1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00
esp8266/cores/esp8266/HardwareSerial.cpp

579 lines
16 KiB
C++

/*
HardwareSerial.cpp - esp8266 UART support
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 31 March 2015 by Markus Sattler (rewrite the code for UART0 + UART1 support in ESP8266)
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
#include "cbuf.h"
extern "C" {
#include "osapi.h"
#include "ets_sys.h"
#include "mem.h"
#include "uart_register.h"
#include "user_interface.h"
}
#include "HardwareSerial.h"
#define UART_TX_FIFO_SIZE 0x80
/**
* UART GPIOs
*
* UART0 TX: 1 or 2
* UART0 RX: 3
*
* UART0 SWAP TX: 15
* UART0 SWAP RX: 13
*
*
* UART1 TX: 7 (NC) or 2
* UART1 RX: 8 (NC)
*
* UART1 SWAP TX: 11 (NC)
* UART1 SWAP RX: 6 (NC)
*
* NC = Not Connected to Module Pads --> No Access
*
*/
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
HardwareSerial Serial(UART0);
HardwareSerial Serial1(UART1);
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void uart_interrupt_handler(uart_t* uart);
void uart_wait_for_tx_fifo(uart_t* uart, size_t size_needed);
size_t uart_get_tx_fifo_room(uart_t* uart);
void uart_wait_for_transmit(uart_t* uart);
void uart_transmit_char(uart_t* uart, char c);
void uart_transmit(uart_t* uart, const char* buf, size_t size);
void uart_flush(uart_t* uart);
void uart_interrupt_enable(uart_t* uart);
void uart_interrupt_disable(uart_t* uart);
void uart_arm_tx_interrupt(uart_t* uart);
void uart_disarm_tx_interrupt(uart_t* uart);
void uart_set_baudrate(uart_t* uart, int baud_rate);
int uart_get_baudrate(uart_t* uart);
uart_t* uart_init(UARTnr_t uart_nr, int baudrate);
void uart_uninit(uart_t* uart);
void uart_swap(uart_t* uart);
void uart_ignore_char(char c);
void uart0_write_char(char c);
void uart1_write_char(char c);
void uart_set_debug(UARTnr_t uart_nr);
UARTnr_t uart_get_debug();
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void ICACHE_FLASH_ATTR uart_interrupt_handler(uart_t* uart) {
// -------------- UART 0 --------------
uint32_t status = READ_PERI_REG(UART_INT_ST(0));
if(Serial.isRxEnabled()) {
if(status & UART_RXFIFO_FULL_INT_ST) {
while(true) {
int rx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if(!rx_count) break;
while(rx_count--) {
char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF;
Serial._rx_complete_irq(c);
}
}
WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR);
}
}
if(Serial.isTxEnabled()) {
if(status & UART_TXFIFO_EMPTY_INT_ST) {
WRITE_PERI_REG(UART_INT_CLR(0), UART_TXFIFO_EMPTY_INT_CLR);
Serial._tx_empty_irq();
}
}
// -------------- UART 1 --------------
status = READ_PERI_REG(UART_INT_ST(1));
if(Serial1.isRxEnabled()) {
if(status & UART_RXFIFO_FULL_INT_ST) {
while(true) {
int rx_count = (READ_PERI_REG(UART_STATUS(1)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if(!rx_count) break;
while(rx_count--) {
char c = READ_PERI_REG(UART_FIFO(1)) & 0xFF;
Serial1._rx_complete_irq(c);
}
}
WRITE_PERI_REG(UART_INT_CLR(1), UART_RXFIFO_FULL_INT_CLR);
}
}
if(Serial1.isTxEnabled()) {
status = READ_PERI_REG(UART_INT_ST(1));
if(status & UART_TXFIFO_EMPTY_INT_ST) {
WRITE_PERI_REG(UART_INT_CLR(1), UART_TXFIFO_EMPTY_INT_CLR);
Serial1._tx_empty_irq();
}
}
}
// ####################################################################################################
void ICACHE_FLASH_ATTR uart_wait_for_tx_fifo(uart_t* uart, size_t size_needed) {
