1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00
esp8266/tools/sdk/include/bearssl/bearssl_rsa.h
Earle F. Philhower, III 5137d4da11
Update to BearSSL 0.6+ release, add AES_CCM modes (#5164)
Pull in latest BearSSL head (0.6 + minor additions) release and add AES_CCM
modes to the encryption options. Enable the aes_ccm initialization in client/server

The EC mul20 and square20 code was identical in two different files,
but because these copies were static, we ended up with an extra 6k of
duplicated code. Updated BearSSL to make them shared, saving 6KB.
2018-09-27 20:30:19 -07:00

1656 lines
58 KiB
C

/*
* Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef BR_BEARSSL_RSA_H__
#define BR_BEARSSL_RSA_H__
#include <stddef.h>
#include <stdint.h>
#include "bearssl_hash.h"
#include "bearssl_rand.h"
#ifdef __cplusplus
extern "C" {
#endif
/** \file bearssl_rsa.h
*
* # RSA
*
* This file documents the RSA implementations provided with BearSSL.
* Note that the SSL engine accesses these implementations through a
* configurable API, so it is possible to, for instance, run a SSL
* server which uses a RSA engine which is not based on this code.
*
* ## Key Elements
*
* RSA public and private keys consist in lists of big integers. All
* such integers are represented with big-endian unsigned notation:
* first byte is the most significant, and the value is positive (so
* there is no dedicated "sign bit"). Public and private key structures
* thus contain, for each such integer, a pointer to the first value byte
* (`unsigned char *`), and a length (`size_t`) which is the number of
* relevant bytes. As a general rule, minimal-length encoding is not
* enforced: values may have extra leading bytes of value 0.
*
* RSA public keys consist in two integers:
*
* - the modulus (`n`);
* - the public exponent (`e`).
*
* RSA private keys, as defined in
* [PKCS#1](https://tools.ietf.org/html/rfc3447), contain eight integers:
*
* - the modulus (`n`);
* - the public exponent (`e`);
* - the private exponent (`d`);
* - the first prime factor (`p`);
* - the second prime factor (`q`);
* - the first reduced exponent (`dp`, which is `d` modulo `p-1`);
* - the second reduced exponent (`dq`, which is `d` modulo `q-1`);
* - the CRT coefficient (`iq`, the inverse of `q` modulo `p`).
*
* However, the implementations defined in BearSSL use only five of
* these integers: `p`, `q`, `dp`, `dq` and `iq`.
*
* ## Security Features and Limitations
*
* The implementations contained in BearSSL have the following limitations
* and features:
*
* - They are constant-time. This means that the execution time and
* memory access pattern may depend on the _lengths_ of the private
* key components, but not on their value, nor on the value of
* the operand. Note that this property is not achieved through
* random masking, but "true" constant-time code.
*
* - They support only private keys with two prime factors. RSA private
* keys with three or more prime factors are nominally supported, but
* rarely used; they may offer faster operations, at the expense of
* more code and potentially a reduction in security if there are
* "too many" prime factors.
*
* - The public exponent may have arbitrary length. Of course, it is
* a good idea to keep public exponents small, so that public key
* operations are fast; but, contrary to some widely deployed
* implementations, BearSSL has no problem with public exponents
* longer than 32 bits.
*
* - The two prime factors of the modulus need not have the same length
* (but severely imbalanced factor lengths might reduce security).
* Similarly, there is no requirement that the first factor (`p`)
* be greater than the second factor (`q`).
*
* - Prime factors and modulus must be smaller than a compile-time limit.
* This is made necessary by the use of fixed-size stack buffers, and
* the limit has been adjusted to keep stack usage under 2 kB for the
* RSA operations. Currently, the maximum modulus size is 4096 bits,
* and the maximum prime factor size is 2080 bits.
*
* - The RSA functions themselves do not enforce lower size limits,
* except that which is absolutely necessary for the operation to
* mathematically make sense (e.g. a PKCS#1 v1.5 signature with
* SHA-1 requires a modulus of at least 361 bits). It is up to users
* of this code to enforce size limitations when appropriate (e.g.
* the X.509 validation engine, by default, rejects RSA keys of
* less than 1017 bits).
*
* - Within the size constraints expressed above, arbitrary bit lengths
* are supported. There is no requirement that prime factors or
* modulus have a size multiple of 8 or 16.
*
* - When verifying PKCS#1 v1.5 signatures, both variants of the hash
* function identifying header (with and without the ASN.1 NULL) are
* supported. When producing such signatures, the variant with the
* ASN.1 NULL is used.
*
* ## Implementations
*
* Three RSA implementations are included:
*
* - The **i32** implementation internally represents big integers
* as arrays of 32-bit integers. It is perfunctory and portable,
* but not very efficient.
*
* - The **i31** implementation uses 32-bit integers, each containing
* 31 bits worth of integer data. The i31 implementation is somewhat
* faster than the i32 implementation (the reduced integer size makes
* carry propagation easier) for a similar code footprint, but uses
* very slightly larger stack buffers (about 4% bigger).
*
* - The **i62** implementation is similar to the i31 implementation,
* except that it internally leverages the 64x64->128 multiplication
* opcode. This implementation is available only on architectures
* where such an opcode exists. It is much faster than i31.
*
* - The **i15** implementation uses 16-bit integers, each containing
* 15 bits worth of integer data. Multiplication results fit on
* 32 bits, so this won't use the "widening" multiplication routine
* on ARM Cortex M0/M0+, for much better performance and constant-time
* execution.
*/
/**
* \brief RSA public key.
*
* The structure references the modulus and the public exponent. Both
* integers use unsigned big-endian representation; extra leading bytes
* of value 0 are allowed.
*/
typedef struct {
/** \brief Modulus. */
unsigned char *n;
/** \brief Modulus length (in bytes). */
size_t nlen;
/** \brief Public exponent. */
unsigned char *e;
/** \brief Public exponent length (in bytes). */
size_t elen;
} br_rsa_public_key;
/**
* \brief RSA private key.
*
* The structure references the private factors, reduced private
* exponents, and CRT coefficient. It also contains the bit length of
* the modulus. The big integers use unsigned big-endian representation;
* extra leading bytes of value 0 are allowed. However, the modulus bit
* length (`n_bitlen`) MUST be exact.
