1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-24 08:45:10 +03:00
esp8266/cores/esp8266/Updater.cpp
Earle F. Philhower, III e252873263
Use 2nd stack for update signature verification (#7149)
* Use 2nd stack for update signature verification

Fixes #7145

When doing a signed update, the signature calculation can use a lot of
stack, so move it silently to the BearSSL second stack.

Also fix a memory leak of signature-bytes found by @JiriBilek

* Reset state on any error condition in Updater::end
2020-03-14 16:10:40 -07:00

579 lines
16 KiB
C++

#include "Updater.h"
#include "eboot_command.h"
#include <esp8266_peri.h>
#include "StackThunk.h"
//#define DEBUG_UPDATER Serial
#include <Updater_Signing.h>
#ifndef ARDUINO_SIGNING
#define ARDUINO_SIGNING 0
#endif
#if ARDUINO_SIGNING
namespace esp8266 {
extern UpdaterHashClass& updaterSigningHash;
extern UpdaterVerifyClass& updaterSigningVerifier;
}
#endif
extern "C" {
#include "c_types.h"
#include "spi_flash.h"
#include "user_interface.h"
}
extern "C" uint32_t _FS_start;
extern "C" uint32_t _FS_end;
UpdaterClass::UpdaterClass()
: _async(false)
, _error(0)
, _buffer(0)
, _bufferLen(0)
, _size(0)
, _startAddress(0)
, _currentAddress(0)
, _command(U_FLASH)
, _hash(nullptr)
, _verify(nullptr)
, _progress_callback(nullptr)
{
#if ARDUINO_SIGNING
installSignature(&esp8266::updaterSigningHash, &esp8266::updaterSigningVerifier);
stack_thunk_add_ref();
#endif
}
UpdaterClass::~UpdaterClass()
{
#if ARDUINO_SIGNING
stack_thunk_del_ref();
#endif
}
UpdaterClass& UpdaterClass::onProgress(THandlerFunction_Progress fn) {
_progress_callback = fn;
return *this;
}
void UpdaterClass::_reset() {
if (_buffer)
delete[] _buffer;
_buffer = 0;
_bufferLen = 0;
_startAddress = 0;
_currentAddress = 0;
_size = 0;
_command = U_FLASH;
if(_ledPin != -1) {
digitalWrite(_ledPin, !_ledOn); // off
}
}
bool UpdaterClass::begin(size_t size, int command, int ledPin, uint8_t ledOn) {
if(_size > 0){
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.println(F("[begin] already running"));
#endif
return false;
}
_ledPin = ledPin;
_ledOn = !!ledOn; // 0(LOW) or 1(HIGH)
/* Check boot mode; if boot mode is 1 (UART download mode),
we will not be able to reset into normal mode once update is done.
Fail early to avoid frustration.
https://github.com/esp8266/Arduino/issues/1017#issuecomment-200605576
*/
int boot_mode = (GPI >> 16) & 0xf;
if (boot_mode == 1) {
_setError(UPDATE_ERROR_BOOTSTRAP);
return false;
}
#ifdef DEBUG_UPDATER
if (command == U_FS) {
DEBUG_UPDATER.println(F("[begin] Update Filesystem."));
}
#endif
if(size == 0) {
_setError(UPDATE_ERROR_SIZE);
return false;
}
if(!ESP.checkFlashConfig(false)) {
_setError(UPDATE_ERROR_FLASH_CONFIG);
return false;
}
_reset();
clearError(); // _error = 0
#ifndef HOST_MOCK
wifi_set_sleep_type(NONE_SLEEP_T);
#endif
//address where we will start writing the update
uintptr_t updateStartAddress = 0;
//size of current sketch rounded to a sector
size_t currentSketchSize = (ESP.getSketchSize() + FLASH_SECTOR_SIZE - 1) & (~(FLASH_SECTOR_SIZE - 1));
//size of the update rounded to a sector
size_t roundedSize = (size + FLASH_SECTOR_SIZE - 1) & (~(FLASH_SECTOR_SIZE - 1));
if (command == U_FLASH) {
//address of the end of the space available for sketch and update
uintptr_t updateEndAddress = (uintptr_t)&_FS_start - 0x40200000;
updateStartAddress = (updateEndAddress > roundedSize)? (updateEndAddress - roundedSize) : 0;
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("[begin] roundedSize: 0x%08zX (%zd)\n"), roundedSize, roundedSize);
DEBUG_UPDATER.printf_P(PSTR("[begin] updateEndAddress: 0x%08zX (%zd)\n"), updateEndAddress, updateEndAddress);
DEBUG_UPDATER.printf_P(PSTR("[begin] currentSketchSize: 0x%08zX (%zd)\n"), currentSketchSize, currentSketchSize);
#endif
//make sure that the size of both sketches is less than the total space (updateEndAddress)
