1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-21 10:26:06 +03:00
esp8266/cores/esp8266/WString.h
Max Prokhorov 0aaadd9fa1
WString: return bool instead of unsigned char (#7939)
Clean up the intent, resulting assembly stays the same.
2021-05-15 14:49:09 -07:00

388 lines
16 KiB
C++

/*
WString.h - String library for Wiring & Arduino
...mostly rewritten by Paul Stoffregen...
Copyright (c) 2009-10 Hernando Barragan. All right reserved.
Copyright 2011, Paul Stoffregen, paul@pjrc.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef String_class_h
#define String_class_h
#ifdef __cplusplus
#include <pgmspace.h>
#include <cstdlib>
#include <cstdint>
#include <cstring>
#include <cctype>
#include <utility>
#include <type_traits>
// an abstract class used as a means to proide a unique pointer type
// but really has no body
class __FlashStringHelper;
#define FPSTR(pstr_pointer) (reinterpret_cast<const __FlashStringHelper *>(pstr_pointer))
#define F(string_literal) (FPSTR(PSTR(string_literal)))
// support libraries that expect this name to be available
// replace with `using StringSumHelper = String;` in case something wants this constructible
class StringSumHelper;
// The string class
class String {
public:
// constructors
// creates a copy of the initial value.
// if the initial value is null or invalid, or if memory allocation
// fails, the string will be marked as invalid (i.e. "if (s)" will
// be false).
String() __attribute__((always_inline)) { // See init()
init();
}
String(const char *cstr);
String(const String &str);
String(const __FlashStringHelper *str);
String(String &&rval) noexcept;
explicit String(char c) {
sso.buff[0] = c;
sso.buff[1] = 0;
sso.len = 1;
sso.isHeap = 0;
}
explicit String(unsigned char, unsigned char base = 10);
explicit String(int, unsigned char base = 10);
explicit String(unsigned int, unsigned char base = 10);
explicit String(long, unsigned char base = 10);
explicit String(unsigned long, unsigned char base = 10);
explicit String(long long /* base 10 */);
explicit String(long long, unsigned char base);
explicit String(unsigned long long /* base 10 */);
explicit String(unsigned long long, unsigned char base);
explicit String(float, unsigned char decimalPlaces = 2);
explicit String(double, unsigned char decimalPlaces = 2);
~String() {
invalidate();
}
// memory management
// return true on success, false on failure (in which case, the string
// is left unchanged). reserve(0), if successful, will validate an
// invalid string (i.e., "if (s)" will be true afterwards)
bool reserve(unsigned int size);
unsigned int length(void) const {
return buffer() ? len() : 0;
}
void clear(void) {
setLen(0);
}
bool isEmpty(void) const {
return length() == 0;
}
// creates a copy of the assigned value. if the value is null or
// invalid, or if the memory allocation fails, the string will be
// marked as invalid ("if (s)" will be false).
String &operator =(const String &rhs);
String &operator =(const char *cstr);
String &operator =(const __FlashStringHelper *str);
String &operator =(String &&rval) noexcept;
String &operator =(char c) {
char buffer[2] { c, '\0' };
*this = buffer;
return *this;
}
// concatenate (works w/ built-in types)
// returns true on success, false on failure (in which case, the string
// is left unchanged). if the argument is null or invalid, the
// concatenation is considered unsuccessful.