*/
typedef struct {
/** \brief Modulus bit length (in bits, exact value). */
uint32_t n_bitlen;
/** \brief First prime factor. */
unsigned char *p;
/** \brief First prime factor length (in bytes). */
size_t plen;
/** \brief Second prime factor. */
unsigned char *q;
/** \brief Second prime factor length (in bytes). */
size_t qlen;
/** \brief First reduced private exponent. */
unsigned char *dp;
/** \brief First reduced private exponent length (in bytes). */
size_t dplen;
/** \brief Second reduced private exponent. */
unsigned char *dq;
/** \brief Second reduced private exponent length (in bytes). */
size_t dqlen;
/** \brief CRT coefficient. */
unsigned char *iq;
/** \brief CRT coefficient length (in bytes). */
size_t iqlen;
} br_rsa_private_key;
/**
* \brief Type for a RSA public key engine.
*
* The public key engine performs the modular exponentiation of the
* provided value with the public exponent. The value is modified in
* place.
*
* The value length (`xlen`) is verified to have _exactly_ the same
* length as the modulus (actual modulus length, without extra leading
* zeros in the modulus representation in memory). If the length does
* not match, then this function returns 0 and `x[]` is unmodified.
*
* It `xlen` is correct, then `x[]` is modified. Returned value is 1
* on success, 0 on error. Error conditions include an oversized `x[]`
* (the array has the same length as the modulus, but the numerical value
* is not lower than the modulus) and an invalid modulus (e.g. an even
* integer). If an error is reported, then the new contents of `x[]` are
* unspecified.
*
* \param x operand to exponentiate.
* \param xlen length of the operand (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
typedef uint32_t (*br_rsa_public)(unsigned char *x, size_t xlen,
const br_rsa_public_key *pk);
/**
* \brief Type for a RSA signature verification engine (PKCS#1 v1.5).
*
* Parameters are:
*
* - The signature itself. The provided array is NOT modified.
*
* - The encoded OID for the hash function. The provided array must begin
* with a single byte that contains the length of the OID value (in
* bytes), followed by exactly that many bytes. This parameter may
* also be `NULL`, in which case the raw hash value should be used
* with the PKCS#1 v1.5 "type 1" padding (as used in SSL/TLS up
* to TLS-1.1, with a 36-byte hash value).
*
* - The hash output length, in bytes.
*
* - The public key.
*
* - An output buffer for the hash value. The caller must still compare
* it with the hash of the data over which the signature is computed.
*
* **Constraints:**
*
* - Hash length MUST be no more than 64 bytes.
*
* - OID value length MUST be no more than 32 bytes (i.e. `hash_oid[0]`
* must have a value in the 0..32 range, inclusive).
*
* This function verifies that the signature length (`xlen`) matches the
* modulus length (this function returns 0 on mismatch). If the modulus
* size exceeds the maximum supported RSA size, then the function also
* returns 0.
*
* Returned value is 1 on success, 0 on error.
*
* Implementations of this type need not be constant-time.
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash_len expected hash value length (in bytes).
* \param pk RSA public key.
* \param hash_out output buffer for the hash value.
* \return 1 on success, 0 on error.
*/
typedef uint32_t (*br_rsa_pkcs1_vrfy)(const unsigned char *x, size_t xlen,
const unsigned char *hash_oid, size_t hash_len,
const br_rsa_public_key *pk, unsigned char *hash_out);
/**
* \brief Type for a RSA signature verification engine (PSS).
*
* Parameters are:
*
* - The signature itself. The provided array is NOT modified.
*
* - The hash function which was used to hash the message.
*
* - The hash function to use with MGF1 within the PSS padding. This
* is not necessarily the same hash function as the one which was
* used to hash the signed message.
*
* - The hashed message (as an array of bytes).
*
* - The PSS salt length (in bytes).
*
* - The public key.
*
* **Constraints:**
*
* - Hash message length MUST be no more than 64 bytes.
*
* Note that, contrary to PKCS#1 v1.5 signature, the hash value of the
* signed data cannot be extracted from the signature; it must be
* provided to the verification function.
*
* This function verifies that the signature length (`xlen`) matches the
* modulus length (this function returns 0 on mismatch). If the modulus
* size exceeds the maximum supported RSA size, then the function also
* returns 0.
*
* Returned value is 1 on success, 0 on error.
*
* Implementations of this type need not be constant-time.
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hf_data hash function applied on the message.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hash value of the signed message.
* \param salt_len PSS salt length (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
typedef uint32_t (*br_rsa_pss_vrfy)(const unsigned char *x, size_t xlen,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const void *hash, size_t salt_len, const br_rsa_public_key *pk);
/**
* \brief Type for a RSA encryption engine (OAEP).
*
* Parameters are:
*
* - A source of random bytes. The source must be already initialized.
*
* - A hash function, used internally with the mask generation function
* (MGF1).
*
* - A label. The `label` pointer may be `NULL` if `label_len` is zero
* (an empty label, which is the default in PKCS#1 v2.2).
*
* - The public key.
*
* - The destination buffer. Its maximum length (in bytes) is provided;
* if that length is lower than the public key length, then an error
* is reported.
*
* - The source message.
*
* The encrypted message output has exactly the same length as the modulus
* (mathematical length, in bytes, not counting extra leading zeros in the
* modulus representation in the public key).
*
* The source message (`src`, length `src_len`) may overlap with the
* destination buffer (`dst`, length `dst_max_len`).
*
* This function returns the actual encrypted message length, in bytes;
* on error, zero is returned. An error is reported if the output buffer
* is not large enough, or the public is invalid, or the public key
* modulus exceeds the maximum supported RSA size.
*
* \param rnd source of random bytes.
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param pk RSA public key.
* \param dst destination buffer.
* \param dst_max_len destination buffer length (maximum encrypted data size).
* \param src message to encrypt.
* \param src_len source message length (in bytes).
* \return encrypted message length (in bytes), or 0 on error.
*/
typedef size_t (*br_rsa_oaep_encrypt)(
const br_prng_class **rnd, const br_hash_class *dig,
const void *label, size_t label_len,
const br_rsa_public_key *pk,
void *dst, size_t dst_max_len,
const void *src, size_t src_len);
/**
* \brief Type for a RSA private key engine.
