *espnowInstance)
{
using EspnowProtocolInterpreter::synchronizationRequestHeader;
EncryptedConnectionLog *encryptedConnection = EspnowConnectionManager::getEncryptedConnection(targetBSSID);
if(encryptedConnection)
{
uint8_t encryptedMac[6] {0};
encryptedConnection->getEncryptedPeerMac(encryptedMac);
assert(esp_now_is_peer_exist(encryptedMac) > 0 && String(F("ERROR! Attempting to send content marked as encrypted via unencrypted connection!")));
if(encryptedConnection->desync())
{
espnowSendToNodeUnsynchronized(FPSTR(synchronizationRequestHeader), encryptedMac, 'S', EspnowConnectionManager::generateMessageID(encryptedConnection), espnowInstance);
if(encryptedConnection->desync())
{
return TransmissionStatusType::TRANSMISSION_FAILED;
}
}
return espnowSendToNodeUnsynchronized(message, encryptedMac, messageType, EspnowConnectionManager::generateMessageID(encryptedConnection), espnowInstance);
}
return espnowSendToNodeUnsynchronized(message, targetBSSID, messageType, EspnowConnectionManager::generateMessageID(encryptedConnection), espnowInstance);
}
TransmissionStatusType EspnowTransmitter::espnowSendToNodeUnsynchronized(const String message, const uint8_t *targetBSSID, const char messageType, const uint64_t messageID, EspnowMeshBackend *espnowInstance)
{
using namespace EspnowProtocolInterpreter;
MutexTracker mutexTracker(_espnowSendToNodeMutex);
if(!mutexTracker.mutexCaptured())
{
assert(false && String(F("ERROR! espnowSendToNode already in progress. Don't call espnowSendToNode from callbacks as this will make it impossible to know which transmissions succeed! Aborting.")));
return TransmissionStatusType::TRANSMISSION_FAILED;
}
// We copy the message String and bssid array from the arguments in this method to make sure they are
// not modified by a callback during the delay(1) calls further down.
// This also makes it possible to get the current _transmissionTargetBSSID outside of the method.
std::copy_n(targetBSSID, 6, _transmissionTargetBSSID);
EncryptedConnectionLog *encryptedConnection = EspnowConnectionManager::getEncryptedConnection(_transmissionTargetBSSID);
int32_t transmissionsRequired = ceil((double)message.length() / getMaxMessageBytesPerTransmission());
int32_t transmissionsRemaining = transmissionsRequired > 1 ? transmissionsRequired - 1 : 0;
_transmissionsTotal++;
// Though it is possible to handle messages requiring more than 3 transmissions with the current design, transmission fail rates would increase dramatically.
// Messages composed of up to 128 transmissions can be handled without modification, but RAM limitations on the ESP8266 would make this hard in practice.
// We thus prefer to keep the code simple and performant instead.
// Very large messages can always be split by the user as required.
assert(transmissionsRequired <= getMaxTransmissionsPerMessage());
assert(messageType == 'Q' || messageType == 'A' || messageType == 'B' || messageType == 'S' || messageType == 'P' || messageType == 'C');
if(messageType == 'P' || messageType == 'C')
{
assert(transmissionsRequired == 1); // These messages are assumed to be contained in one message by the receive callbacks.
}
uint8_t transmissionSize = 0;
bool messageStart = true;
uint8_t espnowMetadataSize = metadataSize();
do
{
////// Manage logs //////
if(transmissionsRemaining == 0 && (messageType == 'Q' || messageType == 'B'))
{
assert(espnowInstance); // espnowInstance required when transmitting 'Q' and 'B' type messages.
// If we are sending the last transmission of a request we should store the sent request in the log no matter if we receive an ack for the final transmission or not.
// That way we will always be ready to receive the response to the request when there is a chance the request message was transmitted successfully,
// even if the final ack for the request message was lost.
EspnowDatabase::storeSentRequest(TypeCast::macToUint64(_transmissionTargetBSSID), messageID, RequestData(*espnowInstance));
}
////// Create transmission array //////
if(transmissionsRemaining > 0)
{
transmissionSize = getMaxBytesPerTransmission();
}
else
{
transmissionSize = espnowMetadataSize;
if(message.length() > 0)
{
uint32_t remainingLength = message.length() % getMaxMessageBytesPerTransmission();
transmissionSize += (remainingLength == 0 ? getMaxMessageBytesPerTransmission() : remainingLength);
}
}
uint8_t transmission[transmissionSize];
////// Fill protocol bytes //////
transmission[messageTypeIndex] = messageType;
if(messageStart)
{
transmission[transmissionsRemainingIndex] = (char)(transmissionsRemaining | 0x80);
}
else
{
transmission[transmissionsRemainingIndex] = (char)transmissionsRemaining;
}
// Fills indicies in range [transmissionMacIndex, transmissionMacIndex + 5] (6 bytes) with the MAC address of the WiFi AP interface.