bool concat(const String &str);
bool concat(const char *cstr);
bool concat(char c);
bool concat(unsigned char c);
bool concat(int num);
bool concat(unsigned int num);
bool concat(long num);
bool concat(unsigned long num);
bool concat(long long num);
bool concat(unsigned long long num);
bool concat(float num);
bool concat(double num);
bool concat(const __FlashStringHelper *str);
bool concat(const char *cstr, unsigned int length);
// if there's not enough memory for the concatenated value, the string
// will be left unchanged (but this isn't signalled in any way)
template <typename T>
String &operator +=(const T &rhs) {
concat(rhs);
return *this;
}
explicit operator bool() const {
return buffer() != nullptr;
}
int compareTo(const String &s) const;
bool equals(const String &s) const;
bool equals(const char *cstr) const;
bool operator ==(const String &rhs) const {
return equals(rhs);
}
bool operator ==(const char *cstr) const {
return equals(cstr);
}
bool operator !=(const String &rhs) const {
return !equals(rhs);
}
bool operator !=(const char *cstr) const {
return !equals(cstr);
}
bool operator <(const String &rhs) const;
bool operator >(const String &rhs) const;
bool operator <=(const String &rhs) const;
bool operator >=(const String &rhs) const;
bool equalsIgnoreCase(const String &s) const;
unsigned char equalsConstantTime(const String &s) const;
bool startsWith(const String &prefix) const;
bool startsWith(const char *prefix) const {
return this->startsWith(String(prefix));
}
bool startsWith(const __FlashStringHelper *prefix) const {
return this->startsWith(String(prefix));
}
bool startsWith(const String &prefix, unsigned int offset) const;
bool endsWith(const String &suffix) const;
bool endsWith(const char *suffix) const {
return this->endsWith(String(suffix));
}
bool endsWith(const __FlashStringHelper *suffix) const {
return this->endsWith(String(suffix));
}
// character access
char charAt(unsigned int index) const {
return operator [](index);
}
void setCharAt(unsigned int index, char c);
char operator [](unsigned int index) const;
char &operator [](unsigned int index);
void getBytes(unsigned char *buf, unsigned int bufsize, unsigned int index = 0) const;
void toCharArray(char *buf, unsigned int bufsize, unsigned int index = 0) const {
getBytes((unsigned char *) buf, bufsize, index);
}
const char *c_str() const { return buffer(); }
char *begin() { return wbuffer(); }
char *end() { return wbuffer() + length(); }
const char *begin() const { return c_str(); }
const char *end() const { return c_str() + length(); }
// search
int indexOf(char ch, unsigned int fromIndex = 0) const;
int indexOf(const char *str, unsigned int fromIndex = 0) const;
int indexOf(const __FlashStringHelper *str, unsigned int fromIndex = 0) const {
return indexOf((const char*)str, fromIndex);
}
int indexOf(const String &str, unsigned int fromIndex = 0) const;
int lastIndexOf(char ch) const;
int lastIndexOf(char ch, unsigned int fromIndex) const;
int lastIndexOf(const String &str) const;
int lastIndexOf(const String &str, unsigned int fromIndex) const;
String substring(unsigned int beginIndex) const {
return substring(beginIndex, len());
}
String substring(unsigned int beginIndex, unsigned int endIndex) const;
// modification
void replace(char find, char replace);
void replace(const String &find, const String &replace);
void replace(const char *find, const String &replace) {
this->replace(String(find), replace);
}
void replace(const __FlashStringHelper *find, const String &replace) {
this->replace(String(find), replace);
}
void replace(const char *find, const char *replace) {
this->replace(String(find), String(replace));
}
void replace(const __FlashStringHelper *find, const char *replace) {
this->replace(String(find), String(replace));
}
void replace(const __FlashStringHelper *find, const __FlashStringHelper *replace) {
this->replace(String(find), String(replace));
}
// Pass the biggest integer if the count is not specified.
// The remove method below will take care of truncating it at the end of the string.
void remove(unsigned int index, unsigned int count = (unsigned int)-1);
void toLowerCase(void);
void toUpperCase(void);
void trim(void);
// parsing/conversion
long toInt(void) const;
float toFloat(void) const;
double toDouble(void) const;
protected:
// Contains the string info when we're not in SSO mode
struct _ptr {
char * buff;
uint16_t cap;
uint16_t len;
};
// This allows strings up up to 11 (10 + \0 termination) without any extra space.