*
* The `x[]` buffer is modified in place, and its length is inferred from
* the modulus length (`x[]` is assumed to have a length of
* `(sk->n_bitlen+7)/8` bytes).
*
* Returned value is 1 on success, 0 on error.
*
* \param x operand to exponentiate.
* \param sk RSA private key.
* \return 1 on success, 0 on error.
*/
typedef uint32_t (*br_rsa_private)(unsigned char *x,
const br_rsa_private_key *sk);
/**
* \brief Type for a RSA signature generation engine (PKCS#1 v1.5).
*
* Parameters are:
*
* - The encoded OID for the hash function. The provided array must begin
* with a single byte that contains the length of the OID value (in
* bytes), followed by exactly that many bytes. This parameter may
* also be `NULL`, in which case the raw hash value should be used
* with the PKCS#1 v1.5 "type 1" padding (as used in SSL/TLS up
* to TLS-1.1, with a 36-byte hash value).
*
* - The hash value computes over the data to sign (its length is
* expressed in bytes).
*
* - The RSA private key.
*
* - The output buffer, that receives the signature.
*
* Returned value is 1 on success, 0 on error. Error conditions include
* a too small modulus for the provided hash OID and value, or some
* invalid key parameters. The signature length is exactly
* `(sk->n_bitlen+7)/8` bytes.
*
* This function is expected to be constant-time with regards to the
* private key bytes (lengths of the modulus and the individual factors
* may leak, though) and to the hashed data.
*
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash hash value.
* \param hash_len hash value length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the signature value.
* \return 1 on success, 0 on error.
*/
typedef uint32_t (*br_rsa_pkcs1_sign)(const unsigned char *hash_oid,
const unsigned char *hash, size_t hash_len,
const br_rsa_private_key *sk, unsigned char *x);
/**
* \brief Type for a RSA signature generation engine (PSS).
*
* Parameters are:
*
* - An initialized PRNG for salt generation. If the salt length is
* zero (`salt_len` parameter), then the PRNG is optional (this is
* not the typical case, as the security proof of RSA/PSS is
* tighter when a non-empty salt is used).
*
* - The hash function which was used to hash the message.
*
* - The hash function to use with MGF1 within the PSS padding. This
* is not necessarily the same function as the one used to hash the
* message.
*
* - The hashed message.
*
* - The salt length, in bytes.
*
* - The RSA private key.
*
* - The output buffer, that receives the signature.
*
* Returned value is 1 on success, 0 on error. Error conditions include
* a too small modulus for the provided hash and salt lengths, or some
* invalid key parameters. The signature length is exactly
* `(sk->n_bitlen+7)/8` bytes.
*
* This function is expected to be constant-time with regards to the
* private key bytes (lengths of the modulus and the individual factors
* may leak, though) and to the hashed data.
*
* \param rng PRNG for salt generation (`NULL` if `salt_len` is zero).
* \param hf_data hash function used to hash the signed data.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hashed message.
* \param salt_len salt length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the signature value.
* \return 1 on success, 0 on error.
*/
typedef uint32_t (*br_rsa_pss_sign)(const br_prng_class **rng,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const unsigned char *hash_value, size_t salt_len,
const br_rsa_private_key *sk, unsigned char *x);
/**
* \brief Encoded OID for SHA-1 (in RSA PKCS#1 signatures).
*/
#define BR_HASH_OID_SHA1 \
((const unsigned char *)"\x05\x2B\x0E\x03\x02\x1A")
/**
* \brief Encoded OID for SHA-224 (in RSA PKCS#1 signatures).
*/
#define BR_HASH_OID_SHA224 \
((const unsigned char *)"\x09\x60\x86\x48\x01\x65\x03\x04\x02\x04")
/**
* \brief Encoded OID for SHA-256 (in RSA PKCS#1 signatures).
*/
#define BR_HASH_OID_SHA256 \
((const unsigned char *)"\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01")
/**
* \brief Encoded OID for SHA-384 (in RSA PKCS#1 signatures).
*/
#define BR_HASH_OID_SHA384 \
((const unsigned char *)"\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02")
/**
* \brief Encoded OID for SHA-512 (in RSA PKCS#1 signatures).
*/
#define BR_HASH_OID_SHA512 \
((const unsigned char *)"\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03")
/**
* \brief Type for a RSA decryption engine (OAEP).
*
* Parameters are:
*
* - A hash function, used internally with the mask generation function
* (MGF1).
*
* - A label. The `label` pointer may be `NULL` if `label_len` is zero
* (an empty label, which is the default in PKCS#1 v2.2).
*
* - The private key.
*
* - The source and destination buffer. The buffer initially contains
* the encrypted message; the buffer contents are altered, and the
* decrypted message is written at the start of that buffer
* (decrypted message is always shorter than the encrypted message).
*
* If decryption fails in any way, then `*len` is unmodified, and the
* function returns 0. Otherwise, `*len` is set to the decrypted message
* length, and 1 is returned. The implementation is responsible for
* checking that the input message length matches the key modulus length,
* and that the padding is correct.
*
* Implementations MUST use constant-time check of the validity of the
* OAEP padding, at least until the leading byte and hash value have
* been checked. Whether overall decryption worked, and the length of
* the decrypted message, may leak.
*
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param sk RSA private key.
* \param data input/output buffer.
* \param len encrypted/decrypted message length.
* \return 1 on success, 0 on error.
*/
typedef uint32_t (*br_rsa_oaep_decrypt)(
const br_hash_class *dig, const void *label, size_t label_len,
const br_rsa_private_key *sk, void *data, size_t *len);
/*
* RSA "i32" engine. Integers are internally represented as arrays of
* 32-bit integers, and the core multiplication primitive is the
* 32x32->64 multiplication.
*/
/**
* \brief RSA public key engine "i32".
*
* \see br_rsa_public
*
* \param x operand to exponentiate.
* \param xlen length of the operand (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i32_public(unsigned char *x, size_t xlen,
const br_rsa_public_key *pk);
/**
* \brief RSA signature verification engine "i32" (PKCS#1 v1.5 signatures).