// We always transmit from the station interface (due to using ESP_NOW_ROLE_CONTROLLER), so this makes it possible to always know both interface MAC addresses of a node that sends a transmission.
WiFi.softAPmacAddress(transmission + transmissionMacIndex);
setMessageID(transmission, messageID);
////// Fill message bytes //////
int32_t transmissionStartIndex = (transmissionsRequired - transmissionsRemaining - 1) * getMaxMessageBytesPerTransmission();
std::copy_n(message.begin() + transmissionStartIndex, transmissionSize - espnowMetadataSize, transmission + espnowMetadataSize);
if(useEncryptedMessages())
{
// chacha20Poly1305Encrypt encrypts transmission in place.
// We are using the protocol bytes as a key salt.
CryptoInterface::chacha20Poly1305Encrypt(transmission + espnowMetadataSize, transmissionSize - espnowMetadataSize, getEspnowMessageEncryptionKey(), transmission,
protocolBytesSize, transmission + protocolBytesSize, transmission + protocolBytesSize + 12);
}
////// Transmit //////
uint32_t retransmissions = 0;
if(messageType == 'B')
retransmissions = espnowInstance->getBroadcastTransmissionRedundancy();
for(uint32_t i = 0; i <= retransmissions; ++i)
{
_espnowSendConfirmed = false;
ExpiringTimeTracker transmissionTimeout([](){ return getEspnowTransmissionTimeout(); });
while(!_espnowSendConfirmed && !transmissionTimeout)
{
if(esp_now_send(_transmissionTargetBSSID, transmission, transmissionSize) == 0) // == 0 => Success
{
ExpiringTimeTracker retransmissionTime([](){ return getEspnowRetransmissionInterval(); });
while(!_espnowSendConfirmed && !retransmissionTime && !transmissionTimeout)
{
delay(1); // Note that callbacks can be called during delay time, so it is possible to receive a transmission during this delay.
}
}
if(_espnowSendConfirmed)
{
if(messageStart)
{
if(encryptedConnection && !usesConstantSessionKey(messageType) && encryptedConnection->getOwnSessionKey() == messageID)
{
encryptedConnection->setDesync(false);
encryptedConnection->incrementOwnSessionKey();
}
messageStart = false;
}
break;
}
}
}
if(!_espnowSendConfirmed)
{
++_transmissionsFailed;
ConditionalPrinter::staticVerboseModePrint(String(F("espnowSendToNode failed!")));
ConditionalPrinter::staticVerboseModePrint(String(F("Transmission #: ")) + String(transmissionsRequired - transmissionsRemaining) + String('/') + String(transmissionsRequired));
ConditionalPrinter::staticVerboseModePrint(String(F("Transmission fail rate (up) ")) + String(getTransmissionFailRate()));
if(messageStart && encryptedConnection && !usesConstantSessionKey(messageType) && encryptedConnection->getOwnSessionKey() == messageID)
encryptedConnection->setDesync(true);
return TransmissionStatusType::TRANSMISSION_FAILED;
}
--transmissionsRemaining; // This is used when transfering multi-transmission messages.
} while(transmissionsRemaining >= 0);
// Useful when debugging the protocol
//_conditionalPrinter.staticVerboseModePrint("Sent to Mac: " + TypeCast::macToString(_transmissionTargetBSSID) + " ID: " + TypeCast::uint64ToString(messageID));
return TransmissionStatusType::TRANSMISSION_COMPLETE;
}
TransmissionStatusType EspnowTransmitter::espnowSendPeerRequestConfirmationsUnsynchronized(const String message, const uint8_t *targetBSSID, const char messageType, EspnowMeshBackend *espnowInstance)
{
return espnowSendToNodeUnsynchronized(message, targetBSSID, messageType, EspnowConnectionManager::generateMessageID(nullptr), espnowInstance);
}
TransmissionStatusType EspnowTransmitter::sendRequest(const String &message, const uint8_t *targetBSSID, EspnowMeshBackend *espnowInstance)
{
TransmissionStatusType transmissionStatus = espnowSendToNode(message, targetBSSID, 'Q', espnowInstance);
return transmissionStatus;
}
TransmissionStatusType EspnowTransmitter::sendResponse(const String &message, const uint64_t requestID, const uint8_t *targetBSSID, EspnowMeshBackend *espnowInstance)
{
EncryptedConnectionLog *encryptedConnection = EspnowConnectionManager::getEncryptedConnection(targetBSSID);
uint8_t encryptedMac[6] {0};
if(encryptedConnection)
{
encryptedConnection->getEncryptedPeerMac(encryptedMac);
assert(esp_now_is_peer_exist(encryptedMac) > 0 && String(F("ERROR! Attempting to send content marked as encrypted via unencrypted connection!")));
}
return espnowSendToNodeUnsynchronized(message, encryptedConnection ? encryptedMac : targetBSSID, 'A', requestID, espnowInstance);
}