1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00
david gauchard 4c8d8f1e8a uart: BW improvements (#4620)
* uart fixes and BW improvements

* uart: read_char straightly use hw buffer

* +attributes for functions called by ISR

* uart: BW improvements
read_char straightly use hw buffer (+ ~10%bw)
read by block (+ ~190%bw) (instead of generic Stream::readBytes)
attributes for functions called by ISR
remove overrun message
remove some ISR flags which were not honoured

* fix merge

* fix buffer overflow

* serial stress test sketch

* astyle

* serial stress example: interactive keyboard, stop reading, overrun

* serial device test: bandwidth & overrun

* update + HardwareSerial::hasError()

* interactive overrun in example

* astyle

* Test using @plerup's SoftwareSerial as submodule (tag 3.4.1)

* update upstream ref (fix warning)

* host mock uart/read(buf,size)

* reset style changes in submodules before style diff

* update build_boards_manager_package.sh for submodules

* trigger CI (removing space)

* cannot reproduce locally the CI issue, setting bash -x option to get live trace

* remove previously added (in this PR) 'set -e' in package builder (passes local tests, not real CI)
script-comment new recipe.hooks.core.prebuild.3 (along with already commented .1 and .2)
moved CI package test to be first on the test list
remove 'set -x', wish me luck
2018-12-10 10:35:11 -03:00