*
* \see br_rsa_pkcs1_vrfy
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash_len expected hash value length (in bytes).
* \param pk RSA public key.
* \param hash_out output buffer for the hash value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i32_pkcs1_vrfy(const unsigned char *x, size_t xlen,
const unsigned char *hash_oid, size_t hash_len,
const br_rsa_public_key *pk, unsigned char *hash_out);
/**
* \brief RSA signature verification engine "i32" (PSS signatures).
*
* \see br_rsa_pss_vrfy
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hf_data hash function applied on the message.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hash value of the signed message.
* \param salt_len PSS salt length (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i32_pss_vrfy(const unsigned char *x, size_t xlen,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const void *hash, size_t salt_len, const br_rsa_public_key *pk);
/**
* \brief RSA private key engine "i32".
*
* \see br_rsa_private
*
* \param x operand to exponentiate.
* \param sk RSA private key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i32_private(unsigned char *x,
const br_rsa_private_key *sk);
/**
* \brief RSA signature generation engine "i32" (PKCS#1 v1.5 signatures).
*
* \see br_rsa_pkcs1_sign
*
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash hash value.
* \param hash_len hash value length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the hash value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i32_pkcs1_sign(const unsigned char *hash_oid,
const unsigned char *hash, size_t hash_len,
const br_rsa_private_key *sk, unsigned char *x);
/**
* \brief RSA signature generation engine "i32" (PSS signatures).
*
* \see br_rsa_pss_sign
*
* \param rng PRNG for salt generation (`NULL` if `salt_len` is zero).
* \param hf_data hash function used to hash the signed data.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hashed message.
* \param salt_len salt length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the signature value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i32_pss_sign(const br_prng_class **rng,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const unsigned char *hash_value, size_t salt_len,
const br_rsa_private_key *sk, unsigned char *x);
/*
* RSA "i31" engine. Similar to i32, but only 31 bits are used per 32-bit
* word. This uses slightly more stack space (about 4% more) and code
* space, but it quite faster.
*/
/**
* \brief RSA public key engine "i31".
*
* \see br_rsa_public
*
* \param x operand to exponentiate.
* \param xlen length of the operand (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i31_public(unsigned char *x, size_t xlen,
const br_rsa_public_key *pk);
/**
* \brief RSA signature verification engine "i31" (PKCS#1 v1.5 signatures).
*
* \see br_rsa_pkcs1_vrfy
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash_len expected hash value length (in bytes).
* \param pk RSA public key.
* \param hash_out output buffer for the hash value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i31_pkcs1_vrfy(const unsigned char *x, size_t xlen,
const unsigned char *hash_oid, size_t hash_len,
const br_rsa_public_key *pk, unsigned char *hash_out);
/**
* \brief RSA signature verification engine "i31" (PSS signatures).
*
* \see br_rsa_pss_vrfy
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hf_data hash function applied on the message.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hash value of the signed message.
* \param salt_len PSS salt length (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i31_pss_vrfy(const unsigned char *x, size_t xlen,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const void *hash, size_t salt_len, const br_rsa_public_key *pk);
/**
* \brief RSA private key engine "i31".
*
* \see br_rsa_private
*
* \param x operand to exponentiate.
* \param sk RSA private key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i31_private(unsigned char *x,
const br_rsa_private_key *sk);
/**
* \brief RSA signature generation engine "i31" (PKCS#1 v1.5 signatures).
*
* \see br_rsa_pkcs1_sign
*
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash hash value.
* \param hash_len hash value length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the hash value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i31_pkcs1_sign(const unsigned char *hash_oid,
const unsigned char *hash, size_t hash_len,
const br_rsa_private_key *sk, unsigned char *x);
/**
* \brief RSA signature generation engine "i31" (PSS signatures).
*
* \see br_rsa_pss_sign
*
* \param rng PRNG for salt generation (`NULL` if `salt_len` is zero).
* \param hf_data hash function used to hash the signed data.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hashed message.
* \param salt_len salt length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the signature value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i31_pss_sign(const br_prng_class **rng,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const unsigned char *hash_value, size_t salt_len,
const br_rsa_private_key *sk, unsigned char *x);
/*
* RSA "i62" engine. Similar to i31, but internal multiplication use
* 64x64->128 multiplications. This is available only on architecture
* that offer such an opcode.
*/
/**
* \brief RSA public key engine "i62".
*
* This function is defined only on architecture that offer a 64x64->128
* opcode. Use `br_rsa_i62_public_get()` to dynamically obtain a pointer
* to that function.
*
* \see br_rsa_public
*
* \param x operand to exponentiate.
* \param xlen length of the operand (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i62_public(unsigned char *x, size_t xlen,
const br_rsa_public_key *pk);
/**
* \brief RSA signature verification engine "i62" (PKCS#1 v1.5 signatures).
*
* This function is defined only on architecture that offer a 64x64->128
* opcode. Use `br_rsa_i62_pkcs1_vrfy_get()` to dynamically obtain a pointer
* to that function.
*
* \see br_rsa_pkcs1_vrfy
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash_len expected hash value length (in bytes).
* \param pk RSA public key.
* \param hash_out output buffer for the hash value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i62_pkcs1_vrfy(const unsigned char *x, size_t xlen,
const unsigned char *hash_oid, size_t hash_len,
const br_rsa_public_key *pk, unsigned char *hash_out);
/**
* \brief RSA signature verification engine "i62" (PSS signatures).
*
* This function is defined only on architecture that offer a 64x64->128
* opcode. Use `br_rsa_i62_pss_vrfy_get()` to dynamically obtain a pointer
* to that function.
*
* \see br_rsa_pss_vrfy
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hf_data hash function applied on the message.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hash value of the signed message.
* \param salt_len PSS salt length (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i62_pss_vrfy(const unsigned char *x, size_t xlen,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const void *hash, size_t salt_len, const br_rsa_public_key *pk);
/**
* \brief RSA private key engine "i62".
*
* This function is defined only on architecture that offer a 64x64->128
* opcode. Use `br_rsa_i62_private_get()` to dynamically obtain a pointer
* to that function.
*
* \see br_rsa_private
*
* \param x operand to exponentiate.
