1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-22 21:23:07 +03:00
esp8266/libraries/ESP8266WiFi/src/BearSSLHelpers.cpp
Earle F. Philhower, III 388d3020f2
Fix minor GCC10 static analyzer warnings (#7255)
Add minor NULL and double-free checks to source, identified using GCC10
pre-release static `-fanalyzer` on the coude.  These are harmless to
other versions.

Also add explicit include of stdint to Schedule.h, because libstdc++20
will not automatically include it.  Safe and no-op on earlier versions.
2020-04-30 18:25:31 -07:00

938 lines
26 KiB
C++

/*
WiFiClientBearSSL- SSL client/server for esp8266 using BearSSL libraries
- Mostly compatible with Arduino WiFi shield library and standard
WiFiClient/ServerSecure (except for certificate handling).
Copyright (c) 2018 Earle F. Philhower, III
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "BearSSLHelpers.h"
#include <memory>
#include <vector>
#include <bearssl/bearssl.h>
#include <pgmspace.h>
#include <stdlib.h>
#include <string.h>
#include <Arduino.h>
#include <StackThunk.h>
#include <Updater_Signing.h>
#ifndef ARDUINO_SIGNING
#define ARDUINO_SIGNING 0
#endif
namespace brssl {
// Code here is pulled from brssl sources, with the copyright and license
// shown below. I've rewritten things using C++ semantics and removed
// custom VEC_* calls (std::vector to the rescue) and adjusted things to
// allow for long-running operation (i.e. some memory issues when DERs
// passed into the decoders). Bugs are most likely my fault.
// Original (c) message follows:
/*
Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
class private_key {
public:
int key_type; /* BR_KEYTYPE_RSA or BR_KEYTYPE_EC */
union {
br_rsa_private_key rsa;
br_ec_private_key ec;
} key;
};
class public_key {
public:
int key_type; /* BR_KEYTYPE_RSA or BR_KEYTYPE_EC */
union {
br_rsa_public_key rsa;
br_ec_public_key ec;
} key;
};
class pem_object {
public:
char *name;
unsigned char *data;
size_t data_len;
};
// Forward definitions
void free_ta_contents(br_x509_trust_anchor *ta);
void free_public_key(public_key *pk);
void free_private_key(private_key *sk);
bool looks_like_DER(const unsigned char *buf, size_t len);
pem_object *decode_pem(const void *src, size_t len, size_t *num);
void free_pem_object_contents(pem_object *po);
// Used as callback multiple places to append a string to a vector
static void byte_vector_append(void *ctx, const void *buff, size_t len) {
std::vector<uint8_t> *vec = static_cast<std::vector<uint8_t>*>(ctx);
vec->reserve(vec->size() + len); // Allocate extra space all at once
for (size_t i = 0; i < len; i++) {
vec->push_back(((uint8_t*)buff)[i]);
}
}
static bool certificate_to_trust_anchor_inner(br_x509_trust_anchor *ta, const br_x509_certificate *xc) {
std::unique_ptr<br_x509_decoder_context> dc(new br_x509_decoder_context); // auto-delete on exit
std::vector<uint8_t> vdn;
br_x509_pkey *pk;
// Clear everything in the Trust Anchor
memset(ta, 0, sizeof(*ta));
br_x509_decoder_init(dc.get(), byte_vector_append, (void*)&vdn, 0, 0);
br_x509_decoder_push(dc.get(), xc->data, xc->data_len);
pk = br_x509_decoder_get_pkey(dc.get());
if (pk == nullptr) {
return false; // No key present, something broken in the cert!
