1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-22 21:23:07 +03:00
esp8266/bootloaders/eboot/eboot_command.c
Earle F. Philhower, III 1d0bc5efdf
Allow GZIP compressed flash updates (#6820)
* Allow GZIP compressed flash updates

Modified the bootloader to be able to take stored updates in compressed
GZIP format (i.e. the output of "gzip -9 xxx.bin") and decompress them
on-the-fly to their final destination.  This can work for apps and for
filesystems (when used with the 2-step update option).

Allow eboot to be built using -Os/2 optimizations by fixing some portions
which failed when any optimizations were used.  Add -Wall and use data
and function sections to reduce size.  Use -Os to minimize size.

Remove obsolete esptool-ck calls to build a .ROM image, we don't use it.

Move all uninitted variables to RAM from IRAM, allowing 8-bit access.

Hook in @d-a-v and @pfalcon's uzlib port to actually do the
decompression.  Do not use any CRC checking which saves space.  Since we
have overwritten all of flash by the time we know id the CRC matches,
there's nothing we could have done anyway.

Adjust the Updater class to support GZIP files and not attempt to patch
them.

Bootloader builds to 0xd90 out of 0xfff bytes.

* Add @d-a-v's patch for httpupdate

https://github.com/esp8266/Arduino/pull/6820#pullrequestreview-326541014

* Update uzlib to point to pfalcon++

For now, because there are some self-test failures with @d-a-v's esp8266
branch (whose cool new features we don't actually use in eboot now)
start with pfalcon's 2.9 release and add the 2 patches (clcidx to code
from IRAM/RODATA, and the Windows test file renaming) needed to build
and run successfully.

* Add (c) notice for uzlib to README
2019-12-18 09:17:38 -08:00

66 lines
1.6 KiB
C

#include "eboot_command.h"
uint32_t crc_update(uint32_t crc, const uint8_t *data, size_t length)
{
uint32_t i;
bool bit;
uint8_t c;
while (length--) {
c = *data++;
for (i = 0x80; i > 0; i >>= 1) {
bit = crc & 0x80000000;
if (c & i) {
bit = !bit;
}
crc <<= 1;
if (bit) {
crc ^= 0x04c11db7;
}
}
}
return crc;
}
uint32_t eboot_command_calculate_crc32(const struct eboot_command* cmd)
{
return crc_update(0xffffffff, (const uint8_t*) cmd,
offsetof(struct eboot_command, crc32));
}
int eboot_command_read(struct eboot_command* cmd)
{
const uint32_t dw_count = sizeof(struct eboot_command) / sizeof(uint32_t);
uint32_t* dst = (uint32_t *) cmd;
for (uint32_t i = 0; i < dw_count; ++i) {
dst[i] = RTC_MEM[i];
}
uint32_t crc32 = eboot_command_calculate_crc32(cmd);
if ((cmd->magic & EBOOT_MAGIC_MASK) != EBOOT_MAGIC ||
cmd->crc32 != crc32) {
return 1;
}
return 0;
}
void eboot_command_write(struct eboot_command* cmd)
{
cmd->magic = EBOOT_MAGIC;
cmd->crc32 = eboot_command_calculate_crc32(cmd);
const uint32_t dw_count = sizeof(struct eboot_command) / sizeof(uint32_t);
const uint32_t* src = (const uint32_t *) cmd;
for (uint32_t i = 0; i < dw_count; ++i) {
RTC_MEM[i] = src[i];
}
}
void eboot_command_clear()
{
RTC_MEM[offsetof(struct eboot_command, magic) / sizeof(uint32_t)] = 0;
RTC_MEM[offsetof(struct eboot_command, crc32) / sizeof(uint32_t)] = 0;
}