* \param sk RSA private key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i62_private(unsigned char *x,
const br_rsa_private_key *sk);
/**
* \brief RSA signature generation engine "i62" (PKCS#1 v1.5 signatures).
*
* This function is defined only on architecture that offer a 64x64->128
* opcode. Use `br_rsa_i62_pkcs1_sign_get()` to dynamically obtain a pointer
* to that function.
*
* \see br_rsa_pkcs1_sign
*
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash hash value.
* \param hash_len hash value length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the hash value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i62_pkcs1_sign(const unsigned char *hash_oid,
const unsigned char *hash, size_t hash_len,
const br_rsa_private_key *sk, unsigned char *x);
/**
* \brief RSA signature generation engine "i62" (PSS signatures).
*
* This function is defined only on architecture that offer a 64x64->128
* opcode. Use `br_rsa_i62_pss_sign_get()` to dynamically obtain a pointer
* to that function.
*
* \see br_rsa_pss_sign
*
* \param rng PRNG for salt generation (`NULL` if `salt_len` is zero).
* \param hf_data hash function used to hash the signed data.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hashed message.
* \param salt_len salt length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the signature value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i62_pss_sign(const br_prng_class **rng,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const unsigned char *hash_value, size_t salt_len,
const br_rsa_private_key *sk, unsigned char *x);
/**
* \brief Get the RSA "i62" implementation (public key operations),
* if available.
*
* \return the implementation, or 0.
*/
br_rsa_public br_rsa_i62_public_get(void);
/**
* \brief Get the RSA "i62" implementation (PKCS#1 v1.5 signature verification),
* if available.
*
* \return the implementation, or 0.
*/
br_rsa_pkcs1_vrfy br_rsa_i62_pkcs1_vrfy_get(void);
/**
* \brief Get the RSA "i62" implementation (PSS signature verification),
* if available.
*
* \return the implementation, or 0.
*/
br_rsa_pss_vrfy br_rsa_i62_pss_vrfy_get(void);
/**
* \brief Get the RSA "i62" implementation (private key operations),
* if available.
*
* \return the implementation, or 0.
*/
br_rsa_private br_rsa_i62_private_get(void);
/**
* \brief Get the RSA "i62" implementation (PKCS#1 v1.5 signature generation),
* if available.
*
* \return the implementation, or 0.
*/
br_rsa_pkcs1_sign br_rsa_i62_pkcs1_sign_get(void);
/**
* \brief Get the RSA "i62" implementation (PSS signature generation),
* if available.
*
* \return the implementation, or 0.
*/
br_rsa_pss_sign br_rsa_i62_pss_sign_get(void);
/**
* \brief Get the RSA "i62" implementation (OAEP encryption),
* if available.
*
* \return the implementation, or 0.
*/
br_rsa_oaep_encrypt br_rsa_i62_oaep_encrypt_get(void);
/**
* \brief Get the RSA "i62" implementation (OAEP decryption),
* if available.
*
* \return the implementation, or 0.
*/
br_rsa_oaep_decrypt br_rsa_i62_oaep_decrypt_get(void);
/*
* RSA "i15" engine. Integers are represented as 15-bit integers, so
* the code uses only 32-bit multiplication (no 64-bit result), which
* is vastly faster (and constant-time) on the ARM Cortex M0/M0+.
*/
/**
* \brief RSA public key engine "i15".
*
* \see br_rsa_public
*
* \param x operand to exponentiate.
* \param xlen length of the operand (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i15_public(unsigned char *x, size_t xlen,
const br_rsa_public_key *pk);
/**
* \brief RSA signature verification engine "i15" (PKCS#1 v1.5 signatures).
*
* \see br_rsa_pkcs1_vrfy
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash_len expected hash value length (in bytes).
* \param pk RSA public key.
* \param hash_out output buffer for the hash value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i15_pkcs1_vrfy(const unsigned char *x, size_t xlen,
const unsigned char *hash_oid, size_t hash_len,
const br_rsa_public_key *pk, unsigned char *hash_out);
/**
* \brief RSA signature verification engine "i15" (PSS signatures).
*
* \see br_rsa_pss_vrfy
*
* \param x signature buffer.
* \param xlen signature length (in bytes).
* \param hf_data hash function applied on the message.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hash value of the signed message.
* \param salt_len PSS salt length (in bytes).
* \param pk RSA public key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i15_pss_vrfy(const unsigned char *x, size_t xlen,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const void *hash, size_t salt_len, const br_rsa_public_key *pk);
/**
* \brief RSA private key engine "i15".
*
* \see br_rsa_private
*
* \param x operand to exponentiate.
* \param sk RSA private key.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i15_private(unsigned char *x,
const br_rsa_private_key *sk);
/**
* \brief RSA signature generation engine "i15" (PKCS#1 v1.5 signatures).
*
* \see br_rsa_pkcs1_sign
*
* \param hash_oid encoded hash algorithm OID (or `NULL`).
* \param hash hash value.
* \param hash_len hash value length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the hash value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i15_pkcs1_sign(const unsigned char *hash_oid,
const unsigned char *hash, size_t hash_len,
const br_rsa_private_key *sk, unsigned char *x);
/**
* \brief RSA signature generation engine "i15" (PSS signatures).
*
* \see br_rsa_pss_sign
*
* \param rng PRNG for salt generation (`NULL` if `salt_len` is zero).
* \param hf_data hash function used to hash the signed data.
* \param hf_mgf1 hash function to use with MGF1.
* \param hash hashed message.
* \param salt_len salt length (in bytes).
* \param sk RSA private key.
* \param x output buffer for the signature value.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i15_pss_sign(const br_prng_class **rng,
const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
const unsigned char *hash_value, size_t salt_len,
const br_rsa_private_key *sk, unsigned char *x);
/**
* \brief Get "default" RSA implementation (public-key operations).
*
* This returns the preferred implementation of RSA (public-key operations)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_public br_rsa_public_get_default(void);
/**
* \brief Get "default" RSA implementation (private-key operations).
*
* This returns the preferred implementation of RSA (private-key operations)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_private br_rsa_private_get_default(void);
/**
* \brief Get "default" RSA implementation (PKCS#1 v1.5 signature verification).