}
// Copy the raw certificate data
ta->dn.data = (uint8_t*)malloc(vdn.size());
if (!ta->dn.data) {
return false; // OOM, but nothing yet allocated
}
memcpy(ta->dn.data, &vdn[0], vdn.size());
ta->dn.len = vdn.size();
ta->flags = 0;
if (br_x509_decoder_isCA(dc.get())) {
ta->flags |= BR_X509_TA_CA;
}
// Extract the public key
switch (pk->key_type) {
case BR_KEYTYPE_RSA:
ta->pkey.key_type = BR_KEYTYPE_RSA;
ta->pkey.key.rsa.n = (uint8_t*)malloc(pk->key.rsa.nlen);
ta->pkey.key.rsa.e = (uint8_t*)malloc(pk->key.rsa.elen);
if ((ta->pkey.key.rsa.n == nullptr) || (ta->pkey.key.rsa.e == nullptr)) {
free_ta_contents(ta); // OOM, so clean up
return false;
}
memcpy(ta->pkey.key.rsa.n, pk->key.rsa.n, pk->key.rsa.nlen);
ta->pkey.key.rsa.nlen = pk->key.rsa.nlen;
memcpy(ta->pkey.key.rsa.e, pk->key.rsa.e, pk->key.rsa.elen);
ta->pkey.key.rsa.elen = pk->key.rsa.elen;
return true;
case BR_KEYTYPE_EC:
ta->pkey.key_type = BR_KEYTYPE_EC;
ta->pkey.key.ec.curve = pk->key.ec.curve;
ta->pkey.key.ec.q = (uint8_t*)malloc(pk->key.ec.qlen);
if (ta->pkey.key.ec.q == nullptr) {
free_ta_contents(ta); // OOM, so clean up
return false;
}
memcpy(ta->pkey.key.ec.q, pk->key.ec.q, pk->key.ec.qlen);
ta->pkey.key.ec.qlen = pk->key.ec.qlen;
return true;
default:
free_ta_contents(ta); // Unknown key type
return false;
}
// Should never get here, if so there was an unknown error
return false;
}
br_x509_trust_anchor *certificate_to_trust_anchor(const br_x509_certificate *xc) {
br_x509_trust_anchor *ta = (br_x509_trust_anchor*)malloc(sizeof(br_x509_trust_anchor));
if (!ta) {
return nullptr;
}
if (!certificate_to_trust_anchor_inner(ta, xc)) {
free(ta);
return nullptr;
}
return ta;
}
void free_ta_contents(br_x509_trust_anchor *ta) {
if (ta) {
free(ta->dn.data);
if (ta->pkey.key_type == BR_KEYTYPE_RSA) {
free(ta->pkey.key.rsa.n);
free(ta->pkey.key.rsa.e);
} else if (ta->pkey.key_type == BR_KEYTYPE_EC) {
free(ta->pkey.key.ec.q);
}
memset(ta, 0, sizeof(*ta));
}
}
// Checks if a bitstream looks like a valid DER(binary) encoding.
// Basically tries to verify the length of all included segments
// matches the length of the input buffer. Does not actually
// validate any contents.
bool looks_like_DER(const unsigned char *buff, size_t len) {
if (len < 2) {
return false;
}
if (pgm_read_byte(buff++) != 0x30) {
return false;
}
int fb = pgm_read_byte(buff++);
len -= 2;
if (fb < 0x80) {
return (size_t)fb == len;
} else if (fb == 0x80) {
return false;
} else {
fb -= 0x80;
if (len < (size_t)fb + 2) {
return false;
}
len -= (size_t)fb;
size_t dlen = 0;
while (fb -- > 0) {
if (dlen > (len >> 8)) {
return false;
}
dlen = (dlen << 8) + (size_t)pgm_read_byte(buff++);
}
return dlen == len;
}
}
void free_pem_object_contents(pem_object *po) {
if (po) {
free(po->name);
free(po->data);
po->name = nullptr;
po->data = nullptr;
}
}
// Converts a PEM (~=base64) source into a set of DER-encoded binary blobs.
// Each blob is named by the ---- BEGIN xxx ---- field, and multiple
// blobs may be returned.