if(updateStartAddress < currentSketchSize) {
_setError(UPDATE_ERROR_SPACE);
return false;
}
}
else if (command == U_FS) {
if((uintptr_t)&_FS_start + roundedSize > (uintptr_t)&_FS_end) {
_setError(UPDATE_ERROR_SPACE);
return false;
}
#ifdef ATOMIC_FS_UPDATE
//address of the end of the space available for update
uintptr_t updateEndAddress = (uintptr_t)&_FS_start - 0x40200000;
updateStartAddress = (updateEndAddress > roundedSize)? (updateEndAddress - roundedSize) : 0;
if(updateStartAddress < currentSketchSize) {
_setError(UPDATE_ERROR_SPACE);
return false;
}
#else
updateStartAddress = (uintptr_t)&_FS_start - 0x40200000;
#endif
}
else {
// unknown command
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.println(F("[begin] Unknown update command."));
#endif
return false;
}
//initialize
_startAddress = updateStartAddress;
_currentAddress = _startAddress;
_size = size;
if (ESP.getFreeHeap() > 2 * FLASH_SECTOR_SIZE) {
_bufferSize = FLASH_SECTOR_SIZE;
} else {
_bufferSize = 256;
}
_buffer = new uint8_t[_bufferSize];
_command = command;
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("[begin] _startAddress: 0x%08X (%d)\n"), _startAddress, _startAddress);
DEBUG_UPDATER.printf_P(PSTR("[begin] _currentAddress: 0x%08X (%d)\n"), _currentAddress, _currentAddress);
DEBUG_UPDATER.printf_P(PSTR("[begin] _size: 0x%08zX (%zd)\n"), _size, _size);
#endif
if (!_verify) {
_md5.begin();
}
return true;
}
bool UpdaterClass::setMD5(const char * expected_md5){
if(strlen(expected_md5) != 32)
{
return false;
}
_target_md5 = expected_md5;
return true;
}
bool UpdaterClass::end(bool evenIfRemaining){
if(_size == 0){
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.println(F("no update"));
#endif
_reset();
return false;
}
if(hasError() || (!isFinished() && !evenIfRemaining)){
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("premature end: res:%u, pos:%zu/%zu\n"), getError(), progress(), _size);
#endif
_reset();
return false;
}
if(evenIfRemaining) {
if(_bufferLen > 0) {
_writeBuffer();
}
_size = progress();
}
uint32_t sigLen = 0;
if (_verify) {
ESP.flashRead(_startAddress + _size - sizeof(uint32_t), &sigLen, sizeof(uint32_t));
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("[Updater] sigLen: %d\n"), sigLen);
#endif
if (sigLen != _verify->length()) {
_setError(UPDATE_ERROR_SIGN);
_reset();
return false;
}
int binSize = _size - sigLen - sizeof(uint32_t) /* The siglen word */;
_hash->begin();
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("[Updater] Adjusted binsize: %d\n"), binSize);
#endif
// Calculate the MD5 and hash using proper size
uint8_t buff[128];
for(int i = 0; i < binSize; i += sizeof(buff)) {
ESP.flashRead(_startAddress + i, (uint32_t *)buff, sizeof(buff));
size_t read = std::min((int)sizeof(buff), binSize - i);
_hash->add(buff, read);
}
_hash->end();
#ifdef DEBUG_UPDATER
unsigned char *ret = (unsigned char *)_hash->hash();
DEBUG_UPDATER.printf_P(PSTR("[Updater] Computed Hash:"));
for (int i=0; i<_hash->len(); i++) DEBUG_UPDATER.printf(" %02x", ret[i]);
DEBUG_UPDATER.printf("\n");
#endif
uint8_t *sig = (uint8_t*)malloc(sigLen);
if (!sig) {
_setError(UPDATE_ERROR_SIGN);
_reset();
return false;
}
ESP.flashRead(_startAddress + binSize, (uint32_t *)sig, sigLen);
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("[Updater] Received Signature:"));
for (size_t i=0; i<sigLen; i++) {
DEBUG_UPDATER.printf(" %02x", sig[i]);
}
DEBUG_UPDATER.printf("\n");
#endif
if (!_verify->verify(_hash, (void *)sig, sigLen)) {
free(sig);
_setError(UPDATE_ERROR_SIGN);
_reset();
return false;
}
free(sig);
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("[Updater] Signature matches\n"));
#endif
} else if (_target_md5.length()) {
_md5.calculate();
if (strcasecmp(_target_md5.c_str(), _md5.toString().c_str())) {
_setError(UPDATE_ERROR_MD5);