*
* This returns the preferred implementation of RSA (signature verification)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_pkcs1_vrfy br_rsa_pkcs1_vrfy_get_default(void);
/**
* \brief Get "default" RSA implementation (PSS signature verification).
*
* This returns the preferred implementation of RSA (signature verification)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_pss_vrfy br_rsa_pss_vrfy_get_default(void);
/**
* \brief Get "default" RSA implementation (PKCS#1 v1.5 signature generation).
*
* This returns the preferred implementation of RSA (signature generation)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_pkcs1_sign br_rsa_pkcs1_sign_get_default(void);
/**
* \brief Get "default" RSA implementation (PSS signature generation).
*
* This returns the preferred implementation of RSA (signature generation)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_pss_sign br_rsa_pss_sign_get_default(void);
/**
* \brief Get "default" RSA implementation (OAEP encryption).
*
* This returns the preferred implementation of RSA (OAEP encryption)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_oaep_encrypt br_rsa_oaep_encrypt_get_default(void);
/**
* \brief Get "default" RSA implementation (OAEP decryption).
*
* This returns the preferred implementation of RSA (OAEP decryption)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_oaep_decrypt br_rsa_oaep_decrypt_get_default(void);
/**
* \brief RSA decryption helper, for SSL/TLS.
*
* This function performs the RSA decryption for a RSA-based key exchange
* in a SSL/TLS server. The provided RSA engine is used. The `data`
* parameter points to the value to decrypt, of length `len` bytes. On
* success, the 48-byte pre-master secret is copied into `data`, starting
* at the first byte of that buffer; on error, the contents of `data`
* become indeterminate.
*
* This function first checks that the provided value length (`len`) is
* not lower than 59 bytes, and matches the RSA modulus length; if neither
* of this property is met, then this function returns 0 and the buffer
* is unmodified.
*
* Otherwise, decryption and then padding verification are performed, both
* in constant-time. A decryption error, or a bad padding, or an
* incorrect decrypted value length are reported with a returned value of
* 0; on success, 1 is returned. The caller (SSL server engine) is supposed
* to proceed with a random pre-master secret in case of error.
*
* \param core RSA private key engine.
* \param sk RSA private key.
* \param data input/output buffer.
* \param len length (in bytes) of the data to decrypt.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_ssl_decrypt(br_rsa_private core, const br_rsa_private_key *sk,
unsigned char *data, size_t len);
/**
* \brief RSA encryption (OAEP) with the "i15" engine.
*
* \see br_rsa_oaep_encrypt
*
* \param rnd source of random bytes.
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param pk RSA public key.
* \param dst destination buffer.
* \param dst_max_len destination buffer length (maximum encrypted data size).
* \param src message to encrypt.
* \param src_len source message length (in bytes).
* \return encrypted message length (in bytes), or 0 on error.
*/
size_t br_rsa_i15_oaep_encrypt(
const br_prng_class **rnd, const br_hash_class *dig,
const void *label, size_t label_len,
const br_rsa_public_key *pk,
void *dst, size_t dst_max_len,
const void *src, size_t src_len);
/**
* \brief RSA decryption (OAEP) with the "i15" engine.
*
* \see br_rsa_oaep_decrypt
*
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param sk RSA private key.
* \param data input/output buffer.
* \param len encrypted/decrypted message length.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i15_oaep_decrypt(
const br_hash_class *dig, const void *label, size_t label_len,
const br_rsa_private_key *sk, void *data, size_t *len);
/**
* \brief RSA encryption (OAEP) with the "i31" engine.
*
* \see br_rsa_oaep_encrypt
*
* \param rnd source of random bytes.
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param pk RSA public key.
* \param dst destination buffer.
* \param dst_max_len destination buffer length (maximum encrypted data size).
* \param src message to encrypt.
* \param src_len source message length (in bytes).
* \return encrypted message length (in bytes), or 0 on error.
*/
size_t br_rsa_i31_oaep_encrypt(
const br_prng_class **rnd, const br_hash_class *dig,
const void *label, size_t label_len,
const br_rsa_public_key *pk,
void *dst, size_t dst_max_len,
const void *src, size_t src_len);
/**
* \brief RSA decryption (OAEP) with the "i31" engine.
*
* \see br_rsa_oaep_decrypt
*
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param sk RSA private key.
* \param data input/output buffer.
* \param len encrypted/decrypted message length.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i31_oaep_decrypt(
const br_hash_class *dig, const void *label, size_t label_len,
const br_rsa_private_key *sk, void *data, size_t *len);
/**
* \brief RSA encryption (OAEP) with the "i32" engine.
*
* \see br_rsa_oaep_encrypt
*
* \param rnd source of random bytes.
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param pk RSA public key.
* \param dst destination buffer.
* \param dst_max_len destination buffer length (maximum encrypted data size).
* \param src message to encrypt.
* \param src_len source message length (in bytes).
* \return encrypted message length (in bytes), or 0 on error.
*/
size_t br_rsa_i32_oaep_encrypt(
const br_prng_class **rnd, const br_hash_class *dig,
const void *label, size_t label_len,
const br_rsa_public_key *pk,
void *dst, size_t dst_max_len,
const void *src, size_t src_len);
/**
* \brief RSA decryption (OAEP) with the "i32" engine.
*
* \see br_rsa_oaep_decrypt
*
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param sk RSA private key.
* \param data input/output buffer.
* \param len encrypted/decrypted message length.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i32_oaep_decrypt(
const br_hash_class *dig, const void *label, size_t label_len,
const br_rsa_private_key *sk, void *data, size_t *len);
/**
* \brief RSA encryption (OAEP) with the "i62" engine.
*
* This function is defined only on architecture that offer a 64x64->128
* opcode. Use `br_rsa_i62_oaep_encrypt_get()` to dynamically obtain a pointer
* to that function.
*
* \see br_rsa_oaep_encrypt
*
* \param rnd source of random bytes.
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param pk RSA public key.
* \param dst destination buffer.
* \param dst_max_len destination buffer length (maximum encrypted data size).
* \param src message to encrypt.
* \param src_len source message length (in bytes).
* \return encrypted message length (in bytes), or 0 on error.