if(uart->txEnabled) {
while(true) {
size_t tx_count = (READ_PERI_REG(UART_STATUS(uart->uart_nr)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT;
if(tx_count <= (UART_TX_FIFO_SIZE - size_needed)) break;
}
}
}
size_t ICACHE_FLASH_ATTR uart_get_tx_fifo_room(uart_t* uart) {
if(uart->txEnabled) {
return UART_TX_FIFO_SIZE - ((READ_PERI_REG(UART_STATUS(uart->uart_nr)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT);
}
return 0;
}
void ICACHE_FLASH_ATTR uart_wait_for_transmit(uart_t* uart) {
if(uart->txEnabled) {
uart_wait_for_tx_fifo(uart, UART_TX_FIFO_SIZE);
}
}
void ICACHE_FLASH_ATTR uart_transmit_char(uart_t* uart, char c) {
if(uart->txEnabled) {
WRITE_PERI_REG(UART_FIFO(uart->uart_nr), c);
}
}
void ICACHE_FLASH_ATTR uart_transmit(uart_t* uart, const char* buf, size_t size) {
if(uart->txEnabled) {
while(size) {
size_t part_size = (size > UART_TX_FIFO_SIZE) ? UART_TX_FIFO_SIZE : size;
size -= part_size;
uart_wait_for_tx_fifo(uart, part_size);
for(; part_size; --part_size, ++buf)
WRITE_PERI_REG(UART_FIFO(uart->uart_nr), *buf);
}
}
}
void ICACHE_FLASH_ATTR uart_flush(uart_t* uart) {
uint32_t tmp = 0x00000000;
if(uart->rxEnabled) {
tmp |= UART_RXFIFO_RST;
}
if(uart->txEnabled) {
tmp |= UART_TXFIFO_RST;
}
SET_PERI_REG_MASK(UART_CONF0(uart->uart_nr), tmp);
CLEAR_PERI_REG_MASK(UART_CONF0(uart->uart_nr), tmp);
}
void ICACHE_FLASH_ATTR uart_interrupt_enable(uart_t* uart) {
WRITE_PERI_REG(UART_INT_CLR(uart->uart_nr), 0x1ff);
ETS_UART_INTR_ATTACH(&uart_interrupt_handler, uart); // uart parameter is not osed in irq function!
if(uart->rxEnabled) {
SET_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_RXFIFO_FULL_INT_ENA);
}
ETS_UART_INTR_ENABLE();
}
void ICACHE_FLASH_ATTR uart_interrupt_disable(uart_t* uart) {
if(uart->rxEnabled) {
CLEAR_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_RXFIFO_FULL_INT_ENA);
}
if(uart->txEnabled) {
CLEAR_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_TXFIFO_EMPTY_INT_ENA);
}
//ETS_UART_INTR_DISABLE(); // never disable irq complete may its needed by the other Serial Interface!
}
void ICACHE_FLASH_ATTR uart_arm_tx_interrupt(uart_t* uart) {
if(uart->txEnabled) {
SET_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_TXFIFO_EMPTY_INT_ENA);
}
}
void ICACHE_FLASH_ATTR uart_disarm_tx_interrupt(uart_t* uart) {
if(uart->txEnabled) {
CLEAR_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_TXFIFO_EMPTY_INT_ENA);
}
}
void ICACHE_FLASH_ATTR uart_set_baudrate(uart_t* uart, int baud_rate) {
uart->baud_rate = baud_rate;
uart_div_modify(uart->uart_nr, UART_CLK_FREQ / (uart->baud_rate));
}
int ICACHE_FLASH_ATTR uart_get_baudrate(uart_t* uart) {
return uart->baud_rate;
}
uart_t* ICACHE_FLASH_ATTR uart_init(UARTnr_t uart_nr, int baudrate) {
uint32_t conf1 = 0x00000000;
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
uart->uart_nr = uart_nr;
switch(uart->uart_nr) {
case UART0:
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
PIN_PULLUP_EN(PERIPHS_IO_MUX_U0RXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD);
uart->rxEnabled = true;
uart->txEnabled = true;
uart->rxPin = 3;
uart->txPin = 1;
break;
case UART1:
PIN_PULLUP_DIS(PERIPHS_IO_MUX_GPIO2_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_U1TXD_BK);
uart->rxEnabled = false;
uart->txEnabled = true;
uart->rxPin = 255;
uart->txPin = 2;
break;
case UART_NO:
default:
// big fail!