870 lines
21 KiB
C

/*
uart.cpp - esp8266 UART HAL
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* UART GPIOs
*
* UART0 TX: 1 or 2
* UART0 RX: 3
*
* UART0 SWAP TX: 15
* UART0 SWAP RX: 13
*
*
* UART1 TX: 7 (NC) or 2
* UART1 RX: 8 (NC)
*
* UART1 SWAP TX: 11 (NC)
* UART1 SWAP RX: 6 (NC)
*
* NC = Not Connected to Module Pads --> No Access
*
*/
#include "Arduino.h"
#include <pgmspace.h>
#include "uart.h"
#include "esp8266_peri.h"
#include "user_interface.h"
#include "uart_register.h"
//const char overrun_str [] PROGMEM STORE_ATTR = "uart input full!\r\n";
static int s_uart_debug_nr = UART0;
struct uart_rx_buffer_
{
size_t size;
size_t rpos;
size_t wpos;
uint8_t * buffer;
};
struct uart_
{
int uart_nr;
int baud_rate;
bool rx_enabled;
bool tx_enabled;
bool rx_overrun;
bool rx_error;
uint8_t rx_pin;
uint8_t tx_pin;
struct uart_rx_buffer_ * rx_buffer;
};
/*
In the context of the naming conventions in this file, "_unsafe" means two things:
1. the input arguments are not checked. It is up to the caller to check argument sanity.
2. The function body is not interrupt-safe, i.e.: the isr could fire anywhen during the
body execution, leading to corruption of the data shared between the body and the isr
(parts of the rx_buffer).
The unsafe versions of the functions are private to this TU. There are "safe" versions that
wrap the unsafe ones with disabling/enabling of the uart interrupt for safe public use.
*/
// called by ISR
inline size_t ICACHE_RAM_ATTR
uart_rx_fifo_available(const int uart_nr)
{
return (USS(uart_nr) >> USRXC) & 0xFF;
}
/**********************************************************/
/************ UNSAFE FUNCTIONS ****************************/
/**********************************************************/
inline size_t
uart_rx_buffer_available_unsafe(const struct uart_rx_buffer_ * rx_buffer)
{
if(rx_buffer->wpos < rx_buffer->rpos)
return (rx_buffer->wpos + rx_buffer->size) - rx_buffer->rpos;
return rx_buffer->wpos - rx_buffer->rpos;
}
inline size_t
uart_rx_available_unsafe(uart_t* uart)
{
return uart_rx_buffer_available_unsafe(uart->rx_buffer) + uart_rx_fifo_available(uart->uart_nr);
}
//#define UART_DISCARD_NEWEST
// Copy all the rx fifo bytes that fit into the rx buffer
// called by ISR
inline void ICACHE_RAM_ATTR
uart_rx_copy_fifo_to_buffer_unsafe(uart_t* uart)
{
struct uart_rx_buffer_ *rx_buffer = uart->rx_buffer;
while(uart_rx_fifo_available(uart->uart_nr))
{
size_t nextPos = (rx_buffer->wpos + 1) % rx_buffer->size;
if(nextPos == rx_buffer->rpos)
{
if (!uart->rx_overrun)
{
uart->rx_overrun = true;
//os_printf_plus(overrun_str);
}
// a choice has to be made here,
// do we discard newest or oldest data?
#ifdef UART_DISCARD_NEWEST
// discard newest data
// Stop copying if rx buffer is full
USF(uart->uart_nr);
break;
#else
// discard oldest data
if (++rx_buffer->rpos == rx_buffer->size)
rx_buffer->rpos = 0;
#endif
}
uint8_t data = USF(uart->uart_nr);
rx_buffer->buffer[rx_buffer->wpos] = data;
rx_buffer->wpos = nextPos;
}
}
inline int
uart_peek_char_unsafe(uart_t* uart)
{
if (!uart_rx_available_unsafe(uart))
return -1;
//without the following if statement and body, there is a good chance of a fifo overrun
if (uart_rx_buffer_available_unsafe(uart->rx_buffer) == 0)
// hw fifo can't be peeked, data need to be copied to sw
uart_rx_copy_fifo_to_buffer_unsafe(uart);
return uart->rx_buffer->buffer[uart->rx_buffer->rpos];
}
// taking data straight from hw fifo: loopback-test BW jumps by 19%
inline int
uart_read_char_unsafe(uart_t* uart)
{
if (uart_rx_buffer_available_unsafe(uart->rx_buffer))
{
// take oldest sw data
int ret = uart->rx_buffer->buffer[uart->rx_buffer->rpos];
uart->rx_buffer->rpos = (uart->rx_buffer->rpos + 1) % uart->rx_buffer->size;
return ret;
}
// unavailable
return -1;
}
size_t
uart_rx_available(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return 0;
ETS_UART_INTR_DISABLE();
int uartrxbufferavailable = uart_rx_buffer_available_unsafe(uart->rx_buffer);
ETS_UART_INTR_ENABLE();
return uartrxbufferavailable + uart_rx_fifo_available(uart->uart_nr);
}
int
uart_peek_char(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return -1;