pem_object *decode_pem(const void *src, size_t len, size_t *num) {
std::vector<pem_object> pem_list;
std::unique_ptr<br_pem_decoder_context> pc(new br_pem_decoder_context); // auto-delete on exit
if (!pc.get()) {
return nullptr;
}
pem_object po, *pos;
const unsigned char *buff;
std::vector<uint8_t> bv;
*num = 0;
br_pem_decoder_init(pc.get());
buff = (const unsigned char *)src;
po.name = nullptr;
po.data = nullptr;
po.data_len = 0;
bool inobj = false;
bool extra_nl = true;
while (len > 0) {
size_t tlen;
tlen = br_pem_decoder_push(pc.get(), buff, len);
buff += tlen;
len -= tlen;
switch (br_pem_decoder_event(pc.get())) {
case BR_PEM_BEGIN_OBJ:
po.name = strdup(br_pem_decoder_name(pc.get()));
br_pem_decoder_setdest(pc.get(), byte_vector_append, &bv);
inobj = true;
break;
case BR_PEM_END_OBJ:
if (inobj) {
// Stick data into the vector
po.data = (uint8_t*)malloc(bv.size());
if (po.data) {
memcpy(po.data, &bv[0], bv.size());
po.data_len = bv.size();
pem_list.push_back(po);
}
// Clean up state for next blob processing
bv.clear();
po.name = nullptr;
po.data = nullptr;
po.data_len = 0;
inobj = false;
}
break;
case BR_PEM_ERROR:
free(po.name);
for (size_t i = 0; i < pem_list.size(); i++) {
free_pem_object_contents(&pem_list[i]);
}
return nullptr;
default:
// Do nothing here, the parser is still working on things
break;
}
if (len == 0 && extra_nl) {
extra_nl = false;
buff = (const unsigned char *)"\n";
len = 1;
}
}
if (inobj) {
free(po.name);
for (size_t i = 0; i < pem_list.size(); i++) {
free_pem_object_contents(&pem_list[i]);
}
return nullptr;
}
pos = (pem_object*)malloc((1 + pem_list.size()) * sizeof(*pos));
if (pos) {
*num = pem_list.size();
pem_list.push_back(po); // Null-terminate list
memcpy(pos, &pem_list[0], pem_list.size() * sizeof(*pos));
}
return pos;
}
// Parse out DER or PEM encoded certificates from a binary buffer,
// potentially stored in PROGMEM.
br_x509_certificate *read_certificates(const char *buff, size_t len, size_t *num) {
std::vector<br_x509_certificate> cert_list;
pem_object *pos;
size_t u, num_pos;
br_x509_certificate *xcs;
br_x509_certificate dummy;
*num = 0;
if (looks_like_DER((const unsigned char *)buff, len)) {
xcs = (br_x509_certificate*)malloc(2 * sizeof(*xcs));
if (!xcs) {
return nullptr;
}
xcs[0].data = (uint8_t*)malloc(len);
if (!xcs[0].data) {
free(xcs);
return nullptr;
}
memcpy_P(xcs[0].data, buff, len);
xcs[0].data_len = len;
xcs[1].data = nullptr;
xcs[1].data_len = 0;
*num = 1;
return xcs;
}
pos = decode_pem(buff, len, &num_pos);
if (!pos) {
return nullptr;
}
for (u = 0; u < num_pos; u ++) {
if (!strcmp_P(pos[u].name, PSTR("CERTIFICATE")) || !strcmp_P(pos[u].name, PSTR("X509 CERTIFICATE"))) {
br_x509_certificate xc;
xc.data = pos[u].data;
xc.data_len = pos[u].data_len;
pos[u].data = nullptr; // Don't free the data we moved to the xc vector!
cert_list.push_back(xc);
}
}
for (u = 0; u < num_pos; u ++) {
free_pem_object_contents(&pos[u]);
}
free(pos);
if (cert_list.size() == 0) {
return nullptr;
}
*num = cert_list.size();
dummy.data = nullptr;
dummy.data_len = 0;
cert_list.push_back(dummy);
xcs = (br_x509_certificate*)malloc(cert_list.size() * sizeof(*xcs));
if (!xcs) {
for (size_t i = 0; i < cert_list.size(); i++) {
free(cert_list[i].data); // Clean up any captured data blobs
}
return nullptr;
}
memcpy(xcs, &cert_list[0], cert_list.size() * sizeof(br_x509_certificate));
// XCS now has [].data pointing to the previously allocated blobs, so don't
// want to free anything in cert_list[].
