1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-21 10:26:06 +03:00
2016-01-26 22:58:00 +03:00

400 lines
8.9 KiB
C

/*
uart.cpp - esp8266 UART HAL
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* UART GPIOs
*
* UART0 TX: 1 or 2
* UART0 RX: 3
*
* UART0 SWAP TX: 15
* UART0 SWAP RX: 13
*
*
* UART1 TX: 7 (NC) or 2
* UART1 RX: 8 (NC)
*
* UART1 SWAP TX: 11 (NC)
* UART1 SWAP RX: 6 (NC)
*
* NC = Not Connected to Module Pads --> No Access
*
*/
#include "Arduino.h"
#include "uart.h"
#include "esp8266_peri.h"
#include "user_interface.h"
static int s_uart_debug_nr = UART0;
struct uart_ {
int uart_nr;
int baud_rate;
bool rx_enabled;
bool tx_enabled;
uint8_t rx_pin;
uint8_t tx_pin;
};
void uart_write_char(uart_t* uart, char c)
{
if(uart == NULL || !uart->tx_enabled) {
return;
}
while((USS(uart->uart_nr) >> USTXC) >= 0x7f);
USF(uart->uart_nr) = c;
}
void uart_write(uart_t* uart, const char* buf, size_t size)
{
if(uart == NULL || !uart->tx_enabled) {
return;
}
while(size--) {
uart_write_char(uart, *buf++);
}
}
int uart_read_char(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled) {
return -1;
}
if (!uart_rx_available(uart)) {
return -1;
}
return USF(uart->uart_nr) & 0xff;
}
size_t uart_rx_available(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled) {
return -1;
}
return (USS(uart->uart_nr) >> USRXC) & 0xff;
}
size_t uart_tx_free(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled) {
return 0;
}
return UART_TX_FIFO_SIZE - ((USS(uart->uart_nr) >> USTXC) & 0xff);
}
void uart_wait_tx_empty(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled) {
return;
}
while(((USS(uart->uart_nr) >> USTXC) & 0xff) > 0) {
delay(0);
}
}
void uart_flush(uart_t* uart)
{
if(uart == NULL) {
return;
}
uint32_t tmp = 0x00000000;
if(uart->rx_enabled) {
tmp |= (1 << UCRXRST);
}
if(uart->tx_enabled) {
tmp |= (1 << UCTXRST);
}
USC0(uart->uart_nr) |= (tmp);
USC0(uart->uart_nr) &= ~(tmp);
}
void uart_set_baudrate(uart_t* uart, int baud_rate)
{
if(uart == NULL) {
return;
}
uart->baud_rate = baud_rate;
USD(uart->uart_nr) = (ESP8266_CLOCK / uart->baud_rate);
}
int uart_get_baudrate(uart_t* uart)
{
if(uart == NULL) {
return 0;
}
return uart->baud_rate;
}
uart_t* uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin)
{
uart_t* uart = (uart_t*) malloc(sizeof(uart_t));
if(uart == NULL) {
return NULL;
}
uart->uart_nr = uart_nr;
switch(uart->uart_nr) {
case UART0:
uart->rx_enabled = (mode != UART_TX_ONLY);
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = (uart->rx_enabled)?3:255;
if(uart->rx_enabled) {
if (tx_pin == 2) {
uart->tx_pin = 2;
pinMode(uart->rx_pin, FUNCTION_4);
} else {
uart->tx_pin = 1;
pinMode(uart->rx_pin, SPECIAL);
}
} else {
uart->tx_pin = 255;
}
if(uart->tx_enabled) {
pinMode(uart->tx_pin, SPECIAL);
}
IOSWAP &= ~(1 << IOSWAPU0);
break;
case UART1:
// Note: uart_interrupt_handler does not support RX on UART 1.
uart->rx_enabled = false;
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = 255;
uart->tx_pin = (uart->tx_enabled)?2:255; // GPIO7 as TX not possible! See GPIO pins used by UART
if(uart->tx_enabled) {
pinMode(uart->tx_pin, SPECIAL);
}
break;
case UART_NO:
default:
// big fail!