enum { SSOSIZE = sizeof(struct _ptr) + 4 - 1 }; // Characters to allocate space for SSO, must be 12 or more
struct _sso {
char buff[SSOSIZE];
unsigned char len : 7; // Ensure only one byte is allocated by GCC for the bitfields
unsigned char isHeap : 1;
} __attribute__((packed)); // Ensure that GCC doesn't expand the flag byte to a 32-bit word for alignment issues
enum { CAPACITY_MAX = 65535 }; // If typeof(cap) changed from uint16_t, be sure to update this enum to the max value storable in the type
union {
struct _ptr ptr;
struct _sso sso;
};
// Accessor functions
bool isSSO() const { return !sso.isHeap; }
unsigned int len() const { return isSSO() ? sso.len : ptr.len; }
unsigned int capacity() const { return isSSO() ? (unsigned int)SSOSIZE - 1 : ptr.cap; } // Size of max string not including terminal NUL
void setSSO(bool set) { sso.isHeap = !set; }
void setLen(int len) {
if (isSSO()) {
setSSO(true); // Avoid emitting of bitwise EXTRACT-AND-OR ops (store-merging optimization)
sso.len = len;
} else
ptr.len = len;
}
void setCapacity(int cap) { if (!isSSO()) ptr.cap = cap; }
void setBuffer(char *buff) { if (!isSSO()) ptr.buff = buff; }
// Buffer accessor functions
const char *buffer() const { return wbuffer(); }
char *wbuffer() const { return isSSO() ? const_cast<char *>(sso.buff) : ptr.buff; } // Writable version of buffer
// concatenation is done via non-member functions
// make sure we still have access to internal methods, since we optimize based on capacity of both sides and want to manipulate internal buffers directly
friend String operator +(const String &lhs, String &&rhs);
friend String operator +(String &&lhs, String &&rhs);
friend String operator +(char lhs, String &&rhs);
friend String operator +(const char *lhs, String &&rhs);
friend String operator +(const __FlashStringHelper *lhs, String &&rhs);
protected:
void init(void) __attribute__((always_inline)) {
sso.buff[0] = 0;
sso.len = 0;
sso.isHeap = 0;
// Without the 6 statements shown below, GCC simply emits such as: "MOVI.N aX,0", "S8I aX,a2,0" and "S8I aX,a2,11" (8 bytes in total)
sso.buff[1] = 0;
sso.buff[2] = 0;
sso.buff[3] = 0;
sso.buff[8] = 0;
sso.buff[9] = 0;
sso.buff[10] = 0;
// With the above, thanks to store-merging, GCC can use the narrow form of 32-bit store insn ("S32I.N") and emits:
// "MOVI.N aX,0", "S32I.N aX,a2,0" and "S32I.N aX,a2,8" (6 bytes in total)
// (Literature: Xtensa(R) Instruction Set Reference Manual, "S8I - Store 8-bit" [p.504] and "S32I.N - Narrow Store 32-bit" [p.512])
// Unfortunately, GCC seems not to re-evaluate the cost of inlining after the store-merging optimizer stage,
// `always_inline` attribute is necessary in order to keep inlining.
}
void invalidate(void);
bool changeBuffer(unsigned int maxStrLen);
// copy or insert at a specific position
String &copy(const char *cstr, unsigned int length);
String &copy(const __FlashStringHelper *pstr, unsigned int length);
String &insert(size_t position, char);
String &insert(size_t position, const char *);
String &insert(size_t position, const __FlashStringHelper *);
String &insert(size_t position, const char *, size_t length);
String &insert(size_t position, const String &);
// rvalue helper
void move(String &rhs) noexcept;
};
// concatenation (note that it's done using non-method operators to handle both possible type refs)
inline String operator +(const String &lhs, const String &rhs) {
String res;
res.reserve(lhs.length() + rhs.length());
res += lhs;
res += rhs;
return res;
}
inline String operator +(String &&lhs, const String &rhs) {
lhs += rhs;
return std::move(lhs);
}
String operator +(const String &lhs, String &&rhs);
String operator +(String &&lhs, String &&rhs);
template <typename T,
typename = std::enable_if_t<!std::is_same_v<String, std::decay_t<T>>>>
inline String operator +(const String &lhs, const T &value) {
String res(lhs);
res += value;
return res;
}
template <typename T,
typename = std::enable_if_t<!std::is_same_v<String, std::decay_t<T>>>>
inline String operator +(String &&lhs, const T &value) {
lhs += value;
return std::move(lhs);
}
// `String(char)` is explicit, but we used to have StringSumHelper silently allowing the following:
// `String x; x = 'a' + String('b') + 'c';`
// For comparison, `std::string(char)` does not exist. However, we are allowed to chain `char` as both lhs and rhs
String operator +(char lhs, const String &rhs);
inline String operator +(char lhs, String &&rhs) {
return std::move(rhs.insert(0, lhs));
}
// both `char*` and `__FlashStringHelper*` are implicitly converted into `String()`, calling the `operator+(const String& ...);`
// however, here we:
// - do an automatic `reserve(total length)` for the resulting string
// - possibly do rhs.insert(0, ...), when &&rhs capacity could fit both
String operator +(const char *lhs, const String &rhs);
inline String operator +(const char *lhs, String &&rhs) {
return std::move(rhs.insert(0, lhs));
}
inline String operator +(const __FlashStringHelper *lhs, const String &rhs) {
return reinterpret_cast<const char*>(lhs) + rhs;
}
inline String operator +(const __FlashStringHelper *lhs, String &&rhs) {
return std::move(rhs.insert(0, lhs));
}
extern const String emptyString;
#endif // __cplusplus
#endif // String_class_h