return false;
}
#ifdef DEBUG_UPDATER
else DEBUG_UPDATER.printf_P(PSTR("MD5 Success: %s\n"), _target_md5.c_str());
#endif
}
if(!_verifyEnd()) {
_reset();
return false;
}
if (_command == U_FLASH) {
eboot_command ebcmd;
ebcmd.action = ACTION_COPY_RAW;
ebcmd.args[0] = _startAddress;
ebcmd.args[1] = 0x00000;
ebcmd.args[2] = _size;
eboot_command_write(&ebcmd);
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("Staged: address:0x%08X, size:0x%08zX\n"), _startAddress, _size);
#endif
}
else if (_command == U_FS) {
#ifdef ATOMIC_FS_UPDATE
eboot_command ebcmd;
ebcmd.action = ACTION_COPY_RAW;
ebcmd.args[0] = _startAddress;
ebcmd.args[1] = (uintptr_t)&_FS_start - 0x40200000;
ebcmd.args[2] = _size;
eboot_command_write(&ebcmd);
#endif
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("Filesystem: address:0x%08X, size:0x%08zX\n"), _startAddress, _size);
#endif
}
_reset();
return true;
}
bool UpdaterClass::_writeBuffer(){
#define FLASH_MODE_PAGE 0
#define FLASH_MODE_OFFSET 2
bool eraseResult = true, writeResult = true;
if (_currentAddress % FLASH_SECTOR_SIZE == 0) {
if(!_async) yield();
eraseResult = ESP.flashEraseSector(_currentAddress/FLASH_SECTOR_SIZE);
}
// If the flash settings don't match what we already have, modify them.
// But restore them after the modification, so the hash isn't affected.
// This is analogous to what esptool.py does when it receives a --flash_mode argument.
bool modifyFlashMode = false;
FlashMode_t flashMode = FM_QIO;
FlashMode_t bufferFlashMode = FM_QIO;
//TODO - GZIP can't do this
if ((_currentAddress == _startAddress + FLASH_MODE_PAGE) && (_buffer[0] != 0x1f) && (_command == U_FLASH)) {
flashMode = ESP.getFlashChipMode();
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("Header: 0x%1X %1X %1X %1X\n"), _buffer[0], _buffer[1], _buffer[2], _buffer[3]);
#endif
bufferFlashMode = ESP.magicFlashChipMode(_buffer[FLASH_MODE_OFFSET]);
if (bufferFlashMode != flashMode) {
#ifdef DEBUG_UPDATER
DEBUG_UPDATER.printf_P(PSTR("Set flash mode from 0x%1X to 0x%1X\n"), bufferFlashMode, flashMode);
#endif
_buffer[FLASH_MODE_OFFSET] = flashMode;
modifyFlashMode = true;
}
}
if (eraseResult) {
if(!_async) yield();
writeResult = ESP.flashWrite(_currentAddress, (uint32_t*) _buffer, _bufferLen);
} else { // if erase was unsuccessful
_currentAddress = (_startAddress + _size);
_setError(UPDATE_ERROR_ERASE);
return false;
}
// Restore the old flash mode, if we modified it.
// Ensures that the MD5 hash will still match what was sent.
if (modifyFlashMode) {
_buffer[FLASH_MODE_OFFSET] = bufferFlashMode;
}
if (!writeResult) {
_currentAddress = (_startAddress + _size);
_setError(UPDATE_ERROR_WRITE);
return false;
}
if (!_verify) {
_md5.add(_buffer, _bufferLen);
}
_currentAddress += _bufferLen;
_bufferLen = 0;
return true;
}
size_t UpdaterClass::write(uint8_t *data, size_t len) {
if(hasError() || !isRunning())
return 0;
if(progress() + _bufferLen + len > _size) {
_setError(UPDATE_ERROR_SPACE);
return 0;
}
size_t left = len;
while((_bufferLen + left) > _bufferSize) {
size_t toBuff = _bufferSize - _bufferLen;
memcpy(_buffer + _bufferLen, data + (len - left), toBuff);
_bufferLen += toBuff;
if(!_writeBuffer()){
return len - left;
}
left -= toBuff;
if(!_async) yield();
}
//lets see whats left
memcpy(_buffer + _bufferLen, data + (len - left), left);
_bufferLen += left;
if(_bufferLen == remaining()){
//we are at the end of the update, so should write what's left to flash
if(!_writeBuffer()){
return len - left;
}
}
return len;
}
bool UpdaterClass::_verifyHeader(uint8_t data) {
if(_command == U_FLASH) {
// check for valid first magic byte (is always 0xE9)
if ((data != 0xE9) && (data != 0x1f)) {
_currentAddress = (_startAddress + _size);
_setError(UPDATE_ERROR_MAGIC_BYTE);
return false;
}
return true;
} else if(_command == U_FS) {
// no check of FS possible with first byte.