*/
size_t br_rsa_i62_oaep_encrypt(
const br_prng_class **rnd, const br_hash_class *dig,
const void *label, size_t label_len,
const br_rsa_public_key *pk,
void *dst, size_t dst_max_len,
const void *src, size_t src_len);
/**
* \brief RSA decryption (OAEP) with the "i62" engine.
*
* This function is defined only on architecture that offer a 64x64->128
* opcode. Use `br_rsa_i62_oaep_decrypt_get()` to dynamically obtain a pointer
* to that function.
*
* \see br_rsa_oaep_decrypt
*
* \param dig hash function to use with MGF1.
* \param label label value (may be `NULL` if `label_len` is zero).
* \param label_len label length, in bytes.
* \param sk RSA private key.
* \param data input/output buffer.
* \param len encrypted/decrypted message length.
* \return 1 on success, 0 on error.
*/
uint32_t br_rsa_i62_oaep_decrypt(
const br_hash_class *dig, const void *label, size_t label_len,
const br_rsa_private_key *sk, void *data, size_t *len);
/**
* \brief Get buffer size to hold RSA private key elements.
*
* This macro returns the length (in bytes) of the buffer needed to
* receive the elements of a RSA private key, as generated by one of
* the `br_rsa_*_keygen()` functions. If the provided size is a constant
* expression, then the whole macro evaluates to a constant expression.
*
* \param size target key size (modulus size, in bits)
* \return the length of the private key buffer, in bytes.
*/
#define BR_RSA_KBUF_PRIV_SIZE(size) (5 * (((size) + 15) >> 4))
/**
* \brief Get buffer size to hold RSA public key elements.
*
* This macro returns the length (in bytes) of the buffer needed to
* receive the elements of a RSA public key, as generated by one of
* the `br_rsa_*_keygen()` functions. If the provided size is a constant
* expression, then the whole macro evaluates to a constant expression.
*
* \param size target key size (modulus size, in bits)
* \return the length of the public key buffer, in bytes.
*/
#define BR_RSA_KBUF_PUB_SIZE(size) (4 + (((size) + 7) >> 3))
/**
* \brief Type for RSA key pair generator implementation.
*
* This function generates a new RSA key pair whose modulus has bit
* length `size` bits. The private key elements are written in the
* `kbuf_priv` buffer, and pointer values and length fields to these
* elements are populated in the provided private key structure `sk`.
* Similarly, the public key elements are written in `kbuf_pub`, with
* pointers and lengths set in `pk`.
*
* If `pk` is `NULL`, then `kbuf_pub` may be `NULL`, and only the
* private key is set.
*
* If `pubexp` is not zero, then its value will be used as public
* exponent. Valid RSA public exponent values are odd integers
* greater than 1. If `pubexp` is zero, then the public exponent will
* have value 3.
*
* The provided PRNG (`rng_ctx`) must have already been initialized
* and seeded.
*
* Returned value is 1 on success, 0 on error. An error is reported
* if the requested range is outside of the supported key sizes, or
* if an invalid non-zero public exponent value is provided. Supported
* range starts at 512 bits, and up to an implementation-defined
* maximum (by default 4096 bits). Note that key sizes up to 768 bits
* have been broken in practice, and sizes lower than 2048 bits are
* usually considered to be weak and should not be used.
*
* \param rng_ctx source PRNG context (already initialized)
* \param sk RSA private key structure (destination)
* \param kbuf_priv buffer for private key elements
* \param pk RSA public key structure (destination), or `NULL`
* \param kbuf_pub buffer for public key elements, or `NULL`
* \param size target RSA modulus size (in bits)
* \param pubexp public exponent to use, or zero
* \return 1 on success, 0 on error (invalid parameters)
*/
typedef uint32_t (*br_rsa_keygen)(
const br_prng_class **rng_ctx,
br_rsa_private_key *sk, void *kbuf_priv,
br_rsa_public_key *pk, void *kbuf_pub,
unsigned size, uint32_t pubexp);
/**
* \brief RSA key pair generation with the "i15" engine.
*
* \see br_rsa_keygen
*
* \param rng_ctx source PRNG context (already initialized)
* \param sk RSA private key structure (destination)
* \param kbuf_priv buffer for private key elements
* \param pk RSA public key structure (destination), or `NULL`
* \param kbuf_pub buffer for public key elements, or `NULL`
* \param size target RSA modulus size (in bits)
* \param pubexp public exponent to use, or zero
* \return 1 on success, 0 on error (invalid parameters)
*/
uint32_t br_rsa_i15_keygen(
const br_prng_class **rng_ctx,
br_rsa_private_key *sk, void *kbuf_priv,
br_rsa_public_key *pk, void *kbuf_pub,
unsigned size, uint32_t pubexp);
/**
* \brief RSA key pair generation with the "i31" engine.
*
* \see br_rsa_keygen
*
* \param rng_ctx source PRNG context (already initialized)
* \param sk RSA private key structure (destination)
* \param kbuf_priv buffer for private key elements
* \param pk RSA public key structure (destination), or `NULL`
* \param kbuf_pub buffer for public key elements, or `NULL`
* \param size target RSA modulus size (in bits)
* \param pubexp public exponent to use, or zero
* \return 1 on success, 0 on error (invalid parameters)
*/
uint32_t br_rsa_i31_keygen(
const br_prng_class **rng_ctx,
br_rsa_private_key *sk, void *kbuf_priv,
br_rsa_public_key *pk, void *kbuf_pub,
unsigned size, uint32_t pubexp);
/**
* \brief RSA key pair generation with the "i62" engine.
*
* This function is defined only on architecture that offer a 64x64->128
* opcode. Use `br_rsa_i62_keygen_get()` to dynamically obtain a pointer
* to that function.
*
* \see br_rsa_keygen
*
* \param rng_ctx source PRNG context (already initialized)
* \param sk RSA private key structure (destination)
* \param kbuf_priv buffer for private key elements
* \param pk RSA public key structure (destination), or `NULL`
* \param kbuf_pub buffer for public key elements, or `NULL`
* \param size target RSA modulus size (in bits)
* \param pubexp public exponent to use, or zero
* \return 1 on success, 0 on error (invalid parameters)
*/
uint32_t br_rsa_i62_keygen(
const br_prng_class **rng_ctx,
br_rsa_private_key *sk, void *kbuf_priv,
br_rsa_public_key *pk, void *kbuf_pub,
unsigned size, uint32_t pubexp);
/**
* \brief Get the RSA "i62" implementation (key pair generation),
* if available.