break;
}
uart_set_baudrate(uart, baudrate);
WRITE_PERI_REG(UART_CONF0(uart->uart_nr), 0x3 << UART_BIT_NUM_S); // 8n1
uart_flush(uart);
uart_interrupt_enable(uart);
if(uart->rxEnabled) {
conf1 |= ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S);
}
if(uart->txEnabled) {
conf1 |= ((0x20 & UART_TXFIFO_EMPTY_THRHD) << UART_TXFIFO_EMPTY_THRHD_S);
}
WRITE_PERI_REG(UART_CONF1(uart->uart_nr), conf1);
return uart;
}
void ICACHE_FLASH_ATTR uart_uninit(uart_t* uart) {
uart_interrupt_disable(uart);
switch(uart->rxPin) {
case 3:
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0RXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_GPIO3);
break;
case 13:
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTCK_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_GPIO13);
break;
}
switch(uart->rxPin) {
case 1:
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_GPIO1);
break;
case 2:
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_GPIO2);
break;
case 15:
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_GPIO2);
break;
}
pinMode(uart->rxPin , INPUT);
pinMode(uart->txPin , INPUT);
os_free(uart);
}
void ICACHE_FLASH_ATTR uart_swap(uart_t* uart) {
switch(uart->uart_nr) {
case UART0:
if(uart->txPin == 1 && uart->rxPin == 3) {
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTCK_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_UART0_CTS);
PIN_PULLUP_EN(PERIPHS_IO_MUX_MTDO_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_UART0_RTS);
//SWAP PIN : U0TXD<==>U0RTS(MTDO, GPIO15) , U0RXD<==>U0CTS(MTCK, GPIO13)
SET_PERI_REG_MASK(0x3ff00028, BIT2);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_GPIO3);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_GPIO1);
pinMode(uart->rxPin, INPUT);
pinMode(uart->txPin, INPUT);
uart->rxPin = 13;
uart->txPin = 15;
} else {
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
PIN_PULLUP_EN(PERIPHS_IO_MUX_U0RXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD);
CLEAR_PERI_REG_MASK(0x3ff00028, BIT2);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_GPIO13);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_GPIO15);
pinMode(uart->rxPin, INPUT);
pinMode(uart->txPin, INPUT);
uart->rxPin = 3;
uart->txPin = 1;
}
break;
case UART1:
// current no swap possible! see GPIO pins used by UART
break;
default:
break;
}
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void ICACHE_FLASH_ATTR uart_ignore_char(char c) {
}
void ICACHE_FLASH_ATTR uart0_write_char(char c) {
if(c == '\n') {
WRITE_PERI_REG(UART_FIFO(0), '\r');
}
WRITE_PERI_REG(UART_FIFO(0), c);
}
void ICACHE_FLASH_ATTR uart1_write_char(char c) {
if(c == '\n') {
WRITE_PERI_REG(UART_FIFO(1), '\r');
}
WRITE_PERI_REG(UART_FIFO(1), c);
}
static UARTnr_t s_uart_debug_nr = UART_NO;
void ICACHE_FLASH_ATTR uart_set_debug(UARTnr_t uart_nr) {
s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr) {
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
break;
case UART1:
system_set_os_print(1);
ets_install_putc1((void *) &uart1_write_char);
break;
case UART_NO:
default:
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
break;
}
}
UARTnr_t ICACHE_FLASH_ATTR uart_get_debug() {
return s_uart_debug_nr;
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
ICACHE_FLASH_ATTR HardwareSerial::HardwareSerial(UARTnr_t uart_nr) :
_uart(0), _tx_buffer(0), _rx_buffer(0), _written(false) {
_uart_nr = uart_nr;
}
void ICACHE_FLASH_ATTR HardwareSerial::begin(unsigned long baud, byte config) {
// disable debug for this interface
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO);
}
_uart = uart_init(_uart_nr, baud);
if(_uart->rxEnabled) {
_rx_buffer = new cbuf(SERIAL_RX_BUFFER_SIZE);
}
if(_uart->txEnabled) {
_tx_buffer = new cbuf(SERIAL_TX_BUFFER_SIZE);
}
_written = false;
delay(1);
}
void ICACHE_FLASH_ATTR HardwareSerial::end() {
uart_uninit(_uart);
delete _rx_buffer;
delete _tx_buffer;
_uart = 0;
_rx_buffer = 0;
_tx_buffer = 0;
}
void ICACHE_FLASH_ATTR HardwareSerial::swap() {
uart_swap(_uart);
}
void ICACHE_FLASH_ATTR HardwareSerial::setDebugOutput(bool en) {
if(en) {
uart_set_debug(_uart->uart_nr);
} else {
// disable debug for this interface
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO);
}
}
}
bool ICACHE_FLASH_ATTR HardwareSerial::isTxEnabled(void) {
if(_uart == 0) return false;
return _uart->txEnabled;
}
bool ICACHE_FLASH_ATTR HardwareSerial::isRxEnabled(void) {
if(_uart == 0) return false;
return _uart->rxEnabled;
}
int ICACHE_FLASH_ATTR HardwareSerial::available(void) {
if(_uart->rxEnabled) {
return static_cast<int>(_rx_buffer->getSize());
} else {
return 0;
}
}
int ICACHE_FLASH_ATTR HardwareSerial::peek(void) {
if(_uart->rxEnabled) {
return _rx_buffer->peek();
} else {
return -1;
}
}
int ICACHE_FLASH_ATTR HardwareSerial::read(void) {
if(_uart->rxEnabled) {
return _rx_buffer->read();
} else {
return -1;
}
}
int ICACHE_FLASH_ATTR HardwareSerial::availableForWrite(void) {
if(_uart->txEnabled) {
return static_cast<int>(_tx_buffer->room());
} else {
return 0;
}
}
void ICACHE_FLASH_ATTR HardwareSerial::flush() {
if(!_uart->txEnabled) return;
if(!_written) return;
while(_tx_buffer->getSize() || uart_get_tx_fifo_room(_uart) < UART_TX_FIFO_SIZE)
yield();
_written = false;
}
size_t ICACHE_FLASH_ATTR HardwareSerial::write(uint8_t c) {
if(!_uart->txEnabled) return 0;
_written = true;
size_t room = uart_get_tx_fifo_room(_uart);
if(room > 0 && _tx_buffer->empty()) {
uart_transmit_char(_uart, c);
if(room < 10) {
uart_arm_tx_interrupt(_uart);
}
return 1;
}
while(_tx_buffer->room() == 0) {
yield();
}
_tx_buffer->write(c);
return 1;
}
ICACHE_FLASH_ATTR HardwareSerial::operator bool() const {
return _uart != 0;
}
void ICACHE_FLASH_ATTR HardwareSerial::_rx_complete_irq(char c) {
_rx_buffer->write(c);
}
void ICACHE_FLASH_ATTR HardwareSerial::_tx_empty_irq(void) {
size_t queued = _tx_buffer->getSize();
if(!queued) {
uart_disarm_tx_interrupt(_uart);
return;
}
size_t room = uart_get_tx_fifo_room(_uart);
int n = static_cast<int>((queued < room) ? queued : room);
while(n--) {
uart_transmit_char(_uart, _tx_buffer->read());
}
}