return xcs;
}
void free_certificates(br_x509_certificate *certs, size_t num) {
if (certs) {
for (size_t u = 0; u < num; u ++) {
free(certs[u].data);
}
free(certs);
}
}
static public_key *decode_public_key(const unsigned char *buff, size_t len) {
std::unique_ptr<br_pkey_decoder_context> dc(new br_pkey_decoder_context); // auto-delete on exit
if (!dc.get()) {
return nullptr;
}
public_key *pk = nullptr;
br_pkey_decoder_init(dc.get());
br_pkey_decoder_push(dc.get(), buff, len);
int err = br_pkey_decoder_last_error(dc.get());
if (err != 0) {
return nullptr;
}
const br_rsa_public_key *rk = nullptr;
const br_ec_public_key *ek = nullptr;
switch (br_pkey_decoder_key_type(dc.get())) {
case BR_KEYTYPE_RSA:
rk = br_pkey_decoder_get_rsa(dc.get());
pk = (public_key*)malloc(sizeof * pk);
if (!pk) {
return nullptr;
}
pk->key_type = BR_KEYTYPE_RSA;
pk->key.rsa.n = (uint8_t*)malloc(rk->nlen);
pk->key.rsa.e = (uint8_t*)malloc(rk->elen);
if (!pk->key.rsa.n || !pk->key.rsa.e) {
free(pk->key.rsa.n);
free(pk->key.rsa.e);
free(pk);
return nullptr;
}
memcpy(pk->key.rsa.n, rk->n, rk->nlen);
pk->key.rsa.nlen = rk->nlen;
memcpy(pk->key.rsa.e, rk->e, rk->elen);
pk->key.rsa.elen = rk->elen;
return pk;
case BR_KEYTYPE_EC:
ek = br_pkey_decoder_get_ec(dc.get());
pk = (public_key*)malloc(sizeof * pk);
if (!pk) {
return nullptr;
}
pk->key_type = BR_KEYTYPE_EC;
pk->key.ec.q = (uint8_t*)malloc(ek->qlen);
if (!pk->key.ec.q) {
free(pk);
return nullptr;
}
memcpy(pk->key.ec.q, ek->q, ek->qlen);
pk->key.ec.qlen = ek->qlen;
return pk;
default:
return nullptr;
}
}
void free_public_key(public_key *pk) {
if (pk) {
if (pk->key_type == BR_KEYTYPE_RSA) {
free(pk->key.rsa.n);
free(pk->key.rsa.e);
} else if (pk->key_type == BR_KEYTYPE_EC) {
free(pk->key.ec.q);
}
free(pk);
}
}
static private_key *decode_private_key(const unsigned char *buff, size_t len) {
std::unique_ptr<br_skey_decoder_context> dc(new br_skey_decoder_context); // auto-delete on exit
if (!dc.get()) {
return nullptr;
}
private_key *sk = nullptr;
br_skey_decoder_init(dc.get());
br_skey_decoder_push(dc.get(), buff, len);
int err = br_skey_decoder_last_error(dc.get());
if (err != 0) {
return nullptr;
}
const br_rsa_private_key *rk = nullptr;
const br_ec_private_key *ek = nullptr;
switch (br_skey_decoder_key_type(dc.get())) {
case BR_KEYTYPE_RSA:
rk = br_skey_decoder_get_rsa(dc.get());
sk = (private_key*)malloc(sizeof * sk);
if (!sk) {
return nullptr;
}
sk->key_type = BR_KEYTYPE_RSA;
sk->key.rsa.p = (uint8_t*)malloc(rk->plen);
sk->key.rsa.q = (uint8_t*)malloc(rk->qlen);
sk->key.rsa.dp = (uint8_t*)malloc(rk->dplen);
sk->key.rsa.dq = (uint8_t*)malloc(rk->dqlen);
sk->key.rsa.iq = (uint8_t*)malloc(rk->iqlen);
if (!sk->key.rsa.p || !sk->key.rsa.q || !sk->key.rsa.dp || !sk->key.rsa.dq || !sk->key.rsa.iq) {
free_private_key(sk);
return nullptr;
}
sk->key.rsa.n_bitlen = rk->n_bitlen;
memcpy(sk->key.rsa.p, rk->p, rk->plen);
sk->key.rsa.plen = rk->plen;
memcpy(sk->key.rsa.q, rk->q, rk->qlen);
sk->key.rsa.qlen = rk->qlen;
memcpy(sk->key.rsa.dp, rk->dp, rk->dplen);
sk->key.rsa.dplen = rk->dplen;