*
* \return the implementation, or 0.
*/
br_rsa_keygen br_rsa_i62_keygen_get(void);
/**
* \brief Get "default" RSA implementation (key pair generation).
*
* This returns the preferred implementation of RSA (key pair generation)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_keygen br_rsa_keygen_get_default(void);
/**
* \brief Type for a modulus computing function.
*
* Such a function computes the public modulus from the private key. The
* encoded modulus (unsigned big-endian) is written on `n`, and the size
* (in bytes) is returned. If `n` is `NULL`, then the size is returned but
* the modulus itself is not computed.
*
* If the key size exceeds an internal limit, 0 is returned.
*
* \param n destination buffer (or `NULL`).
* \param sk RSA private key.
* \return the modulus length (in bytes), or 0.
*/
typedef size_t (*br_rsa_compute_modulus)(void *n, const br_rsa_private_key *sk);
/**
* \brief Recompute RSA modulus ("i15" engine).
*
* \see br_rsa_compute_modulus
*
* \param n destination buffer (or `NULL`).
* \param sk RSA private key.
* \return the modulus length (in bytes), or 0.
*/
size_t br_rsa_i15_compute_modulus(void *n, const br_rsa_private_key *sk);
/**
* \brief Recompute RSA modulus ("i31" engine).
*
* \see br_rsa_compute_modulus
*
* \param n destination buffer (or `NULL`).
* \param sk RSA private key.
* \return the modulus length (in bytes), or 0.
*/
size_t br_rsa_i31_compute_modulus(void *n, const br_rsa_private_key *sk);
/**
* \brief Get "default" RSA implementation (recompute modulus).
*
* This returns the preferred implementation of RSA (recompute modulus)
* on the current system.
*
* \return the default implementation.
*/
br_rsa_compute_modulus br_rsa_compute_modulus_get_default(void);
/**
* \brief Type for a public exponent computing function.
*
* Such a function recomputes the public exponent from the private key.
* 0 is returned if any of the following occurs:
*
* - Either `p` or `q` is not equal to 3 modulo 4.
*
* - The public exponent does not fit on 32 bits.
*
* - An internal limit is exceeded.
*
* - The private key is invalid in some way.
*
* For all private keys produced by the key generator functions
* (`br_rsa_keygen` type), this function succeeds and returns the true
* public exponent. The public exponent is always an odd integer greater
* than 1.
*
* \return the public exponent, or 0.
*/
typedef uint32_t (*br_rsa_compute_pubexp)(const br_rsa_private_key *sk);
/**
* \brief Recompute RSA public exponent ("i15" engine).
*
* \see br_rsa_compute_pubexp
*
* \return the public exponent, or 0.
*/
uint32_t br_rsa_i15_compute_pubexp(const br_rsa_private_key *sk);
/**
* \brief Recompute RSA public exponent ("i31" engine).
*
* \see br_rsa_compute_pubexp
*
* \return the public exponent, or 0.
*/
uint32_t br_rsa_i31_compute_pubexp(const br_rsa_private_key *sk);
/**
* \brief Get "default" RSA implementation (recompute public exponent).
*
* This returns the preferred implementation of RSA (recompute public
* exponent) on the current system.
*
* \return the default implementation.
*/
br_rsa_compute_pubexp br_rsa_compute_pubexp_get_default(void);
/**
* \brief Type for a private exponent computing function.
*
* An RSA private key (`br_rsa_private_key`) contains two reduced
* private exponents, which are sufficient to perform private key
* operations. However, standard encoding formats for RSA private keys
* require also a copy of the complete private exponent (non-reduced),
* which this function recomputes.
*
* This function suceeds if all the following conditions hold:
*
* - Both private factors `p` and `q` are equal to 3 modulo 4.
*
* - The provided public exponent `pubexp` is correct, and, in particular,
* is odd, relatively prime to `p-1` and `q-1`, and greater than 1.
*
* - No internal storage limit is exceeded.
*
* For all private keys produced by the key generator functions
* (`br_rsa_keygen` type), this function succeeds. Note that the API
* restricts the public exponent to a maximum size of 32 bits.
*
* The encoded private exponent is written in `d` (unsigned big-endian
* convention), and the length (in bytes) is returned. If `d` is `NULL`,
* then the exponent is not written anywhere, but the length is still
* returned. On error, 0 is returned.
*
* Not all error conditions are detected when `d` is `NULL`; therefore, the
* returned value shall be checked also when actually producing the value.
*
* \param d destination buffer (or `NULL`).
* \param sk RSA private key.
* \param pubexp the public exponent.
* \return the private exponent length (in bytes), or 0.
*/
typedef size_t (*br_rsa_compute_privexp)(void *d,
const br_rsa_private_key *sk, uint32_t pubexp);
/**
* \brief Recompute RSA private exponent ("i15" engine).
*
* \see br_rsa_compute_privexp
*
* \param d destination buffer (or `NULL`).
* \param sk RSA private key.
* \param pubexp the public exponent.
* \return the private exponent length (in bytes), or 0.
*/
size_t br_rsa_i15_compute_privexp(void *d,
const br_rsa_private_key *sk, uint32_t pubexp);
/**
* \brief Recompute RSA private exponent ("i31" engine).
*
* \see br_rsa_compute_privexp
*
* \param d destination buffer (or `NULL`).
* \param sk RSA private key.
* \param pubexp the public exponent.
* \return the private exponent length (in bytes), or 0.
*/
size_t br_rsa_i31_compute_privexp(void *d,
const br_rsa_private_key *sk, uint32_t pubexp);
/**
* \brief Get "default" RSA implementation (recompute private exponent).
*
* This returns the preferred implementation of RSA (recompute private
* exponent) on the current system.
*
* \return the default implementation.
*/
br_rsa_compute_privexp br_rsa_compute_privexp_get_default(void);
#ifdef __cplusplus
}
#endif
#endif