ETS_UART_INTR_DISABLE(); //access to rx_buffer can be interrupted by the isr (similar to a critical section), so disable interrupts here
int ret = uart_peek_char_unsafe(uart);
ETS_UART_INTR_ENABLE();
return ret;
}
int
uart_read_char(uart_t* uart)
{
uint8_t ret;
return uart_read(uart, (char*)&ret, 1)? ret: -1;
}
// loopback-test BW jumps by 190%
size_t
uart_read(uart_t* uart, char* userbuffer, size_t usersize)
{
if(uart == NULL || !uart->rx_enabled)
return 0;
size_t ret = 0;
ETS_UART_INTR_DISABLE();
while (ret < usersize && uart_rx_available_unsafe(uart))
{
if (!uart_rx_buffer_available_unsafe(uart->rx_buffer))
{
// no more data in sw buffer, take them from hw fifo
while (ret < usersize && uart_rx_fifo_available(uart->uart_nr))
userbuffer[ret++] = USF(uart->uart_nr);
// no more sw/hw data available
break;
}
// pour sw buffer to user's buffer
// get largest linear length from sw buffer
size_t chunk = uart->rx_buffer->rpos < uart->rx_buffer->wpos?
uart->rx_buffer->wpos - uart->rx_buffer->rpos:
uart->rx_buffer->size - uart->rx_buffer->rpos;
if (ret + chunk > usersize)
chunk = usersize - ret;
memcpy(userbuffer + ret, uart->rx_buffer->buffer + uart->rx_buffer->rpos, chunk);
uart->rx_buffer->rpos = (uart->rx_buffer->rpos + chunk) % uart->rx_buffer->size;
ret += chunk;
}
ETS_UART_INTR_ENABLE();
return ret;
}
size_t
uart_resize_rx_buffer(uart_t* uart, size_t new_size)
{
if(uart == NULL || !uart->rx_enabled)
return 0;
if(uart->rx_buffer->size == new_size)
return uart->rx_buffer->size;
uint8_t * new_buf = (uint8_t*)malloc(new_size);
if(!new_buf)
return uart->rx_buffer->size;
size_t new_wpos = 0;
ETS_UART_INTR_DISABLE();
while(uart_rx_available_unsafe(uart) && new_wpos < new_size)
new_buf[new_wpos++] = uart_read_char_unsafe(uart); //if uart_rx_available_unsafe() returns non-0, uart_read_char_unsafe() can't return -1
if (new_wpos == new_size)
new_wpos = 0;
uint8_t * old_buf = uart->rx_buffer->buffer;
uart->rx_buffer->rpos = 0;
uart->rx_buffer->wpos = new_wpos;
uart->rx_buffer->size = new_size;
uart->rx_buffer->buffer = new_buf;
ETS_UART_INTR_ENABLE();
free(old_buf);
return uart->rx_buffer->size;
}
size_t
uart_get_rx_buffer_size(uart_t* uart)
{
return uart && uart->rx_enabled? uart->rx_buffer->size: 0;
}
void ICACHE_RAM_ATTR
uart_isr(void * arg)
{
uart_t* uart = (uart_t*)arg;
uint32_t usis = USIS(uart->uart_nr);
if(uart == NULL || !uart->rx_enabled)
{
USIC(uart->uart_nr) = usis;
ETS_UART_INTR_DISABLE();
return;
}
if(usis & (1 << UIFF))
uart_rx_copy_fifo_to_buffer_unsafe(uart);
if((usis & (1 << UIOF)) && !uart->rx_overrun)
{
uart->rx_overrun = true;
//os_printf_plus(overrun_str);
}
if (usis & ((1 << UIFR) | (1 << UIPE) | (1 << UITO)))
uart->rx_error = true;
USIC(uart->uart_nr) = usis;
}
static void
uart_start_isr(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return;
// UCFFT value is when the RX fifo full interrupt triggers. A value of 1
// triggers the IRS very often. A value of 127 would not leave much time
// for ISR to clear fifo before the next byte is dropped. So pick a value
// in the middle.
// update: loopback test @ 3Mbauds/8n1 (=2343Kibits/s):
// - 4..120 give > 2300Kibits/s
// - 1, 2, 3 are below
// was 100, use 16 to stay away from overrun
#define INTRIGG 16
//was:USC1(uart->uart_nr) = (INTRIGG << UCFFT) | (0x02 << UCTOT) | (1 <<UCTOE);
USC1(uart->uart_nr) = (INTRIGG << UCFFT);
USIC(uart->uart_nr) = 0xffff;
//was: USIE(uart->uart_nr) = (1 << UIFF) | (1 << UIFR) | (1 << UITO);
// UIFF: rx fifo full
// UIOF: rx fifo overflow (=overrun)
// UIFR: frame error
// UIPE: parity error
// UITO: rx fifo timeout
USIE(uart->uart_nr) = (1 << UIFF) | (1 << UIOF) | (1 << UIFR) | (1 << UIPE) | (1 << UITO);
ETS_UART_INTR_ATTACH(uart_isr, (void *)uart);
ETS_UART_INTR_ENABLE();
}
static void
uart_stop_isr(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled)
return;
ETS_UART_INTR_DISABLE();
USC1(uart->uart_nr) = 0;
USIC(uart->uart_nr) = 0xffff;
USIE(uart->uart_nr) = 0;
ETS_UART_INTR_ATTACH(NULL, NULL);
}
/*
Reference for uart_tx_fifo_available() and uart_tx_fifo_full():
-Espressif Techinical Reference doc, chapter 11.3.7