memcpy(sk->key.rsa.dq, rk->dq, rk->dqlen);
sk->key.rsa.dqlen = rk->dqlen;
memcpy(sk->key.rsa.iq, rk->iq, rk->iqlen);
sk->key.rsa.iqlen = rk->iqlen;
return sk;
case BR_KEYTYPE_EC:
ek = br_skey_decoder_get_ec(dc.get());
sk = (private_key*)malloc(sizeof * sk);
sk->key_type = BR_KEYTYPE_EC;
sk->key.ec.curve = ek->curve;
sk->key.ec.x = (uint8_t*)malloc(ek->xlen);
if (!sk->key.ec.x) {
free_private_key(sk);
return nullptr;
}
memcpy(sk->key.ec.x, ek->x, ek->xlen);
sk->key.ec.xlen = ek->xlen;
return sk;
default:
return nullptr;
}
}
void free_private_key(private_key *sk) {
if (sk) {
switch (sk->key_type) {
case BR_KEYTYPE_RSA:
free(sk->key.rsa.p);
free(sk->key.rsa.q);
free(sk->key.rsa.dp);
free(sk->key.rsa.dq);
free(sk->key.rsa.iq);
break;
case BR_KEYTYPE_EC:
free(sk->key.ec.x);
break;
default:
// Could be an uninitted key, no sub elements to free
break;
}
free(sk);
}
}
void free_pem_object(pem_object *pos) {
if (pos != nullptr) {
for (size_t u = 0; pos[u].name; u ++) {
free_pem_object_contents(&pos[u]);
}
free(pos);
}
}
private_key *read_private_key(const char *buff, size_t len) {
private_key *sk = nullptr;
pem_object *pos = nullptr;
if (looks_like_DER((const unsigned char*)buff, len)) {
sk = decode_private_key((const unsigned char*)buff, len);
return sk;
}
size_t num;
pos = decode_pem(buff, len, &num);
if (pos == nullptr) {
return nullptr; // PEM decode error
}
for (size_t u = 0; pos[u].name; u ++) {
const char *name = pos[u].name;
if (!strcmp_P(name, PSTR("RSA PRIVATE KEY")) || !strcmp_P(name, PSTR("EC PRIVATE KEY")) || !strcmp_P(name, PSTR("PRIVATE KEY"))) {
sk = decode_private_key(pos[u].data, pos[u].data_len);
free_pem_object(pos);
return sk;
}
}
// If we hit here, no match
free_pem_object(pos);
return nullptr;
}
public_key *read_public_key(const char *buff, size_t len) {
public_key *pk = nullptr;
pem_object *pos = nullptr;
if (looks_like_DER((const unsigned char*)buff, len)) {
pk = decode_public_key((const unsigned char*)buff, len);
return pk;
}
size_t num;
pos = decode_pem(buff, len, &num);
if (pos == nullptr) {
return nullptr; // PEM decode error
}
for (size_t u = 0; pos[u].name; u ++) {
const char *name = pos[u].name;
if (!strcmp_P(name, PSTR("RSA PUBLIC KEY")) || !strcmp_P(name, PSTR("EC PUBLIC KEY")) || !strcmp_P(name, PSTR("PUBLIC KEY"))) {
pk = decode_public_key(pos[u].data, pos[u].data_len);
free_pem_object(pos);
return pk;
}
}
// We hit here == no key found
free_pem_object(pos);
return pk;
}
};
namespace BearSSL {
// ----- Public Key -----
PublicKey::PublicKey() {
_key = nullptr;
}
PublicKey::PublicKey(const char *pemKey) {
_key = nullptr;
parse(pemKey);
}
PublicKey::PublicKey(const uint8_t *derKey, size_t derLen) {
_key = nullptr;
parse(derKey, derLen);
}
PublicKey::~PublicKey() {
if (_key) {
brssl::free_public_key(_key);
}
}
bool PublicKey::parse(const char *pemKey) {
return parse((const uint8_t *)pemKey, strlen_P(pemKey));
}
bool PublicKey::parse(const uint8_t *derKey, size_t derLen) {
if (_key) {
brssl::free_public_key(_key);
_key = nullptr;
}
_key = brssl::read_public_key((const char *)derKey, derLen);
return _key ? true : false;