return true;
}
return false;
}
bool UpdaterClass::_verifyEnd() {
if(_command == U_FLASH) {
uint8_t buf[4];
if(!ESP.flashRead(_startAddress, (uint32_t *) &buf[0], 4)) {
_currentAddress = (_startAddress);
_setError(UPDATE_ERROR_READ);
return false;
}
// check for valid first magic byte
//
// TODO: GZIP compresses the chipsize flags, so can't do check here
if ((buf[0] == 0x1f) && (buf[1] == 0x8b)) {
// GZIP, just assume OK
return true;
} else if (buf[0] != 0xE9) {
_currentAddress = (_startAddress);
_setError(UPDATE_ERROR_MAGIC_BYTE);
return false;
}
uint32_t bin_flash_size = ESP.magicFlashChipSize((buf[3] & 0xf0) >> 4);
// check if new bin fits to SPI flash
if(bin_flash_size > ESP.getFlashChipRealSize()) {
_currentAddress = (_startAddress);
_setError(UPDATE_ERROR_NEW_FLASH_CONFIG);
return false;
}
return true;
} else if(_command == U_FS) {
// FS is already over written checks make no sense any more.
return true;
}
return false;
}
size_t UpdaterClass::writeStream(Stream &data) {
size_t written = 0;
size_t toRead = 0;
if(hasError() || !isRunning())
return 0;
if(!_verifyHeader(data.peek())) {
#ifdef DEBUG_UPDATER
printError(DEBUG_UPDATER);
#endif
_reset();
return 0;
}
if (_progress_callback) {
_progress_callback(0, _size);
}
if(_ledPin != -1) {
pinMode(_ledPin, OUTPUT);
}
while(remaining()) {
if(_ledPin != -1) {
digitalWrite(_ledPin, _ledOn); // Switch LED on
}
size_t bytesToRead = _bufferSize - _bufferLen;
if(bytesToRead > remaining()) {
bytesToRead = remaining();
}
toRead = data.readBytes(_buffer + _bufferLen, bytesToRead);
if(toRead == 0) { //Timeout
delay(100);
toRead = data.readBytes(_buffer + _bufferLen, bytesToRead);
if(toRead == 0) { //Timeout
_currentAddress = (_startAddress + _size);
_setError(UPDATE_ERROR_STREAM);
return written;
}
}
if(_ledPin != -1) {
digitalWrite(_ledPin, !_ledOn); // Switch LED off
}
_bufferLen += toRead;
if((_bufferLen == remaining() || _bufferLen == _bufferSize) && !_writeBuffer())
return written;
written += toRead;
if(_progress_callback) {
_progress_callback(progress(), _size);
}
yield();
}
if(_progress_callback) {
_progress_callback(progress(), _size);
}
return written;
}
void UpdaterClass::_setError(int error){
_error = error;
#ifdef DEBUG_UPDATER
printError(DEBUG_UPDATER);
#endif
_reset(); // Any error condition invalidates the entire update, so clear partial status
}
void UpdaterClass::printError(Print &out){
out.printf_P(PSTR("ERROR[%u]: "), _error);
if(_error == UPDATE_ERROR_OK){
out.println(F("No Error"));
} else if(_error == UPDATE_ERROR_WRITE){
out.println(F("Flash Write Failed"));
} else if(_error == UPDATE_ERROR_ERASE){
out.println(F("Flash Erase Failed"));
} else if(_error == UPDATE_ERROR_READ){
out.println(F("Flash Read Failed"));
} else if(_error == UPDATE_ERROR_SPACE){
out.println(F("Not Enough Space"));
} else if(_error == UPDATE_ERROR_SIZE){
out.println(F("Bad Size Given"));
} else if(_error == UPDATE_ERROR_STREAM){
out.println(F("Stream Read Timeout"));
} else if(_error == UPDATE_ERROR_MD5){
out.printf_P(PSTR("MD5 Failed: expected:%s, calculated:%s\n"), _target_md5.c_str(), _md5.toString().c_str());
} else if(_error == UPDATE_ERROR_SIGN){
out.println(F("Signature verification failed"));
} else if(_error == UPDATE_ERROR_FLASH_CONFIG){
out.printf_P(PSTR("Flash config wrong real: %d IDE: %d\n"), ESP.getFlashChipRealSize(), ESP.getFlashChipSize());
} else if(_error == UPDATE_ERROR_NEW_FLASH_CONFIG){
out.printf_P(PSTR("new Flash config wrong real: %d\n"), ESP.getFlashChipRealSize());
} else if(_error == UPDATE_ERROR_MAGIC_BYTE){
out.println(F("Magic byte is wrong, not 0xE9"));
} else if (_error == UPDATE_ERROR_BOOTSTRAP){
out.println(F("Invalid bootstrapping state, reset ESP8266 before updating"));
} else {
out.println(F("UNKNOWN"));
}
}
UpdaterClass Update;