-tools/sdk/uart_register.h
-cores/esp8266/esp8266_peri.h
*/
inline size_t
uart_tx_fifo_available(const int uart_nr)
{
return (USS(uart_nr) >> USTXC) & 0xff;
}
inline bool
uart_tx_fifo_full(const int uart_nr)
{
return uart_tx_fifo_available(uart_nr) >= 0x7f;
}
static void
uart_do_write_char(const int uart_nr, char c)
{
while(uart_tx_fifo_full(uart_nr));
USF(uart_nr) = c;
}
size_t
uart_write_char(uart_t* uart, char c)
{
if(uart == NULL || !uart->tx_enabled)
return 0;
uart_do_write_char(uart->uart_nr, c);
return 1;
}
size_t
uart_write(uart_t* uart, const char* buf, size_t size)
{
if(uart == NULL || !uart->tx_enabled)
return 0;
size_t ret = size;
const int uart_nr = uart->uart_nr;
while (size--)
uart_do_write_char(uart_nr, *buf++);
return ret;
}
size_t
uart_tx_free(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled)
return 0;
return UART_TX_FIFO_SIZE - uart_tx_fifo_available(uart->uart_nr);
}
void
uart_wait_tx_empty(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled)
return;
while(uart_tx_fifo_available(uart->uart_nr) > 0)
delay(0);
}
void
uart_flush(uart_t* uart)
{
if(uart == NULL)
return;
uint32_t tmp = 0x00000000;
if(uart->rx_enabled)
{
tmp |= (1 << UCRXRST);
ETS_UART_INTR_DISABLE();
uart->rx_buffer->rpos = 0;
uart->rx_buffer->wpos = 0;
ETS_UART_INTR_ENABLE();
}
if(uart->tx_enabled)
tmp |= (1 << UCTXRST);
USC0(uart->uart_nr) |= (tmp);
USC0(uart->uart_nr) &= ~(tmp);
}
void
uart_set_baudrate(uart_t* uart, int baud_rate)
{
if(uart == NULL)
return;
uart->baud_rate = baud_rate;
USD(uart->uart_nr) = (ESP8266_CLOCK / uart->baud_rate);
}
int
uart_get_baudrate(uart_t* uart)
{
if(uart == NULL)
return 0;
return uart->baud_rate;
}
uart_t*
uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin, size_t rx_size)
{
uart_t* uart = (uart_t*) malloc(sizeof(uart_t));
if(uart == NULL)
return NULL;
uart->uart_nr = uart_nr;
uart->rx_overrun = false;
uart->rx_error = false;
switch(uart->uart_nr)
{
case UART0:
ETS_UART_INTR_DISABLE();
ETS_UART_INTR_ATTACH(NULL, NULL);
uart->rx_enabled = (mode != UART_TX_ONLY);
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = (uart->rx_enabled)?3:255;
if(uart->rx_enabled)
{
struct uart_rx_buffer_ * rx_buffer = (struct uart_rx_buffer_ *)malloc(sizeof(struct uart_rx_buffer_));
if(rx_buffer == NULL)
{
free(uart);
return NULL;
}
rx_buffer->size = rx_size;//var this
rx_buffer->rpos = 0;
rx_buffer->wpos = 0;
rx_buffer->buffer = (uint8_t *)malloc(rx_buffer->size);
if(rx_buffer->buffer == NULL)
{
free(rx_buffer);
free(uart);
return NULL;
}
uart->rx_buffer = rx_buffer;
pinMode(uart->rx_pin, SPECIAL);
}
if(uart->tx_enabled)
{
if (tx_pin == 2)
{
uart->tx_pin = 2;
pinMode(uart->tx_pin, FUNCTION_4);
}
else
{
uart->tx_pin = 1;
pinMode(uart->tx_pin, FUNCTION_0);
}
}
else
{
uart->tx_pin = 255;
}
IOSWAP &= ~(1 << IOSWAPU0);
break;
case UART1:
// Note: uart_interrupt_handler does not support RX on UART 1.
uart->rx_enabled = false;
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = 255;
uart->tx_pin = (uart->tx_enabled)?2:255; // GPIO7 as TX not possible! See GPIO pins used by UART
if(uart->tx_enabled)
pinMode(uart->tx_pin, SPECIAL);
break;
case UART_NO:
default:
// big fail!
free(uart);
return NULL;
}
uart_set_baudrate(uart, baudrate);
USC0(uart->uart_nr) = config;
uart_flush(uart);
USC1(uart->uart_nr) = 0;
USIC(uart->uart_nr) = 0xffff;
USIE(uart->uart_nr) = 0;
if(uart->uart_nr == UART0 && uart->rx_enabled)
uart_start_isr(uart);
return uart;
}
void
uart_uninit(uart_t* uart)
{
if(uart == NULL)
return;
uart_stop_isr(uart);
switch(uart->rx_pin)
{
case 3:
pinMode(3, INPUT);
break;
case 13:
pinMode(13, INPUT);
break;
}
switch(uart->tx_pin)
{
case 1:
pinMode(1, INPUT);
break;
case 2:
pinMode(2, INPUT);
break;
case 15:
pinMode(15, INPUT);
break;
}
if(uart->rx_enabled)
{
uart_stop_isr(uart);
free(uart->rx_buffer->buffer);
free(uart->rx_buffer);
}
free(uart);
}
void
uart_swap(uart_t* uart, int tx_pin)
{
if(uart == NULL)
return;
switch(uart->uart_nr)
{
case UART0:
if(((uart->tx_pin == 1 || uart->tx_pin == 2) && uart->tx_enabled) || (uart->rx_pin == 3 && uart->rx_enabled))
{
if(uart->tx_enabled) //TX
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 15;