}
bool PublicKey::isRSA() const {
if (!_key || _key->key_type != BR_KEYTYPE_RSA) {
return false;
}
return true;
}
bool PublicKey::isEC() const {
if (!_key || _key->key_type != BR_KEYTYPE_EC) {
return false;
}
return true;
}
const br_rsa_public_key *PublicKey::getRSA() const {
if (!_key || _key->key_type != BR_KEYTYPE_RSA) {
return nullptr;
}
return &_key->key.rsa;
}
const br_ec_public_key *PublicKey::getEC() const {
if (!_key || _key->key_type != BR_KEYTYPE_EC) {
return nullptr;
}
return &_key->key.ec;
}
// ----- Private Key -----
PrivateKey::PrivateKey() {
_key = nullptr;
}
PrivateKey::PrivateKey(const char *pemKey) {
_key = nullptr;
parse(pemKey);
}
PrivateKey::PrivateKey(const uint8_t *derKey, size_t derLen) {
_key = nullptr;
parse(derKey, derLen);
}
PrivateKey::~PrivateKey() {
if (_key) {
brssl::free_private_key(_key);
}
}
bool PrivateKey::parse(const char *pemKey) {
return parse((const uint8_t *)pemKey, strlen_P(pemKey));
}
bool PrivateKey::parse(const uint8_t *derKey, size_t derLen) {
if (_key) {
brssl::free_private_key(_key);
_key = nullptr;
}
_key = brssl::read_private_key((const char *)derKey, derLen);
return _key ? true : false;
}
bool PrivateKey::isRSA() const {
if (!_key || _key->key_type != BR_KEYTYPE_RSA) {
return false;
}
return true;
}
bool PrivateKey::isEC() const {
if (!_key || _key->key_type != BR_KEYTYPE_EC) {
return false;
}
return true;
}
const br_rsa_private_key *PrivateKey::getRSA() const {
if (!_key || _key->key_type != BR_KEYTYPE_RSA) {
return nullptr;
}
return &_key->key.rsa;
}
const br_ec_private_key *PrivateKey::getEC() const {
if (!_key || _key->key_type != BR_KEYTYPE_EC) {
return nullptr;
}
return &_key->key.ec;
}
// ----- Certificate Lists -----
X509List::X509List() {
_count = 0;
_cert = nullptr;
_ta = nullptr;
}
X509List::X509List(const char *pemCert) {
_count = 0;
_cert = nullptr;
_ta = nullptr;
append(pemCert);
}
X509List::X509List(const uint8_t *derCert, size_t derLen) {
_count = 0;
_cert = nullptr;
_ta = nullptr;
append(derCert, derLen);
}
X509List::~X509List() {
brssl::free_certificates(_cert, _count); // also frees cert
for (size_t i = 0; i < _count; i++) {
brssl::free_ta_contents(&_ta[i]);
}
free(_ta);
}
bool X509List::append(const char *pemCert) {
return append((const uint8_t *)pemCert, strlen_P(pemCert));
}
bool X509List::append(const uint8_t *derCert, size_t derLen) {
size_t numCerts;
br_x509_certificate *newCerts = brssl::read_certificates((const char *)derCert, derLen, &numCerts);
if (!newCerts) {
return false;
}
// Add in the certificates
br_x509_certificate *saveCert = _cert;
_cert = (br_x509_certificate*)realloc(_cert, (numCerts + _count) * sizeof(br_x509_certificate));
if (!_cert) {
free(newCerts);
_cert = saveCert;
return false;
}
memcpy(&_cert[_count], newCerts, numCerts * sizeof(br_x509_certificate));
free(newCerts);
// Build TAs for each certificate
br_x509_trust_anchor *saveTa = _ta;
_ta = (br_x509_trust_anchor*)realloc(_ta, (numCerts + _count) * sizeof(br_x509_trust_anchor));
if (!_ta) {
_ta = saveTa;
return false;
}
for (size_t i = 0; i < numCerts; i++) {