free(uart);
return NULL;
}
uart_set_baudrate(uart, baudrate);
USC0(uart->uart_nr) = config;
uart_flush(uart);
USC1(uart->uart_nr) = 0;
return uart;
}
void uart_uninit(uart_t* uart)
{
if(uart == NULL) {
return;
}
switch(uart->rx_pin) {
case 3:
pinMode(3, INPUT);
break;
case 13:
pinMode(13, INPUT);
break;
}
switch(uart->tx_pin) {
case 1:
pinMode(1, INPUT);
break;
case 2:
pinMode(2, INPUT);
break;
case 15:
pinMode(15, INPUT);
break;
}
os_free(uart);
}
void uart_swap(uart_t* uart, int tx_pin)
{
if(uart == NULL) {
return;
}
switch(uart->uart_nr) {
case UART0:
if(((uart->tx_pin == 1 || uart->tx_pin == 2) && uart->tx_enabled) || (uart->rx_pin == 3 && uart->rx_enabled)) {
if(uart->tx_enabled) { //TX
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 15;
}
if(uart->rx_enabled) { //RX
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 13;
}
if(uart->tx_enabled) {
pinMode(uart->tx_pin, FUNCTION_4); //TX
}
if(uart->rx_enabled) {
pinMode(uart->rx_pin, FUNCTION_4); //RX
}
IOSWAP |= (1 << IOSWAPU0);
} else {
if(uart->tx_enabled) { //TX
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = (tx_pin == 2)?2:1;
}
if(uart->rx_enabled) { //RX
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 3;
}
if(uart->tx_enabled) {
pinMode(uart->tx_pin, (tx_pin == 2)?FUNCTION_4:SPECIAL); //TX
}
if(uart->rx_enabled) {
pinMode(3, SPECIAL); //RX
}
IOSWAP &= ~(1 << IOSWAPU0);
}
break;
case UART1:
// Currently no swap possible! See GPIO pins used by UART
break;
default:
break;
}
}
void uart_set_tx(uart_t* uart, int tx_pin)
{
if(uart == NULL) {
return;
}
switch(uart->uart_nr) {
case UART0:
if(uart->tx_enabled) {
if (uart->tx_pin == 1 && tx_pin == 2) {
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 2;
pinMode(uart->tx_pin, FUNCTION_4);
} else if (uart->tx_pin == 2 && tx_pin != 2) {
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 1;
pinMode(uart->tx_pin, SPECIAL);
}
}
break;
case UART1:
// GPIO7 as TX not possible! See GPIO pins used by UART
break;
default:
break;
}
}
void uart_set_pins(uart_t* uart, int tx, int rx)
{
if(uart == NULL) {
return;
}
if(uart->uart_nr == UART0) { // Only UART0 allows pin changes
if(uart->tx_enabled && uart->tx_pin != tx) {
if( rx == 13 && tx == 15) {
uart_swap(uart, 15);
} else if (rx == 3 && (tx == 1 || tx == 2)) {
if (uart->rx_pin != rx) {
uart_swap(uart, tx);
} else {
uart_set_tx(uart, tx);
}
}
}
if(uart->rx_enabled && uart->rx_pin != rx && rx == 13 && tx == 15) {
uart_swap(uart, 15);
}
}
}
bool uart_tx_enabled(uart_t* uart)
{
if(uart == NULL) {
return false;
}
return uart->tx_enabled;
}
bool uart_rx_enabled(uart_t* uart)
{
if(uart == NULL) {
return false;
}
return uart->rx_enabled;
}
static void uart_ignore_char(char c)
{
}
static void uart0_write_char(char c)
{
while(((USS(0) >> USTXC) & 0xff) >= 0x7F) {
delay(0);
}
USF(0) = c;
}
static void uart1_write_char(char c)
{
while(((USS(1) >> USTXC) & 0xff) >= 0x7F) {
delay(0);
}
USF(1) = c;
}
void uart_set_debug(int uart_nr)
{
s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr) {
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
break;
case UART1:
system_set_os_print(1);
ets_install_putc1((void *) &uart1_write_char);
break;
case UART_NO:
default:
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
break;
}
}
int uart_get_debug()
{
return s_uart_debug_nr;
}