}
if(uart->rx_enabled) //RX
{
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 13;
}
if(uart->tx_enabled)
pinMode(uart->tx_pin, FUNCTION_4); //TX
if(uart->rx_enabled)
pinMode(uart->rx_pin, FUNCTION_4); //RX
IOSWAP |= (1 << IOSWAPU0);
}
else
{
if(uart->tx_enabled) //TX
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = (tx_pin == 2)?2:1;
}
if(uart->rx_enabled) //RX
{
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 3;
}
if(uart->tx_enabled)
pinMode(uart->tx_pin, (tx_pin == 2)?FUNCTION_4:SPECIAL); //TX
if(uart->rx_enabled)
pinMode(3, SPECIAL); //RX
IOSWAP &= ~(1 << IOSWAPU0);
}
break;
case UART1:
// Currently no swap possible! See GPIO pins used by UART
break;
default:
break;
}
}
void
uart_set_tx(uart_t* uart, int tx_pin)
{
if(uart == NULL)
return;
switch(uart->uart_nr)
{
case UART0:
if(uart->tx_enabled)
{
if (uart->tx_pin == 1 && tx_pin == 2)
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 2;
pinMode(uart->tx_pin, FUNCTION_4);
}
else if (uart->tx_pin == 2 && tx_pin != 2)
{
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 1;
pinMode(uart->tx_pin, SPECIAL);
}
}
break;
case UART1:
// GPIO7 as TX not possible! See GPIO pins used by UART
break;
default:
break;
}
}
void
uart_set_pins(uart_t* uart, int tx, int rx)
{
if(uart == NULL)
return;
if(uart->uart_nr == UART0) // Only UART0 allows pin changes
{
if(uart->tx_enabled && uart->tx_pin != tx)
{
if( rx == 13 && tx == 15)
{
uart_swap(uart, 15);
}
else if (rx == 3 && (tx == 1 || tx == 2))
{
if (uart->rx_pin != rx)
uart_swap(uart, tx);
else
uart_set_tx(uart, tx);
}
}
if(uart->rx_enabled && uart->rx_pin != rx && rx == 13 && tx == 15)
uart_swap(uart, 15);
}
}
bool
uart_tx_enabled(uart_t* uart)
{
if(uart == NULL)
return false;
return uart->tx_enabled;
}
bool
uart_rx_enabled(uart_t* uart)
{
if(uart == NULL)
return false;
return uart->rx_enabled;
}
bool
uart_has_overrun (uart_t* uart)
{
if (uart == NULL || !uart->rx_overrun)
return false;
// clear flag
uart->rx_overrun = false;
return true;
}
bool
uart_has_rx_error (uart_t* uart)
{
if (uart == NULL || !uart->rx_error)
return false;
// clear flag
uart->rx_error = false;
return true;
}
static void
uart_ignore_char(char c)
{
(void) c;
}
inline void
uart_write_char_delay(const int uart_nr, char c)
{
while(uart_tx_fifo_full(uart_nr))
delay(0);
USF(uart_nr) = c;
}
static void
uart0_write_char(char c)
{
uart_write_char_delay(0, c);
}
static void
uart1_write_char(char c)
{
uart_write_char_delay(1, c);
}
void
uart_set_debug(int uart_nr)
{
s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr)
{
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
break;
case UART1:
system_set_os_print(1);
ets_install_putc1((void *) &uart1_write_char);
break;
case UART_NO:
default:
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
break;
}
}
int
uart_get_debug()
{
return s_uart_debug_nr;
}
/*
To start detection of baud rate with the UART the UART_AUTOBAUD_EN bit needs to be cleared and set. The ROM function uart_baudrate_detect() does this only once, so on a next call the UartDev.rcv_state is not equal to BAUD_RATE_DET. Instead of poking around in the UartDev struct with unknown effect, the UART_AUTOBAUD_EN bit is directly triggered by the function uart_detect_baudrate().
*/
void
uart_start_detect_baudrate(int uart_nr)
{
USA(uart_nr) &= ~(UART_GLITCH_FILT << UART_GLITCH_FILT_S | UART_AUTOBAUD_EN);
USA(uart_nr) = 0x08 << UART_GLITCH_FILT_S | UART_AUTOBAUD_EN;
}
int
uart_detect_baudrate(int uart_nr)
{
static bool doTrigger = true;
if (doTrigger)
{
uart_start_detect_baudrate(uart_nr);
doTrigger = false;
}
int32_t divisor = uart_baudrate_detect(uart_nr, 1);
if (!divisor) {
return 0;
}
doTrigger = true; // Initialize for a next round
int32_t baudrate = UART_CLK_FREQ / divisor;
static const int default_rates[] = {300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400};
size_t i;
for (i = 1; i < sizeof(default_rates) / sizeof(default_rates[0]) - 1; i++) // find the nearest real baudrate
{
if (baudrate <= default_rates[i])
{
if (baudrate - default_rates[i - 1] < default_rates[i] - baudrate) {
i--;
}
break;
}
}
return default_rates[i];
}