br_x509_trust_anchor *newTa = brssl::certificate_to_trust_anchor(&_cert[_count + i]);
if (newTa) {
_ta[_count + i ] = *newTa;
free(newTa);
} else {
return false; // OOM
}
}
_count += numCerts;
return true;
}
// SHA256 hash for updater
void HashSHA256::begin() {
br_sha256_init( &_cc );
memset( _sha256, 0, sizeof(_sha256) );
}
void HashSHA256::add(const void *data, uint32_t len) {
br_sha256_update( &_cc, data, len );
}
void HashSHA256::end() {
br_sha256_out( &_cc, _sha256 );
}
int HashSHA256::len() {
return sizeof(_sha256);
}
const void *HashSHA256::hash() {
return (const void*) _sha256;
}
const unsigned char *HashSHA256::oid() {
return BR_HASH_OID_SHA256;
}
// SHA256 verifier
uint32_t SigningVerifier::length()
{
if (!_pubKey) {
return 0;
} else if (_pubKey->isRSA()) {
return _pubKey->getRSA()->nlen;
} else if (_pubKey->isEC()) {
return _pubKey->getEC()->qlen;
} else {
return 0;
}
}
// We need to use the 2nd stack to do a verification, so do the thunk
// directly inside the class function for ease of use.
extern "C" bool SigningVerifier_verify(PublicKey *_pubKey, UpdaterHashClass *hash, const void *signature, uint32_t signatureLen) {
if (_pubKey->isRSA()) {
bool ret;
unsigned char vrf[hash->len()];
br_rsa_pkcs1_vrfy vrfy = br_rsa_pkcs1_vrfy_get_default();
ret = vrfy((const unsigned char *)signature, signatureLen, hash->oid(), sizeof(vrf), _pubKey->getRSA(), vrf);
if (!ret || memcmp(vrf, hash->hash(), sizeof(vrf)) ) {
return false;
} else {
return true;
}
} else {
br_ecdsa_vrfy vrfy = br_ecdsa_vrfy_raw_get_default();
// The EC verifier actually does the compare, unlike the RSA one
return vrfy(br_ec_get_default(), hash->hash(), hash->len(), _pubKey->getEC(), (const unsigned char *)signature, signatureLen);
}
};
#if !CORE_MOCK
make_stack_thunk(SigningVerifier_verify);
extern "C" bool thunk_SigningVerifier_verify(PublicKey *_pubKey, UpdaterHashClass *hash, const void *signature, uint32_t signatureLen);
#endif
bool SigningVerifier::verify(UpdaterHashClass *hash, const void *signature, uint32_t signatureLen) {
if (!_pubKey || !hash || !signature || signatureLen != length()) return false;
#if !CORE_MOCK
return thunk_SigningVerifier_verify(_pubKey, hash, signature, signatureLen);
#else
return SigningVerifier_verify(_pubKey, hash, signature, signatureLen);
#endif
}
#if !CORE_MOCK
// Second stack thunked helpers
make_stack_thunk(br_ssl_engine_recvapp_ack);
make_stack_thunk(br_ssl_engine_recvapp_buf);
make_stack_thunk(br_ssl_engine_recvrec_ack);
make_stack_thunk(br_ssl_engine_recvrec_buf);
make_stack_thunk(br_ssl_engine_sendapp_ack);
make_stack_thunk(br_ssl_engine_sendapp_buf);
make_stack_thunk(br_ssl_engine_sendrec_ack);
make_stack_thunk(br_ssl_engine_sendrec_buf);
#endif
};
#if ARDUINO_SIGNING
namespace {
static BearSSL::PublicKey signingPubKey(signing_pubkey);
static BearSSL::HashSHA256 __signingHash;
static BearSSL::SigningVerifier __signingVerifier(&signingPubKey);
};
namespace esp8266 {
UpdaterHashClass& updaterSigningHash = __signingHash;
UpdaterVerifyClass& updaterSigningVerifier = __signingVerifier;
};
#endif